Dataset Viewer
Auto-converted to Parquet
correct_answer
stringlengths
7
44
incorrect_answer
stringclasses
8 values
object
stringlengths
2
27
original_image
imagewidth (px)
173
5.8k
counterfact_image
imagewidth (px)
173
5.8k
['green']
brown
American chameleon
['white']
orange
Arctic fox
['brown', 'white']
purple
Band Aid
['brown', 'black']
green
Chesapeake Bay retriever
['red', 'white', 'green']
brown
Christmas stocking
['black']
purple
Doberman
['red', 'orange', 'yellow', 'black']
blue
European fire salamander
['gold', 'silver']
red
French horn
['brown']
blue
French loaf
['orange', 'black']
purple
Gila monster
['black']
green
Gordon setter
['green']
blue
Granny Smith
['white']
pink
Great Pyrenees
['red']
green
Irish setter
['grey', 'brown']
pink
Komodo dragon
['yellow', 'black']
pink
Labrador retriever
['brown', 'red', 'black']
yellow
Loafer
['white']
orange
Maltese dog
['black']
red
Model T
['black', 'white', 'brown']
pink
Newfoundland
['grey', 'black']
red
Norwegian elkhound
['grey', 'white', 'black']
yellow
Old English sheepdog
['orange', 'white']
blue
Pomeranian
['black']
pink
Rottweiler
['white']
green
Samoyed
['black', 'grey']
red
Scottish deerhound
['white']
purple
Sealyham terrier
['grey']
green
Weimaraner
['white']
orange
West Highland white terrier
['brown']
pink
acorn
['green', 'orange']
blue
acorn squash
['brown']
purple
acoustic guitar
['black']
purple
affenpinscher
['white']
brown
airliner
['white', 'blue']
brown
airplane
['green']
pink
alligator
['white', 'red']
green
ambulance
['brown', 'white']
pink
american football
['orange']
purple
anemone fish
['black', 'brown', 'red']
pink
ant
['red', 'green', 'yellow']
blue
apple
['grey', 'white', 'brown']
purple
armadillo
['silver']
purple
armour
['green']
blue
artichoke
['green']
orange
asparagus
['green']
blue
avocado
['pink', 'white']
yellow
axolotl
['brown']
green
bagel
['blue', 'black']
yellow
ballpoint
['yellow']
blue
banana
['red', 'white']
purple
barn
['brown']
yellow
barrel
['white']
pink
baseball
['orange']
purple
basketball
['brown']
purple
bassoon
['black', 'brown']
pink
bat_(animal)
['white']
orange
bath towel
['white']
green
bathtub
['red']
brown
beacon
['green', 'brown']
pink
beans
['black', 'brown']
pink
bear
['black', 'brown']
purple
bearskin
['brown']
purple
beaver
['yellow']
red
beehive
['brown', 'green']
blue
beer bottle
['black', 'brown', 'green']
pink
beetle
['red', 'purple']
yellow
beets
['brown']
pink
bench
['black']
red
binoculars
['white', 'brown']
pink
birch
['brown']
blue
bison
['brown']
purple
bittern
['black']
pink
black stork
['black']
pink
black swan
['black']
green
black widow
['black', 'white']
yellow
black-and-tan coonhound
['black']
orange
blackbird
['blue']
brown
blueberry
['blue', 'white']
orange
bluejay
['black']
pink
board_(black)
['white']
green
boat
['green', 'brown']
purple
bottle
['white', 'blue']
pink
bowl
['brown']
green
box
['brown', 'white']
green
bread
['red', 'brown']
blue
brick
['green']
red
broccoli
['brown', 'yellow']
pink
broom
['brown']
pink
buckeye
['green', 'yellow', 'blue']
purple
budgie
['brown', 'black']
green
buffalo
['green']
red
bullfrog
['yellow', 'white']
brown
bus
['brown', 'orange']
green
butternut squash
['black', 'brown']
purple
buzzard
['yellow']
green
cab
['green', 'purple']
pink
cabbage
['white', 'black']
red
cabbage butterfly
['brown', 'white']
pink
cabin
['brown']
red
camel
End of preview. Expand in Data Studio

Visual CounterFact: Controlling Knowledge Priors in Vision-Language Models through Visual Counterfactuals

This dataset is part of the work "Pixels Versus Priors: Controlling Knowledge Priors in Vision-Language Models through Visual Counterfacts".
📖 Read the Paper
💾 GitHub Repository

Overview

Visual CounterFact is a novel dataset designed to investigate how Multimodal Large Language Models (MLLMs) balance memorized world knowledge priors (e.g., "strawberries are red") with the visual evidence present in input images (e.g., a blue strawberry). The dataset features visually realistic counterfactuals that create direct conflicts between what the model has learned and what it sees. This allows for studying and controlling whether model predictions rely on memorized priors or the actual image content.

Dataset Splits

The dataset contains two distinct splits, each corresponding to a specific visual attribute reasoning task:

Color (color)

  • Description: Contains images of objects where the color attribute is either consistent with common world knowledge or is a counterfactual color designed to contradict it (e.g., a blue strawberry).
  • Purpose: Evaluate how models reconcile conflicting color information between prior knowledge and visual input.
  • Example Queries:
    • "What color is this strawberry?"
    • "What color are most strawberries?"

Size (size)

  • Description: Consists of object images with size relations manipulated to contradict typical real-world size expectations (e.g., a fly larger than a strawberry).
  • Purpose: Test model understanding of size priors versus visual evidence.
  • Example Queries:
    • "Which object is bigger in this image, the fly or the strawberry?"
    • "Are strawberries bigger than flies?"

Citation

If you use this dataset, please cite:

Pixels Versus Priors: Controlling Knowledge Priors in Vision-Language Models through Visual Counterfacts

Downloads last month
149