Datasets:
correct_answer
stringlengths 7
44
| incorrect_answer
stringclasses 8
values | object
stringlengths 2
27
| original_image
imagewidth (px) 173
5.8k
| counterfact_image
imagewidth (px) 173
5.8k
|
---|---|---|---|---|
['green'] | brown | American chameleon | ||
['white'] | orange | Arctic fox | ||
['brown', 'white'] | purple | Band Aid | ||
['brown', 'black'] | green | Chesapeake Bay retriever | ||
['red', 'white', 'green'] | brown | Christmas stocking | ||
['black'] | purple | Doberman | ||
['red', 'orange', 'yellow', 'black'] | blue | European fire salamander | ||
['gold', 'silver'] | red | French horn | ||
['brown'] | blue | French loaf | ||
['orange', 'black'] | purple | Gila monster | ||
['black'] | green | Gordon setter | ||
['green'] | blue | Granny Smith | ||
['white'] | pink | Great Pyrenees | ||
['red'] | green | Irish setter | ||
['grey', 'brown'] | pink | Komodo dragon | ||
['yellow', 'black'] | pink | Labrador retriever | ||
['brown', 'red', 'black'] | yellow | Loafer | ||
['white'] | orange | Maltese dog | ||
['black'] | red | Model T | ||
['black', 'white', 'brown'] | pink | Newfoundland | ||
['grey', 'black'] | red | Norwegian elkhound | ||
['grey', 'white', 'black'] | yellow | Old English sheepdog | ||
['orange', 'white'] | blue | Pomeranian | ||
['black'] | pink | Rottweiler | ||
['white'] | green | Samoyed | ||
['black', 'grey'] | red | Scottish deerhound | ||
['white'] | purple | Sealyham terrier | ||
['grey'] | green | Weimaraner | ||
['white'] | orange | West Highland white terrier | ||
['brown'] | pink | acorn | ||
['green', 'orange'] | blue | acorn squash | ||
['brown'] | purple | acoustic guitar | ||
['black'] | purple | affenpinscher | ||
['white'] | brown | airliner | ||
['white', 'blue'] | brown | airplane | ||
['green'] | pink | alligator | ||
['white', 'red'] | green | ambulance | ||
['brown', 'white'] | pink | american football | ||
['orange'] | purple | anemone fish | ||
['black', 'brown', 'red'] | pink | ant | ||
['red', 'green', 'yellow'] | blue | apple | ||
['grey', 'white', 'brown'] | purple | armadillo | ||
['silver'] | purple | armour | ||
['green'] | blue | artichoke | ||
['green'] | orange | asparagus | ||
['green'] | blue | avocado | ||
['pink', 'white'] | yellow | axolotl | ||
['brown'] | green | bagel | ||
['blue', 'black'] | yellow | ballpoint | ||
['yellow'] | blue | banana | ||
['red', 'white'] | purple | barn | ||
['brown'] | yellow | barrel | ||
['white'] | pink | baseball | ||
['orange'] | purple | basketball | ||
['brown'] | purple | bassoon | ||
['black', 'brown'] | pink | bat_(animal) | ||
['white'] | orange | bath towel | ||
['white'] | green | bathtub | ||
['red'] | brown | beacon | ||
['green', 'brown'] | pink | beans | ||
['black', 'brown'] | pink | bear | ||
['black', 'brown'] | purple | bearskin | ||
['brown'] | purple | beaver | ||
['yellow'] | red | beehive | ||
['brown', 'green'] | blue | beer bottle | ||
['black', 'brown', 'green'] | pink | beetle | ||
['red', 'purple'] | yellow | beets | ||
['brown'] | pink | bench | ||
['black'] | red | binoculars | ||
['white', 'brown'] | pink | birch | ||
['brown'] | blue | bison | ||
['brown'] | purple | bittern | ||
['black'] | pink | black stork | ||
['black'] | pink | black swan | ||
['black'] | green | black widow | ||
['black', 'white'] | yellow | black-and-tan coonhound | ||
['black'] | orange | blackbird | ||
['blue'] | brown | blueberry | ||
['blue', 'white'] | orange | bluejay | ||
['black'] | pink | board_(black) | ||
['white'] | green | boat | ||
['green', 'brown'] | purple | bottle | ||
['white', 'blue'] | pink | bowl | ||
['brown'] | green | box | ||
['brown', 'white'] | green | bread | ||
['red', 'brown'] | blue | brick | ||
['green'] | red | broccoli | ||
['brown', 'yellow'] | pink | broom | ||
['brown'] | pink | buckeye | ||
['green', 'yellow', 'blue'] | purple | budgie | ||
['brown', 'black'] | green | buffalo | ||
['green'] | red | bullfrog | ||
['yellow', 'white'] | brown | bus | ||
['brown', 'orange'] | green | butternut squash | ||
['black', 'brown'] | purple | buzzard | ||
['yellow'] | green | cab | ||
['green', 'purple'] | pink | cabbage | ||
['white', 'black'] | red | cabbage butterfly | ||
['brown', 'white'] | pink | cabin | ||
['brown'] | red | camel |
Visual CounterFact: Controlling Knowledge Priors in Vision-Language Models through Visual Counterfactuals
This dataset is part of the work "Pixels Versus Priors: Controlling Knowledge Priors in Vision-Language Models through Visual Counterfacts".
📖 Read the Paper
💾 GitHub Repository
Overview
Visual CounterFact is a novel dataset designed to investigate how Multimodal Large Language Models (MLLMs) balance memorized world knowledge priors (e.g., "strawberries are red") with the visual evidence present in input images (e.g., a blue strawberry). The dataset features visually realistic counterfactuals that create direct conflicts between what the model has learned and what it sees. This allows for studying and controlling whether model predictions rely on memorized priors or the actual image content.
Dataset Splits
The dataset contains two distinct splits, each corresponding to a specific visual attribute reasoning task:
Color (color
)
- Description: Contains images of objects where the color attribute is either consistent with common world knowledge or is a counterfactual color designed to contradict it (e.g., a blue strawberry).
- Purpose: Evaluate how models reconcile conflicting color information between prior knowledge and visual input.
- Example Queries:
- "What color is this strawberry?"
- "What color are most strawberries?"
Size (size
)
- Description: Consists of object images with size relations manipulated to contradict typical real-world size expectations (e.g., a fly larger than a strawberry).
- Purpose: Test model understanding of size priors versus visual evidence.
- Example Queries:
- "Which object is bigger in this image, the fly or the strawberry?"
- "Are strawberries bigger than flies?"
Citation
If you use this dataset, please cite:
Pixels Versus Priors: Controlling Knowledge Priors in Vision-Language Models through Visual Counterfacts
- Downloads last month
- 149