Datasets:
Kabiye
stringlengths 10
261
| emotion
stringclasses 7
values |
---|---|
wunlunaŋa wi yaa ka mbele pe wa wi kalige kɛɛ ki na pe pye fɔ:
|
neutral
|
Nɛɛ tosa yɛ mi mɛŋndaŋ ma muuliaŋ nda choo mulukɛlɛɛ?
|
anger
|
Cɛɛlɛ mbele pàa ku,
|
anger
|
Na ɔku ɔmmɔ geen muudie kenye taasiku-mi lɛlɔ.
|
fear
|
Wala Ji Naakpɛɛ Nii
|
surprise
|
yuu peparae kaeya nao suu pyao karo.
|
disgust
|
waasa u kana yeli kɛ, u kana mɛnni kɛ,
|
anger
|
taa wwiuit,
|
neutral
|
Muwi mìla pye na penjara to naa tɛ wi kaan wi yeri lɛgɛrɛ,
|
sadness
|
Kunli nee yelɛ nee bɛ mra a le ekpunli mɔɔ bɔ sua ɛkyekyelɛ bo anzɛɛ ekpunli mɔɔ tɛlɛ yɛ menli dɔɔnwo a, yemɔti ɔwɔ kɛ menli ekpunli ne nee maanle ne mɔɔ bɛwɔ nu la sinza bɛ.
|
neutral
|
Fɔɔ ka na se bii ma,
|
neutral
|
Azɛlɛ ne bakpakye na yeame menli ɛtanevolɛ ɛhye mɔ.'
|
disgust
|
waga si kaa we yɛɛ nawa ŋgbanni,
|
neutral
|
Nyɛ o nyɛ naŋ nɔ miŋ piɛi le ndu, yɛɛnɛ nɔ yɛ mbo wa nyɛ tasoo o yoomu naa niŋ?
|
anger
|
"Yaa kiti wi kɔɔn yaa yala kasinŋge ki ni pilige pyew.
|
neutral
|
Ba kɛnu yiyirɛ daaliɛriŋ ma nɛ, bɛɛ wiaa ba fa ŋaa daaliɛriŋ nɛ.
|
fear
|
Bani wee ya jomɔ yu,
|
surprise
|
Teleŋ naŋ ve kɔl te wo ɔɔ teleŋ naŋ wu ŋdiallo yaamɔɔwaa naa chiŋalaŋ naa ni.
|
sadness
|
Di ma nɛ ŋaa ŋii, ma ma jaŋ kɛŋ pulumuŋ a ma chaanɛ."
|
anger
|
Mɛni hewɔ wɔbaanyɛ wɔkɛɛ akɛ Noa, "jalɛ shiɛlɔ lɛ" tsu eshiɛmɔ nitsumɔ lɛ jogbaŋŋ lɛ?
|
surprise
|
Anɛ o he ye kaa ke waa kɛ Mawu mlaahi nɛ kɔɔ je mi bami he ɔ tsuɔ ní ɔ, wɔ nitsɛmɛ wa náa he se lo?
|
anger
|
Pyaaraa watan, Pak watan,
|
neutral
|
a kacɛn wà suu yɛɛ naga naa wa yɛnŋɛlɛ na:
|
fear
|
Baiblo nɛ wa maa kase daa,
|
disgust
|
Yawe Yɛnŋɛlɛ li yaa kari yaari mberi jaanri,
|
neutral
|
Sane ni oblanyo fioo Yeremia shiɛ lɛ wo maŋ onukpai lɛ amli la waa.
|
neutral
|
a wì suu konɔ li lɛ na kee,
|
disgust
|
Ma yaripɔrɔ fire lɔ ma ta maa ma yɛɛ poo,
|
anger
|
N we-ɛɛla bwa maa ɛa la, n Mɛɛ la kpegri nee mɛɛ ɛa asɛ aa di mɛ danseɛ.
|
disgust
|
na pe yaripɔrɔ ti woo nari waa,
|
disgust
|
yaa ye pɛnɛ pe sɛnrɛ ti nuru,
|
neutral
|
Alubi kama nɛ a ba,
|
neutral
|
Maa ii houni navoo hinda i yɛ kɔlɔgaala ma, kɛ bɛɛ i wote a ye tɔtɔmɛi.
|
neutral
|
Na tafɔ wi yaa mɔ wa,
|
neutral
|
Cha ma nikuu ka tatsi kuera ña nuu ñuu .
|
anger
|
naa Arɔn gbɔtangala na làa fyɛɛnrɛ fi li ni,
|
neutral
|
naapa twaapa waapa mwaapa aapa waapa waapa yaapa laapa yaapa chaapa vyaapa yaapa zaapa waapa kwaapa paapa mwaapa
|
disgust
|
Ke waa kɛ wa juɛmi maa ní kpakpahi nɛ nihi peeɔ ɔ nɔ ɔ, mɛni se wa ma ná?
