Dataset Viewer
Auto-converted to Parquet
id
stringlengths
8
11
audio
audioduration (s)
4.17
12
ai_00001
ai_00002
ai_00003
ai_00004
ai_00005
ai_00006
ai_00007
ai_00008
ai_00009
ai_00010
ai_00011
ai_00012
ai_00013
ai_00014
ai_00015
ai_00016
ai_00017
ai_00018
ai_00019
ai_00020
ai_00021
ai_00022
ai_00023
ai_00024
ai_00025
ai_00026
ai_00027
ai_00028
ai_00029
ai_00030
ai_00031
ai_00032
ai_00033
ai_00034
ai_00035
human_00001
human_00002
human_00003
human_00004
human_00005
human_00006
human_00007
human_00008
human_00009
human_00010
human_00011
human_00012
human_00013
human_00014
human_00015
human_00016
human_00017
human_00018
human_00019
human_00020
human_00021
human_00022
human_00023
human_00024
human_00025
human_00026
human_00027
human_00028
human_00029
human_00030
human_00031
human_00032
human_00033
human_00034
human_00035
human_00036
human_00037
human_00038
human_00039
human_00040
human_00041
human_00042
human_00043
human_00044
human_00045
human_00046
human_00047
human_00048
human_00049
human_00050
human_00051
human_00052
human_00053
human_00054
human_00055
human_00056
human_00057
human_00058
human_00059
human_00060
human_00061
human_00062
human_00063
human_00064
human_00065
End of preview. Expand in Data Studio

📚 Audio Turing Test Audios

A high‑quality, multidimensional Chinese audio corpus generated from textual transcripts, designed to evaluate the human-likeness and naturalness of Text-to-Speech (TTS) systems—the “Audio Turing Test.”

About Audio Turing Test (ATT)

ATT is an evaluation framework featuring a standardized human evaluation protocol and an accompanying dataset, addressing the lack of unified evaluation standards in TTS research. To enhance rapid iteration and evaluation, we trained the Auto-ATT model based on Qwen2-Audio-7B, enabling a model-as-a-judge evaluation on the ATT dataset. Full details and related resources are available in the ATT Collection.

Dataset Description

The dataset includes 104 "trap" audio clips for attentiveness checks during evaluations:

  • 35 flawed synthetic audio clips: intentionally synthesized to highlight obvious flaws and unnaturalness.
  • 69 authentic human recordings: genuine human speech, serving as control samples.

How to Use This Dataset

  1. Evaluate: Use our Auto-ATT evaluation model to score your own or existing TTS audio clips.
  2. Benchmark: Compare your evaluation scores against these reference audio samples from top-performing TTS models described in our research paper and these "trap" audio clips.

Data Format

Audio files are provided in high-quality .wav format.

Citation

If you use this dataset, please cite:

@software{Audio-Turing-Test-Audios,
  author = {Wang, Xihuai and Zhao, Ziyi and Ren, Siyu and Zhang, Shao and Li, Song and Li, Xiaoyu and Wang, Ziwen and Qiu, Lin and Wan, Guanglu and Cao, Xuezhi and Cai, Xunliang and Zhang, Weinan},
  title = {Audio Turing Test: Benchmarking the Human-likeness and Naturalness of Large Language Model-based Text-to-Speech Systems in Chinese},
  year = {2025},
  url = {https://huggingface.co/datasets/Meituan/Audio-Turing-Test-Audios},
  publisher = {huggingface},
}
Downloads last month
68

Collection including meituan/Audio-Turing-Test-Audios