Upload folder using huggingface_hub
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- scripts/.ipynb_checkpoints/ViViT-checkpoint.ipynb +829 -0
- scripts/.ipynb_checkpoints/VideoMAE-checkpoint.ipynb +713 -0
- scripts/.ipynb_checkpoints/run_self_influence-checkpoint.sh +13 -0
- scripts/.ipynb_checkpoints/soup_caformer_b36-checkpoint.sh +15 -0
- scripts/.ipynb_checkpoints/soup_caformer_m36-checkpoint.sh +17 -0
- scripts/.ipynb_checkpoints/soup_caformer_s36-checkpoint.sh +12 -0
- scripts/.ipynb_checkpoints/soup_coatnet_0-merged_4_15-checkpoint.sh +12 -0
- scripts/.ipynb_checkpoints/soup_coatnet_0_co_teaching-checkpoint.sh +12 -0
- scripts/.ipynb_checkpoints/soup_coatnet_0_random-checkpoint.sh +12 -0
- scripts/.ipynb_checkpoints/soup_coatnet_2-merged_4_15-checkpoint.sh +12 -0
- scripts/.ipynb_checkpoints/soup_coatnet_2_random-checkpoint.sh +12 -0
- scripts/.ipynb_checkpoints/soup_convnext_base-checkpoint.sh +15 -0
- scripts/.ipynb_checkpoints/soup_convnext_small-checkpoint.sh +15 -0
- scripts/.ipynb_checkpoints/soup_convnext_tiny-checkpoint.sh +15 -0
- scripts/.ipynb_checkpoints/soup_eva02_base-checkpoint.sh +13 -0
- scripts/.ipynb_checkpoints/soup_eva02_large-checkpoint.sh +16 -0
- scripts/.ipynb_checkpoints/soup_eva02_small-checkpoint.sh +16 -0
- scripts/.ipynb_checkpoints/soup_focalnet_base_srf-checkpoint.sh +15 -0
- scripts/.ipynb_checkpoints/soup_focalnet_small_lrf-checkpoint.sh +15 -0
- scripts/.ipynb_checkpoints/soup_focalnet_small_srf-checkpoint.sh +15 -0
- scripts/.ipynb_checkpoints/soup_hgnetv2_b6_ssld_stage2-checkpoint.sh +15 -0
- scripts/.ipynb_checkpoints/soup_maxvit_base-checkpoint.sh +15 -0
- scripts/.ipynb_checkpoints/soup_swin-checkpoint.sh +14 -0
- scripts/.ipynb_checkpoints/soup_tiny_vit_21m-checkpoint.sh +15 -0
- scripts/.ipynb_checkpoints/soup_vit_base-checkpoint.sh +15 -0
- scripts/.ipynb_checkpoints/soup_vit_base_laion2b-checkpoint.sh +15 -0
- scripts/.ipynb_checkpoints/test_caformer_b36-checkpoint.sh +10 -0
- scripts/.ipynb_checkpoints/test_caformer_m36-checkpoint.sh +12 -0
- scripts/.ipynb_checkpoints/test_caformer_s36-checkpoint.sh +10 -0
- scripts/.ipynb_checkpoints/test_coatnet_0-checkpoint.sh +10 -0
- scripts/.ipynb_checkpoints/test_coatnet_0-merged_4_15-checkpoint.sh +10 -0
- scripts/.ipynb_checkpoints/test_coatnet_0_co_teaching-checkpoint.sh +10 -0
- scripts/.ipynb_checkpoints/test_coatnet_0_random-checkpoint.sh +10 -0
- scripts/.ipynb_checkpoints/test_coatnet_2-merged_4_15-checkpoint.sh +10 -0
- scripts/.ipynb_checkpoints/test_coatnet_2_random-checkpoint.sh +10 -0
- scripts/.ipynb_checkpoints/test_convnext_base-checkpoint.sh +10 -0
- scripts/.ipynb_checkpoints/test_convnext_femto-checkpoint.sh +10 -0
- scripts/.ipynb_checkpoints/test_convnext_large-checkpoint.sh +10 -0
- scripts/.ipynb_checkpoints/test_convnext_nano-checkpoint.sh +10 -0
- scripts/.ipynb_checkpoints/test_convnext_pico-checkpoint.sh +10 -0
- scripts/.ipynb_checkpoints/test_convnext_small-checkpoint.sh +10 -0
- scripts/.ipynb_checkpoints/test_convnext_tiny-checkpoint.sh +10 -0