|
disgust
|
Shi wemu kaa bi dan nɛ ni-i ge,
|
neutral
|
Bɛlbwa ta wone lawɔ, dɛkalkɛ dɛ o tɔpere ta tele mɔɔ.
|
neutral
|
ma fyɛɛlɛ maa sunlu,
|
anger
|
Te mibii lɛ baafee tɛŋŋ?" - Janet, United States.
|
fear
|
Asoo Nyamenle bu menli mɔɔ vi maanle bie anu la kɛ bɛle kpalɛ bɛtɛla maanle gyɛne ɔ?
|
surprise
|
No ji yiŋtoo kome hewɔ ni piŋmɔ babaoo yɔɔ lɛ.
|
neutral
|
Mɛni ji nike ní nɛ he jua wa nɛ Mawu ma ha nihi nɛ sa e hɛ mi ɔ, nɛ mɛni e sa kaa waa pee konɛ wa nine nɛ su nɔ?
|
neutral
|
Yɛnŋɛlɛ li tijinliwɛ mba pìla pye ma lara leele pe na,
|
disgust
|
nɛ mɛɛ su mu fɛni,
|
neutral
|
to wìla pye na sɔngɔrɔ ti na, na yuun fɔ:
|
neutral
|
Vvenɛ nfungala ɔlɔɔt 'wɔng baang ka lubbe ka kɛtɔm-a-lakpeke.
|
anger
|
ye pye ki mbajɛnmbɛlɛ paa piile yɛn.
|
neutral
|
paa pe ma kaa fyɔngɔ le kɛrɛ we,
|
anger
|
wunlunaŋa Salomɔ wo naa wi yarijɛndɛ lɛgɛrɛ tawa pi ni fuun ni,
|
neutral
|
Shi kɛji akɛ amɛye tso lɛ yibii lɛ eko lɛ, mɛni no baatsɔɔ? -
|
neutral
|
Eeish,ine kaaa kaaa tiyenayeni...
|
fear
|
na wiga pye kɛɛnrɛ lifɔ,
|
neutral
|
Nɔ hyɛmi níhi etɛ nɛ wa susu he ɔ tsɔɔ kaa Mawu nyɛɔ tsɔɔ níhi nɛ maa ba hwɔɔ se, nɛ e baa mi.
|
neutral
|
Te ŋ piɛi pɛ o nɛi bɛnda wo choo nduyɛ le nyɛm sɔviɔŋ, o cho nilaŋ yaŋɔɔ.
|
anger
|
Amrɔ nɛɛ eeba ebakpɛ eyiŋ yɛ sane ko ni he hiaa waa he.
|
neutral
|
Mɛɛ gbɛ nɔ ebaatsɔ kɛba, ni mɛni ebaafee agbɛnɛ?
|
neutral
|
kajɛŋgɛ lɛgɛrɛ ŋga màa pye pe kan, pe sila nawa to ki na,
|
neutral
|
kaw lupe yeaa ,,
|
neutral
|
Ama n baa' nɛn bo nɛ ki lá tu' uyo wuu nɔ.
|
neutral
|
nɛ mi ho wáa--,
|
neutral
|
mbele pè wɛlɛgɛ pe yɛn na gbele na sagawa jaa;
|
neutral
|
Bhak taa s t waa m par yu paa sa te
|
fear
|
Ye wele, na tunmbyeele pe yaa kaa yɔgɔri,
|
sadness
|
O ma nyɛ maa fia gbi ko kɛ wo mi nɛ o hyɛ kaa e piɛɛ he lo.
|
anger
|
Mboro ŋa maa Yɛnŋɛlɛ sɛnrɛ ti yuun ma yo paga kaa yuun,
|
sadness
|
Anɛ o le níhi nɛ o ma nyɛ maa pee kɛ tsɔɔ kaa o toɔ o tsui si lo?
|
neutral
|
Nɛ na munaa pɛrɛ fɔ suumɔ lɔhɔ ni.
|
neutral
|
E ma ha nɛ wa maa na kaa Mawu susuɔ adesahi a he wawɛɛ.
|
fear
|
Baa mi Mɛlɛka piŋi puaa diikaŋaa yaa wa haa o yiŋnde bɛndeŋ niŋ?
|
anger
|
"i love you too kuya ko. mwaaahhh"
|
joy
|
na fyɔnwɔ fɛnnɛ pe tege,
|
fear
|
tyoo ndyaa na saa Leina.
|
neutral
|
Ye bua jɔ wawɛɛ nitsɛ." - Karen.
