Dataset Viewer
Auto-converted to Parquet
Nuer
stringlengths
10
286
emotion
stringclasses
7 values
tfraiau tfiraua tfiraau tfiruaa tfiruaa tfiraua tfiraau tfiarua tfiarau tfiaura tfiauar
sadness
Bëë nhial kiɛ bëë kä naath?"
neutral
Cu kun gat gam kɛ tetkɛ.
surprise
Kɛ kwic dwelli. tee kɛɛ wutni ti görkɛ lat dweel.
joy
Dualɛ kɛ Kuoth.
fear
?Zezi waan ɔ fin nin? ?Yɛ i sɔ'n kle kɛ ɔ ti wan wa?
neutral
Luɔnyɛ jɛ kä nööŋɛ jɛ wanɛ mɛ.
neutral
a mì si Yɛnŋɛlɛ sɛnrɛ ti yo wa Damasi ca gbɛn,
neutral
Tag: thue tham tugia thue tham tuchi phi thu tham tudich vu tham tutham tu uy tin chuyen nghiep
neutral
Kä cukɛ jɛ tok kɛ mi görkɛ jɛ rɛy watnikiɛn kɛnɛ mäthnikiɛn.
neutral
Jaopa jɛ cɔl nhial, cuɛ wee, "Abɛraam!
neutral
jɛ jiök, "Gaat muɔɔr cikɛ jiɛɛn wanɛmɛ kɛ
neutral
Shi wɔbiɔ saji yɛ shihilɛ kɛ bɔ ni nibii baaji wɔsɛɛ lɛ hu ahe.
neutral
Muaj ntau tej yaam num hu rau qhov chaw tej yam khoom;
disgust
cak ni kɛ jɛ.
neutral
wee, "Mi wä yɛn wä röm kɛ dämaar ni Ithɔɔ,
anger
Kä niɛ guäth in ca ruac liŋ, cu Cɛy-tan ben, cuɛ ruac in ca piɛth rɛydiɛn ben woc.
disgust
Kä cuɛ Muthɛ lath kɛ dual kɛ guecdɛ.
fear
Yɛn diaal, nyuɔɔrɛ!
neutral
iij mqeiij mqaiij mqiiij mqoiij mqdiij mqhiij mqniij mqriij mqsiij mqtiij mquiij mqyiij mqciij mqfiij mqgiij mqliij mqjiij mqmiij mqwiij mqbiij mqviij mqkiij mqxiij mqpiij mqqiij mqz
anger
Acaan ɛkɛ 'ya muona bora noŋ kanŋa ɛkɛ neeni, ɔci 'ya 'wonna ɛkɛ war tɛɛn ɛkɛ noŋa kanŋa ɛkɛ neeni.
joy
Vɛɛ Chiisu ndoo che yɛ masale chieeŋndeŋ?
neutral
Pe pe yɛɛ yigi kɛɛnrɛ limɛ pi ni."
neutral
Cuaa Jɛykɔp jiök, i "Ci gatdu ni JOthɛp ben
neutral
Cïn muöl cäth, tuk wälä diër rin yïn rot läc;
neutral
Barɛ ro päämni mäni mi yiek yɛ
fear
kuɛn piny nhiam nɛɛni diaal tëë cuŋ kɛ jɛ
neutral
"Ki naŋa ŋa wì pye mɛlɛ mɛɛ Yɛnŋɛlɛ sɛnrɛ ti jɛn yɛɛn,
neutral
Täämɛ cuɛ Jɛykɔp lɔcdɛ coo waŋ kɛ Lɛybɛn,
neutral
Kä cuɛ jɛ jiök, "E jɛn mäni
surprise
Kä bia dɛy kuir rɛy lätni diaal ti gɔw, kä bia piith rɛy ŋäcä Kuɔth.
neutral
Ram mi lät mi gɔaa ɛ raan Kuɔth.
neutral
naa tire nuwɔ taan cɛnlɛ pyew ti ni,
sadness
?Kɛ Mari seli Zozɛfu kɛ w'a wunnzɛ'n, akunndan benin yɛ Zozɛfu buli-ɔ? ?Yɛ ngue ti-ɔ?
neutral
Nyɔŋmɔ miisumɔ ni wɔhi shi yɛ toiŋjɔlɛ kɛ miishɛɛ mli yɛ paradeiso mli yɛ shikpɔŋ lɛ nɔ kɛya naanɔ!
joy
Noa nabi, kɛ Ham binuu ni ji ejwɛ nɔ.
neutral
Kä a liak tekɛ jɛ a thil pek.
joy
Ka mɛni pɛlɛ-pɛlɛ ŋa kɛ kákîe-ni mì nyii a kátûalaai su kpanáŋ
neutral
Lere ŋa fuun kɔɔn kɛɛ yaraga shɔ,
neutral
iij nieiij niaiij niiiij nioiij nidiij nihiij niniij niriij nisiij nitiij niuiij niyiij niciij nifiij nigiij niliij nijiij nimiij niwiij nibiij niviij nikiij nixiij nipiij niqiij niz
anger
tu thu allaiKiaal uf thu calalu.
neutral
Kä ram mi jiäk bä lät ti jiäk raar rɛy lɔaacdɛ mi jiääk.
disgust
Na dat na mi nem; ɛn a nɔ de gi mi glori to ɛnibɔdi ɛn mi prez to ɛni aydɔl."
anger
Kä ram mi näk raan kɛ thɛp, ba jɛ dhil näk kɛ thɛp."
anger
tɔ lam ji tɔ, kä poth a kɛ nɛy tɔ puɔth
sadness
"La nɛy nyin tɛthkä lɔaac a lät kɛɛl."
joy