- scripts/.ipynb_checkpoints/test_convnext_v2_large-checkpoint.sh +10 -0
- scripts/.ipynb_checkpoints/test_convnext_xlarge-checkpoint.sh +10 -0
- scripts/.ipynb_checkpoints/test_convnext_xxlarge-checkpoint.sh +10 -0
- scripts/.ipynb_checkpoints/test_eva02_base-checkpoint.sh +10 -0
- scripts/.ipynb_checkpoints/test_eva02_large-checkpoint.sh +10 -0
- scripts/.ipynb_checkpoints/test_eva02_small-checkpoint.sh +10 -0
- scripts/.ipynb_checkpoints/test_focalnet_base_srf-checkpoint.sh +10 -0
- scripts/.ipynb_checkpoints/test_focalnet_small_lrf-checkpoint.sh +10 -0
scripts/.ipynb_checkpoints/ViViT-checkpoint.ipynb
ADDED
@@ -0,0 +1,829 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"id": "18122027-63d4-45bc-a155-11d941da97b9",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [],
|
9 |
+
"source": [
|
10 |
+
"DATASET_PATH = \"/media/khmt/HDD1/TQKhang/datasets/xarac\""
|
11 |
+
]
|
12 |
+
},
|
13 |
+
{
|
14 |
+
"cell_type": "code",
|
15 |
+
"execution_count": 2,
|
16 |
+
"id": "bc5b5096-93dd-4661-bd32-e1c66a3facfc",
|
17 |
+
"metadata": {},
|
18 |
+
"outputs": [],
|
19 |
+
"source": [
|
20 |
+
"%load_ext autoreload\n",
|
21 |
+
"%autoreload 2"
|
22 |
+
]
|
23 |
+
},
|
24 |
+
{
|
25 |
+
"cell_type": "code",
|
26 |
+
"execution_count": 3,
|
27 |
+
"id": "59965104-6b47-4bd4-ae52-9924a91feed3",
|
28 |
+
"metadata": {},
|
29 |
+
"outputs": [
|
30 |
+
{
|
31 |
+
"name": "stderr",
|
32 |
+
"output_type": "stream",
|
33 |
+
"text": [
|
34 |
+
"/home/khmt/anaconda3/envs/tqkhang-vivit/lib/python3.7/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
|
35 |
+
" from .autonotebook import tqdm as notebook_tqdm\n"
|
36 |
+
]
|
37 |
+
}
|
38 |
+
],
|
39 |
+
"source": [
|
40 |
+
"from torch.optim import AdamW\n",
|
41 |
+
"from video_transformers import VideoModel\n",
|
42 |
+
"from video_transformers.backbones.transformers import TransformersBackbone\n",
|
43 |
+
"from video_transformers.backbones.timm import TimmBackbone\n",
|
44 |
+
"from video_transformers.data import VideoDataModule\n",
|
45 |
+
"from video_transformers.heads import LinearHead\n",
|
46 |
+
"from video_transformers.trainer import trainer_factory"
|
47 |
+
]
|
48 |
+
},
|
49 |
+
{
|
50 |
+
"cell_type": "code",
|
51 |
+
"execution_count": 4,
|
52 |
+
"id": "2f5c18af-5a5a-4e6d-91dd-446123218792",
|
53 |
+
"metadata": {
|
54 |
+
"scrolled": true
|
55 |
+
},
|
56 |
+
"outputs": [
|
57 |
+
{
|
58 |
+
"name": "stderr",
|
59 |
+
"output_type": "stream",
|
60 |
+
"text": [
|
61 |
+
"Some weights of the model checkpoint at facebook/timesformer-base-finetuned-k400 were not used when initializing TimesformerModel: ['classifier.weight', 'classifier.bias']\n",
|
62 |
+
"- This IS expected if you are initializing TimesformerModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n",
|
63 |
+
"- This IS NOT expected if you are initializing TimesformerModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n",
|
64 |
+