|
neutral
|
yaa lumayan
|
neutral
|
Abonsam ma nɔ mi akɛ kɛji adesai bo lɛ toi lɛ, nibii baaya lɛ jogbaŋŋ aha amɛ.
|
fear
|
I kii tɔgɛ kee yɛɛ,
|
neutral
|
Mɛni wa ma nyɛ maa pee konɛ wa ná hemi kɛ yemi nɛ mi wa ngɛ Mawu si womi ɔmɛ a mi?
|
fear
|
Kyaaa my NC..
|
neutral
|
ma suu yɛɛ pye fɔ:
|
neutral
|
Ndɛɛ ki pye Yawe Yɛnŋɛlɛ li sila pye we ni,
|
sadness
|
Yawe Yɛnŋɛlɛ lii naŋgbanwa sɛnrɛ yo leele mbele na,
|
joy
|
Yɛ Mose Mla lɛ mli lɛ, abuɔ amɛ akɛ loo ni he tse ni abaanyɛ aye.
|
neutral
|
Bakɔɔm lɔkɔɔn ballɛ gold wa ulenɛ bɔfɛɛn bwa bubɛpɛnɛ.
|
anger
|
E kɛ we nɛ nihi fuu ba lejɛ ɔ.
|
anger
|
Mɛni he je nɛ o susu kaa Mawu dloo mo ɔ, nɛ mɛni he je nɛ o ma nyɛ ma kpa ngmlaa ke 'Nyɛ je Yah yi!' ɔ?
|
neutral
|
Ni hulu lɛ wa edamɔ shi.
|
disgust
|
B: N tɛ taa yɔrɔ si.
|
sadness
|
je vous ai vu (I saw you)
|
neutral
|
Yaayaa, ɛtɛ sɛn? on Vimeo
|
neutral
|
ma suu tɛgɛ fyɔngɔ ni Yɛnŋɛlɛ yɛgɛ na."
|
fear
|
Mɛni ji ní etɛ komɛ nɛ maa ye bua wɔ konɛ wa munyu tumi nɛ wo nihi he wami?
|
neutral
|
Mɛi ni hi shi yɛ Noa gbii lɛ amli lɛ ateŋ mɛi babaoo fee nibii fɔji.
|
neutral
|
yaaa... que wena
|
neutral
|
Benɛ a kpata Egipt ta buli ɔmɛ a hɛ mi ngɛ Wo Tsu ɔ mi ɔ, anɛ Farao yi ná wami lo?
|
anger
|
Pe yaa ka leele mbele wì wɔ pe gbogolo pe yɛɛ na,
|
neutral
|
na wɔnlɔŋgbaala pè fɛgɛ na na.
|
neutral
|
Wvú se nu ɛ la, ɛ kase ɛ yenɛ.'
|
neutral
|
Kabiye Emotion Analysis Corpus
Dataset Description
This dataset contains emotion-labeled text data in Kabiye for emotion classification (joy, sadness, anger, fear, surprise, disgust, neutral). Emotions were extracted and processed from the English meanings of the sentences using the model j-hartmann/emotion-english-distilroberta-base
. The dataset is part of a larger collection of African language emotion analysis resources.
Dataset Statistics
- Total samples: 22,804
- Joy: 1332 (5.8%)
- Sadness: 928 (4.1%)
- Anger: 895 (3.9%)
- Fear: 773 (3.4%)
- Surprise: 937 (4.1%)
- Disgust: 1368 (6.0%)
- Neutral: 16571 (72.7%)
Dataset Structure
Data Fields
- Text Column: Contains the original text in Kabiye
- emotion: Emotion label (joy, sadness, anger, fear, surprise, disgust, neutral)
Data Splits
This dataset contains a single split with all the processed data.
Data Processing
The emotion labels were generated using:
- Model:
j-hartmann/emotion-english-distilroberta-base
- Processing: Batch processing with optimization for efficiency
- Deduplication: Duplicate entries were removed based on text content
Usage
from datasets import load_dataset
# Load the dataset
dataset = load_dataset("michsethowusu/kabiye-emotions-corpus")
# Access the data
print(dataset['train'][0])
Citation
If you use this dataset in your research, please cite:
@dataset{kabiye_emotions_corpus,
title={Kabiye Emotions Corpus},
author={Mich-Seth Owusu},
year={2025},
url={https://huggingface.co/datasets/michsethowusu/kabiye-emotions-corpus}
}
License
This dataset is released under the MIT License.
Contact
For questions or issues regarding this dataset, please open an issue on the dataset repository.
Dataset Creation
Date: 2025-07-04 Processing Pipeline: Automated emotion analysis using HuggingFace Transformers Quality Control: Deduplication and batch processing optimizations applied
- Downloads last month
- 113