Dataset Viewer
Auto-converted to Parquet
Kabiye
stringlengths
10
261
emotion
stringclasses
7 values
wunlunaŋa wi yaa ka mbele pe wa wi kalige kɛɛ ki na pe pye fɔ:
neutral
Nɛɛ tosa yɛ mi mɛŋndaŋ ma muuliaŋ nda choo mulukɛlɛɛ?
anger
Cɛɛlɛ mbele pàa ku,
anger
Na ɔku ɔmmɔ geen muudie kenye taasiku-mi lɛlɔ.
fear
Wala Ji Naakpɛɛ Nii
surprise
yuu peparae kaeya nao suu pyao karo.
disgust
waasa u kana yeli kɛ, u kana mɛnni kɛ,
anger
taa wwiuit,
neutral
Muwi mìla pye na penjara to naa tɛ wi kaan wi yeri lɛgɛrɛ,
sadness
Kunli nee yelɛ nee bɛ mra a le ekpunli mɔɔ bɔ sua ɛkyekyelɛ bo anzɛɛ ekpunli mɔɔ tɛlɛ yɛ menli dɔɔnwo a, yemɔti ɔwɔ kɛ menli ekpunli ne nee maanle ne mɔɔ bɛwɔ nu la sinza bɛ.
neutral
Fɔɔ ka na se bii ma,
neutral
Azɛlɛ ne bakpakye na yeame menli ɛtanevolɛ ɛhye mɔ.'
disgust
waga si kaa we yɛɛ nawa ŋgbanni,
neutral
Nyɛ o nyɛ naŋ nɔ miŋ piɛi le ndu, yɛɛnɛ nɔ yɛ mbo wa nyɛ tasoo o yoomu naa niŋ?
anger
"Yaa kiti wi kɔɔn yaa yala kasinŋge ki ni pilige pyew.
neutral
Ba kɛnu yiyirɛ daaliɛriŋ ma nɛ, bɛɛ wiaa ba fa ŋaa daaliɛriŋ nɛ.
fear
Bani wee ya jomɔ yu,
surprise
Teleŋ naŋ ve kɔl te wo ɔɔ teleŋ naŋ wu ŋdiallo yaamɔɔwaa naa chiŋalaŋ naa ni.
sadness
Di ma nɛ ŋaa ŋii, ma ma jaŋ kɛŋ pulumuŋ a ma chaanɛ."
anger
Mɛni hewɔ wɔbaanyɛ wɔkɛɛ akɛ Noa, "jalɛ shiɛlɔ lɛ" tsu eshiɛmɔ nitsumɔ lɛ jogbaŋŋ lɛ?
surprise
Anɛ o he ye kaa ke waa kɛ Mawu mlaahi nɛ kɔɔ je mi bami he ɔ tsuɔ ní ɔ, wɔ nitsɛmɛ wa náa he se lo?
anger
Pyaaraa watan, Pak watan,
neutral
a kacɛn wà suu yɛɛ naga naa wa yɛnŋɛlɛ na:
fear
Baiblo nɛ wa maa kase daa,
disgust
Yawe Yɛnŋɛlɛ li yaa kari yaari mberi jaanri,
neutral
Sane ni oblanyo fioo Yeremia shiɛ lɛ wo maŋ onukpai lɛ amli la waa.
neutral
a wì suu konɔ li lɛ na kee,
disgust
Ma yaripɔrɔ fire lɔ ma ta maa ma yɛɛ poo,
anger
N we-ɛɛla bwa maa ɛa la, n Mɛɛ la kpegri nee mɛɛ ɛa asɛ aa di mɛ danseɛ.
disgust
na pe yaripɔrɔ ti woo nari waa,
disgust
yaa ye pɛnɛ pe sɛnrɛ ti nuru,
neutral
Alubi kama nɛ a ba,
neutral
Maa ii houni navoo hinda i yɛ kɔlɔgaala ma, kɛ bɛɛ i wote a ye tɔtɔmɛi.
neutral
Na tafɔ wi yaa mɔ wa,
neutral
Cha ma nikuu ka tatsi kuera ña nuu ñuu .
anger
naa Arɔn gbɔtangala na làa fyɛɛnrɛ fi li ni,
neutral
naapa twaapa waapa mwaapa aapa waapa waapa yaapa laapa yaapa chaapa vyaapa yaapa zaapa waapa kwaapa paapa mwaapa
disgust
Ke waa kɛ wa juɛmi maa ní kpakpahi nɛ nihi peeɔ ɔ nɔ ɔ, mɛni se wa ma ná?
disgust
Shi wemu kaa bi dan nɛ ni-i ge,
neutral
Bɛlbwa ta wone lawɔ, dɛkalkɛ dɛ o tɔpere ta tele mɔɔ.
neutral
ma fyɛɛlɛ maa sunlu,
anger
Te mibii lɛ baafee tɛŋŋ?" - Janet, United States.
fear
Asoo Nyamenle bu menli mɔɔ vi maanle bie anu la kɛ bɛle kpalɛ bɛtɛla maanle gyɛne ɔ?
surprise
No ji yiŋtoo kome hewɔ ni piŋmɔ babaoo yɔɔ lɛ.
neutral
Mɛni ji nike ní nɛ he jua wa nɛ Mawu ma ha nihi nɛ sa e hɛ mi ɔ, nɛ mɛni e sa kaa waa pee konɛ wa nine nɛ su nɔ?
neutral
Yɛnŋɛlɛ li tijinliwɛ mba pìla pye ma lara leele pe na,
disgust