"/home/khmt/anaconda3/envs/tqkhang-vivit/lib/python3.7/site-packages/transformers/models/videomae/feature_extraction_videomae.py:31: FutureWarning: The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please use VideoMAEImageProcessor instead.\n",
|
65 |
+
" FutureWarning,\n"
|
66 |
+
]
|
67 |
+
}
|
68 |
+
],
|
69 |
+
"source": [
|
70 |
+
"backbone = TransformersBackbone(\"facebook/timesformer-base-finetuned-k400\", num_unfrozen_stages=1)"
|
71 |
+
]
|
72 |
+
},
|
73 |
+
{
|
74 |
+
"cell_type": "code",
|
75 |
+
"execution_count": 5,
|
76 |
+
"id": "04eb1ed9-0497-48d0-a72e-7223939f257b",
|
77 |
+
"metadata": {},
|
78 |
+
"outputs": [],
|
79 |
+
"source": [
|
80 |
+
"datamodule = VideoDataModule(\n",
|
81 |
+
" train_root=\"/media/khmt/HDD1/TQKhang/datasets/xarac/train\",\n",
|
82 |
+
" val_root=\"/media/khmt/HDD1/TQKhang/datasets/xarac/val\",\n",
|
83 |
+
" test_root=\"/media/khmt/HDD1/TQKhang/datasets/xarac/val\",\n",
|
84 |
+
" batch_size=4,\n",
|
85 |
+
" num_workers=4,\n",
|
86 |
+
" num_timesteps=8,\n",
|
87 |
+
" preprocess_input_size=224,\n",
|
88 |
+
" preprocess_clip_duration=1,\n",
|
89 |
+
" preprocess_means=backbone.mean,\n",
|
90 |
+
" preprocess_stds=backbone.std,\n",
|
91 |
+
" preprocess_min_short_side=256,\n",
|
92 |
+
" preprocess_max_short_side=320,\n",
|
93 |
+
" preprocess_horizontal_flip_p=0.5,\n",
|
94 |
+
")"
|
95 |
+
]
|
96 |
+
},
|
97 |
+
{
|
98 |
+
"cell_type": "code",
|
99 |
+
"execution_count": 6,
|
100 |
+
"id": "12b51c8e-8420-456a-96fb-a185165c990a",
|
101 |
+
"metadata": {},
|
102 |
+
"outputs": [
|
103 |
+
{
|
104 |
+
"data": {
|
105 |
+
"text/plain": [
|
106 |
+
"2"
|
107 |
+
]
|
108 |
+
},
|
109 |
+
"execution_count": 6,
|
110 |
+
"metadata": {},
|
111 |
+
"output_type": "execute_result"
|
112 |
+
}
|
113 |
+
],
|
114 |
+
"source": [
|
115 |
+
"datamodule.num_classes"
|
116 |
+
]
|
117 |
+
},
|
118 |
+
{
|
119 |
+
"cell_type": "code",
|
120 |
+
"execution_count": 7,
|
121 |
+
"id": "a6189aca-e28c-4147-8efc-fae604663d14",
|
122 |
+
"metadata": {},
|
123 |
+
"outputs": [],
|
124 |
+
"source": [
|
125 |
+
"head = LinearHead(hidden_size=backbone.num_features, num_classes=datamodule.num_classes)\n",
|
126 |
+
"model = VideoModel(backbone, head)"
|
127 |
+
]
|
128 |
+
},
|
129 |
+
{
|
130 |
+
"cell_type": "code",
|
131 |
+
"execution_count": 8,
|
132 |
+
"id": "f3ed0a1e-d90c-49b1-a213-55815d0cdf15",
|
133 |
+
"metadata": {
|
134 |
+
"scrolled": true
|
135 |
+
},
|
136 |
+
"outputs": [
|
137 |
+
{
|
138 |
+
"data": {
|
139 |
+
"text/plain": [
|
140 |
+
"VideoModel(\n",
|
141 |
+
" (backbone): TransformersBackbone(\n",
|
142 |
+
" (model): TimesformerModel(\n",
|
143 |
+
" (embeddings): TimesformerEmbeddings(\n",
|
144 |
+
" (patch_embeddings): TimesformerPatchEmbeddings(\n",
|
145 |
+
" (projection): Conv2d(3, 768, kernel_size=(16, 16), stride=(16, 16))\n",
|
146 |
+
" )\n",
|
147 |
+
" (pos_drop): Dropout(p=0.0, inplace=False)\n",
|
148 |
+
" (time_drop): Dropout(p=0.0, inplace=False)\n",
|
149 |
+
" )\n",
|
150 |
+
" (encoder): TimesformerEncoder(\n",
|
151 |
+
" (layer): ModuleList(\n",
|
152 |
+
" (0): TimesformerLayer(\n",
|
153 |