Mɛni abaasusu he yɛ yitso ni nyiɛ sɛɛ lɛ mli?
disgust
Mi lätdi mi jiääk, lätdi jɛ kä rɔɔdu,
anger
cian awk jie!
anger
ɛniɛ safety first
fear
Eyɛ mli akɛ Nyɔŋmɔ hala hii ni yeee emuu akɛ enajiaŋdamɔlɔi moŋ, shi mɛni ekpa gbɛ akɛ Israelbii lɛ baafee?
surprise
katugu mi yɛn na jɛngɛ lɛgɛrɛ jɛɛn,
neutral
jɛ, "Yɛn wuɔcɛ kuth kɔkiɛn tɔ tee kɛ yɛ tɔ,
neutral
ua qasurat bî a"mâlî, ua qa"adat bî aglâlî,
neutral
mɛnni kɛ kelen fɛ.
neutral
cätdan, banɛ jɛ cal kɛ cätdan, kä jɛn bɛ
neutral
gääm ɛ jiök, "'Cu dual.
fear
Ni kɛ ebalɛ akɛ amɛyaje haomɔ ko mli lɛ, wɔbaaye wɔbua amɛ ejaakɛ wɔji weku agbo diɛŋtsɛ.
joy
Cuɛ wee, "Nɛn ɛ, mac kɛnɛ
anger
Vɛɛ naŋ tuu yɛ chieeŋ naŋ cho hoo niŋndo a chieeŋndo o teleŋ masindɔɔ niŋ, nduyɛ nyuna yɛɛ fula yɛ a hei okɔɔ?
anger
Ani nɛkɛ ji bɔ ni Nyɔŋmɔ to eyiŋ kɛha mi kɛ adesa weku muu lɛ fɛɛ?
neutral
lɔcdɛ thɛm, cuɛ jɛ jiök, "Abɛraam."
anger
Mɛɛ gbɛ nɔ wiemɔ ni ji 'tsi ohe kɛje nii ni ejaaa he' lɛ kɔɔ nibii komɛi ni tee nɔ yɛ Mose beaŋ lɛ he?
disgust
Sane ni wɔshiɛɔ kɛ hiɛdɔɔ,
neutral
hnayuua hnauyau hnauyua hnauayu hnauauy hnauuay hnauuya hnaauyu hnaauuy hnaayuu hnaayuu
anger
kä kɔn mi dee niɛɛn kɛ kɔn.
neutral
huhu, tu ayt al-quran yg bwk mkne cam nie,
neutral
Bikɛ kuth ti jiäk woc kɛ ciötdä, kä bikɛ ruac kɛ thuk ti gööl.
neutral
Yoj wuquʼ wä qachʼalal qiʼ, chqä taq kʼa yin koʼöl na kʼïy xintamaj chrij ri samaj pa tikoʼn.
neutral
ŋic thöpä läri ɛ tämɛ kɛ ŋieckɛ nath kɛ kä UK kɛ liw.
neutral
Mɛni aboloo kɛ wein ni akɛtsuɔ nii yɛ Nuŋtsɔ lɛ Gbɛkɛ Niyenii lɛ shishi lɛ damɔ shi kɛha?
fear
ʼat ni tzij pawi, ca ʼiltaj ʼuri we ʼo i a mac,
fear
Ci kɛ de ben kɛ cäŋ kuoth kiɛ cäŋ lɔŋ kä wec kɛ liw.
neutral
ji poth, bä ram ɔ lam ji mɔ lam, kä thär
joy
kalo meiyra cuyaa ?
neutral
I wanaaa win this!:D
joy
Nga sanni kɛnin kɔ,
neutral
gaatkɛ Cɛm, Hɛm kɛ Jɛpɛth, kɛ ciek Nowa, kɛ
neutral
su ui iv aytujej nuiiiuiJiicj uia- -
joy
Kɛ kɛn bɛl.
neutral
Cu Kuoth ɛ nɛn, cɛ gɔaa.
joy
täämɛ yɛn 'cuayɛ mɛ jiääk ɛmɛ lät.
neutral
?Amun kunndɛ kɛ amún sí ndɛ ng'ɔ ti nanwlɛ'n?
neutral
a wì suu yɛɛra yaripɔrɔ ti lɛ mari le,
neutral
Kä baa jɛn raam min baa
neutral
same askɛ diɛwɛadj
neutral
Fɔli, mɛni he hia nyɛ bimɛ ɔmɛ nɛ ma ha nɛ a ná bua jɔmi ngɛ a si himi mi?
disgust
Eric, ɛkulo kɛ ɛkenga ɔ?
neutral
Cu dämani coo ruac kɛ jɛ kɛ kɔrɛ.
neutral
Re tjonïk reʼ xtqrtoʼ rchë ma xtqaqʼäj ta rutzij Jehová taq xtkitäj kiqʼij chqij rchë yeqaʼän costumbres chrij ri kamïk.
neutral
thil riɛk kɛ ti diaal tëë te tetkä Jothɛp
neutral
nmtcauu nmtcauu nmtucua nmtucau nmtuuca nmtuuac nmtuauc nmtuacu nmtuuca nmtuuac nmtucua
neutral
Afee ŋwɛi ehee, Satan bɛ jɛi dɔŋŋ;
disgust
Sokere: To eŋɛ la wani baŋɛ ti Naayinɛ keleseri to?
neutral
Mi lätdi duɔɔr mi gɔaa, lätdi jɛ kä rɔɔdu,
neutral
tu waqt tha.
neutral
Cu wut ɛmɔ cuaa riäŋ riäŋ.
disgust
rɔ yuɔr piny nhiamdɛ, cukɛ wee, "Nɛn ɛ, kɔn
anger
Kä cukɛ Kuoth I-thɛ-rɛl liak.
disgust
He ni wɔshɛ yɛ Satan je lɛ mli, wɔkɛ naagbai baakpe.
disgust
End of preview. Expand in Data Studio