nɛ mɛɛ su mu fɛni,
neutral
to wìla pye na sɔngɔrɔ ti na, na yuun fɔ:
neutral
Vvenɛ nfungala ɔlɔɔt 'wɔng baang ka lubbe ka kɛtɔm-a-lakpeke.
anger
ye pye ki mbajɛnmbɛlɛ paa piile yɛn.
neutral
paa pe ma kaa fyɔngɔ le kɛrɛ we,
anger
wunlunaŋa Salomɔ wo naa wi yarijɛndɛ lɛgɛrɛ tawa pi ni fuun ni,
neutral
Shi kɛji akɛ amɛye tso lɛ yibii lɛ eko lɛ, mɛni no baatsɔɔ? -
neutral
Eeish,ine kaaa kaaa tiyenayeni...
fear
na wiga pye kɛɛnrɛ lifɔ,
neutral
Nɔ hyɛmi níhi etɛ nɛ wa susu he ɔ tsɔɔ kaa Mawu nyɛɔ tsɔɔ níhi nɛ maa ba hwɔɔ se, nɛ e baa mi.
neutral
Te ŋ piɛi pɛ o nɛi bɛnda wo choo nduyɛ le nyɛm sɔviɔŋ, o cho nilaŋ yaŋɔɔ.
anger
Amrɔ nɛɛ eeba ebakpɛ eyiŋ yɛ sane ko ni he hiaa waa he.
neutral
Mɛɛ gbɛ nɔ ebaatsɔ kɛba, ni mɛni ebaafee agbɛnɛ?
neutral
kajɛŋgɛ lɛgɛrɛ ŋga màa pye pe kan, pe sila nawa to ki na,
neutral
kaw lupe yeaa ,,
neutral
Ama n baa' nɛn bo nɛ ki lá tu' uyo wuu nɔ.
neutral
nɛ mi ho wáa--,
neutral
mbele pè wɛlɛgɛ pe yɛn na gbele na sagawa jaa;
neutral
Bhak taa s t waa m par yu paa sa te
fear
Ye wele, na tunmbyeele pe yaa kaa yɔgɔri,
sadness
O ma nyɛ maa fia gbi ko kɛ wo mi nɛ o hyɛ kaa e piɛɛ he lo.
anger
Mboro ŋa maa Yɛnŋɛlɛ sɛnrɛ ti yuun ma yo paga kaa yuun,
sadness
Anɛ o le níhi nɛ o ma nyɛ maa pee kɛ tsɔɔ kaa o toɔ o tsui si lo?
neutral
Nɛ na munaa pɛrɛ fɔ suumɔ lɔhɔ ni.
neutral
E ma ha nɛ wa maa na kaa Mawu susuɔ adesahi a he wawɛɛ.
fear
Baa mi Mɛlɛka piŋi puaa diikaŋaa yaa wa haa o yiŋnde bɛndeŋ niŋ?
anger
"i love you too kuya ko. mwaaahhh"
joy
na fyɔnwɔ fɛnnɛ pe tege,
fear
tyoo ndyaa na saa Leina.
neutral
Ye bua jɔ wawɛɛ nitsɛ." - Karen.
neutral
yaa lumayan
neutral
Abonsam ma nɔ mi akɛ kɛji adesai bo lɛ toi lɛ, nibii baaya lɛ jogbaŋŋ aha amɛ.
fear
I kii tɔgɛ kee yɛɛ,
neutral
Mɛni wa ma nyɛ maa pee konɛ wa ná hemi kɛ yemi nɛ mi wa ngɛ Mawu si womi ɔmɛ a mi?
fear
Kyaaa my NC..
neutral
ma suu yɛɛ pye fɔ:
neutral
Ndɛɛ ki pye Yawe Yɛnŋɛlɛ li sila pye we ni,
sadness
Yawe Yɛnŋɛlɛ lii naŋgbanwa sɛnrɛ yo leele mbele na,
joy
Yɛ Mose Mla lɛ mli lɛ, abuɔ amɛ akɛ loo ni he tse ni abaanyɛ aye.
neutral
Bakɔɔm lɔkɔɔn ballɛ gold wa ulenɛ bɔfɛɛn bwa bubɛpɛnɛ.
anger
E kɛ we nɛ nihi fuu ba lejɛ ɔ.
anger
Mɛni he je nɛ o susu kaa Mawu dloo mo ɔ, nɛ mɛni he je nɛ o ma nyɛ ma kpa ngmlaa ke 'Nyɛ je Yah yi!' ɔ?
neutral
Ni hulu lɛ wa edamɔ shi.
disgust
B: N tɛ taa yɔrɔ si.
sadness
je vous ai vu (I saw you)
neutral
Yaayaa, ɛtɛ sɛn? on Vimeo
neutral
ma suu tɛgɛ fyɔngɔ ni Yɛnŋɛlɛ yɛgɛ na."
fear
Mɛni ji ní etɛ komɛ nɛ maa ye bua wɔ konɛ wa munyu tumi nɛ wo nihi he wami?
neutral
Mɛi ni hi shi yɛ Noa gbii lɛ amli lɛ ateŋ mɛi babaoo fee nibii fɔji.
neutral
yaaa... que wena
neutral
Benɛ a kpata Egipt ta buli ɔmɛ a hɛ mi ngɛ Wo Tsu ɔ mi ɔ, anɛ Farao yi ná wami lo?
anger
Pe yaa ka leele mbele wì wɔ pe gbogolo pe yɛɛ na,
neutral
na wɔnlɔŋgbaala pè fɛgɛ na na.
neutral
Wvú se nu ɛ la, ɛ kase ɛ yenɛ.'
neutral
End of preview. Expand in Data Studio