+
" (drop_path): Identity()\n",
|
154 |
+
" (attention): TimeSformerAttention(\n",
|
155 |
+
" (attention): TimesformerSelfAttention(\n",
|
156 |
+
" (qkv): Linear(in_features=768, out_features=2304, bias=True)\n",
|
157 |
+
" (attn_drop): Dropout(p=0.0, inplace=False)\n",
|
158 |
+
" )\n",
|
159 |
+
" (output): TimesformerSelfOutput(\n",
|
160 |
+
" (dense): Linear(in_features=768, out_features=768, bias=True)\n",
|
161 |
+
" (dropout): Dropout(p=0.0, inplace=False)\n",
|
162 |
+
" )\n",
|
163 |
+
" )\n",
|
164 |
+
" (intermediate): TimesformerIntermediate(\n",
|
165 |
+
" (dense): Linear(in_features=768, out_features=3072, bias=True)\n",
|
166 |
+
" (dropout): Dropout(p=0.0, inplace=False)\n",
|
167 |
+
" (intermediate_act_fn): GELUActivation()\n",
|
168 |
+
" )\n",
|
169 |
+
" (output): TimesformerOutput(\n",
|
170 |
+
" (dense): Linear(in_features=3072, out_features=768, bias=True)\n",
|
171 |
+
" (dropout): Dropout(p=0.0, inplace=False)\n",
|
172 |
+
" )\n",
|
173 |
+
" (layernorm_before): LayerNorm((768,), eps=1e-06, elementwise_affine=True)\n",
|
174 |
+
" (layernorm_after): LayerNorm((768,), eps=1e-06, elementwise_affine=True)\n",
|
175 |
+
" (temporal_layernorm): LayerNorm((768,), eps=1e-06, elementwise_affine=True)\n",
|
176 |
+
" (temporal_attention): TimeSformerAttention(\n",
|
177 |
+
" (attention): TimesformerSelfAttention(\n",
|
178 |
+
" (qkv): Linear(in_features=768, out_features=2304, bias=True)\n",
|
179 |
+
" (attn_drop): Dropout(p=0.0, inplace=False)\n",
|
180 |
+
" )\n",
|
181 |
+
" (output): TimesformerSelfOutput(\n",
|
182 |
+
" (dense): Linear(in_features=768, out_features=768, bias=True)\n",
|
183 |
+
" (dropout): Dropout(p=0.0, inplace=False)\n",
|
184 |
+
" )\n",
|
185 |
+
" )\n",
|
186 |
+
" (temporal_dense): Linear(in_features=768, out_features=768, bias=True)\n",
|
187 |
+
" )\n",
|
188 |
+
" (1): TimesformerLayer(\n",
|
189 |
+
" (drop_path): Identity()\n",
|
190 |
+
" (attention): TimeSformerAttention(\n",
|
191 |
+
" (attention): TimesformerSelfAttention(\n",
|
192 |
+
" (qkv): Linear(in_features=768, out_features=2304, bias=True)\n",
|
193 |
+
" (attn_drop): Dropout(p=0.0, inplace=False)\n",
|
194 |
+
" )\n",
|
195 |
+
" (output): TimesformerSelfOutput(\n",
|
196 |
+
" (dense): Linear(in_features=768, out_features=768, bias=True)\n",
|
197 |
+
" (dropout): Dropout(p=0.0, inplace=False)\n",
|
198 |
+
" )\n",
|
199 |
+
" )\n",
|
200 |
+
" (intermediate): TimesformerIntermediate(\n",
|
201 |
+
" (dense): Linear(in_features=768, out_features=3072, bias=True)\n",
|
202 |
+
" (dropout): Dropout(p=0.0, inplace=False)\n",
|
203 |
+
" (intermediate_act_fn): GELUActivation()\n",
|
204 |
+
" )\n",
|
205 |
+
" (output): TimesformerOutput(\n",
|
206 |
+
" (dense): Linear(in_features=3072, out_features=768, bias=True)\n",
|
207 |
+
" (dropout): Dropout(p=0.0, inplace=False)\n",
|
208 |
+
" )\n",
|
209 |
+
" (layernorm_before): LayerNorm((768,), eps=1e-06, elementwise_affine=True)\n",
|
210 |
+
" (layernorm_after): LayerNorm((768,), eps=1e-06, elementwise_affine=True)\n",