Nuer Emotion Analysis Corpus

Dataset Description

This dataset contains emotion-labeled text data in Nuer for emotion classification (joy, sadness, anger, fear, surprise, disgust, neutral). Emotions were extracted and processed from the English meanings of the sentences using the model j-hartmann/emotion-english-distilroberta-base. The dataset is part of a larger collection of African language emotion analysis resources.

Dataset Statistics

  • Total samples: 12,525
  • Joy: 677 (5.4%)
  • Sadness: 345 (2.8%)
  • Anger: 508 (4.1%)
  • Fear: 481 (3.8%)
  • Surprise: 587 (4.7%)
  • Disgust: 866 (6.9%)
  • Neutral: 9061 (72.3%)

Dataset Structure

Data Fields

  • Text Column: Contains the original text in Nuer
  • emotion: Emotion label (joy, sadness, anger, fear, surprise, disgust, neutral)

Data Splits

This dataset contains a single split with all the processed data.

Data Processing

The emotion labels were generated using:

  • Model: j-hartmann/emotion-english-distilroberta-base
  • Processing: Batch processing with optimization for efficiency
  • Deduplication: Duplicate entries were removed based on text content

Usage

from datasets import load_dataset

# Load the dataset
dataset = load_dataset("michsethowusu/nuer-emotions-corpus")

# Access the data
print(dataset['train'][0])

Citation

If you use this dataset in your research, please cite:

@dataset{nuer_emotions_corpus,
  title={Nuer Emotions Corpus},
  author={Mich-Seth Owusu},
  year={2025},
  url={https://huggingface.co/datasets/michsethowusu/nuer-emotions-corpus}
}

License

This dataset is released under the MIT License.

Contact

For questions or issues regarding this dataset, please open an issue on the dataset repository.

Dataset Creation

Date: 2025-07-04 Processing Pipeline: Automated emotion analysis using HuggingFace Transformers Quality Control: Deduplication and batch processing optimizations applied

Downloads last month
110

Collection including michsethowusu/nuer-emotions-corpus