Kabiye Emotion Analysis Corpus

Dataset Description

This dataset contains emotion-labeled text data in Kabiye for emotion classification (joy, sadness, anger, fear, surprise, disgust, neutral). Emotions were extracted and processed from the English meanings of the sentences using the model j-hartmann/emotion-english-distilroberta-base. The dataset is part of a larger collection of African language emotion analysis resources.

Dataset Statistics

  • Total samples: 22,804
  • Joy: 1332 (5.8%)
  • Sadness: 928 (4.1%)
  • Anger: 895 (3.9%)
  • Fear: 773 (3.4%)
  • Surprise: 937 (4.1%)
  • Disgust: 1368 (6.0%)
  • Neutral: 16571 (72.7%)

Dataset Structure

Data Fields

  • Text Column: Contains the original text in Kabiye
  • emotion: Emotion label (joy, sadness, anger, fear, surprise, disgust, neutral)

Data Splits

This dataset contains a single split with all the processed data.

Data Processing

The emotion labels were generated using:

  • Model: j-hartmann/emotion-english-distilroberta-base
  • Processing: Batch processing with optimization for efficiency
  • Deduplication: Duplicate entries were removed based on text content

Usage

from datasets import load_dataset

# Load the dataset
dataset = load_dataset("michsethowusu/kabiye-emotions-corpus")

# Access the data
print(dataset['train'][0])

Citation

If you use this dataset in your research, please cite:

@dataset{kabiye_emotions_corpus,
  title={Kabiye Emotions Corpus},
  author={Mich-Seth Owusu},
  year={2025},
  url={https://huggingface.co/datasets/michsethowusu/kabiye-emotions-corpus}
}

License

This dataset is released under the MIT License.

Contact

For questions or issues regarding this dataset, please open an issue on the dataset repository.

Dataset Creation

Date: 2025-07-04 Processing Pipeline: Automated emotion analysis using HuggingFace Transformers Quality Control: Deduplication and batch processing optimizations applied

Downloads last month
113

Collection including michsethowusu/kabiye-emotions-corpus