|
211 |
+
" (temporal_layernorm): LayerNorm((768,), eps=1e-06, elementwise_affine=True)\n",
|
212 |
+
" (temporal_attention): TimeSformerAttention(\n",
|
213 |
+
" (attention): TimesformerSelfAttention(\n",
|
214 |
+
" (qkv): Linear(in_features=768, out_features=2304, bias=True)\n",
|
215 |
+
" (attn_drop): Dropout(p=0.0, inplace=False)\n",
|
216 |
+
" )\n",
|
217 |
+
" (output): TimesformerSelfOutput(\n",
|
218 |
+
" (dense): Linear(in_features=768, out_features=768, bias=True)\n",
|
219 |
+
" (dropout): Dropout(p=0.0, inplace=False)\n",
|
220 |
+
" )\n",
|
221 |
+
" )\n",
|
222 |
+
" (temporal_dense): Linear(in_features=768, out_features=768, bias=True)\n",
|
223 |
+
" )\n",
|
224 |
+
" (2): TimesformerLayer(\n",
|
225 |
+
" (drop_path): Identity()\n",
|
226 |
+
" (attention): TimeSformerAttention(\n",
|
227 |
+
" (attention): TimesformerSelfAttention(\n",
|
228 |
+
" (qkv): Linear(in_features=768, out_features=2304, bias=True)\n",
|
229 |
+
" (attn_drop): Dropout(p=0.0, inplace=False)\n",
|
230 |
+
" )\n",
|
231 |
+
" (output): TimesformerSelfOutput(\n",
|
232 |
+
" (dense): Linear(in_features=768, out_features=768, bias=True)\n",
|
233 |
+
" (dropout): Dropout(p=0.0, inplace=False)\n",
|
234 |
+
" )\n",
|
235 |
+
" )\n",
|
236 |
+
" (intermediate): TimesformerIntermediate(\n",
|
237 |
+
" (dense): Linear(in_features=768, out_features=3072, bias=True)\n",
|
238 |
+
" (dropout): Dropout(p=0.0, inplace=False)\n",
|
239 |
+
" (intermediate_act_fn): GELUActivation()\n",
|
240 |
+
" )\n",
|
241 |
+
" (output): TimesformerOutput(\n",
|
242 |
+
" (dense): Linear(in_features=3072, out_features=768, bias=True)\n",
|
243 |
+
" (dropout): Dropout(p=0.0, inplace=False)\n",
|
244 |
+
" )\n",
|
245 |
+
" (layernorm_before): LayerNorm((768,), eps=1e-06, elementwise_affine=True)\n",
|
246 |
+
" (layernorm_after): LayerNorm((768,), eps=1e-06, elementwise_affine=True)\n",
|
247 |
+
" (temporal_layernorm): LayerNorm((768,), eps=1e-06, elementwise_affine=True)\n",
|
248 |
+
" (temporal_attention): TimeSformerAttention(\n",
|
249 |
+
" (attention): TimesformerSelfAttention(\n",
|
250 |
+
" (qkv): Linear(in_features=768, out_features=2304, bias=True)\n",
|
251 |
+
" (attn_drop): Dropout(p=0.0, inplace=False)\n",
|
252 |
+
" )\n",
|
253 |
+
" (output): TimesformerSelfOutput(\n",
|
254 |
+
" (dense): Linear(in_features=768, out_features=768, bias=True)\n",
|
255 |
+
" (dropout): Dropout(p=0.0, inplace=False)\n",
|
256 |
+
" )\n",
|
257 |
+
" )\n",
|
258 |
+
" (temporal_dense): Linear(in_features=768, out_features=768, bias=True)\n",
|
259 |
+
" )\n",
|
260 |
+
" (3): TimesformerLayer(\n",
|
261 |
+
" (drop_path): Identity()\n",
|
262 |
+
" (attention): TimeSformerAttention(\n",
|
263 |
+
" (attention): TimesformerSelfAttention(\n",
|
264 |
+
" (qkv): Linear(in_features=768, out_features=2304, bias=True)\n",
|
265 |
+
" (attn_drop): Dropout(p=0.0, inplace=False)\n",
|
266 |
+
" )\n",
|
267 |
+
" (output): TimesformerSelfOutput(\n",
|
268 |
+
" (dense): Linear(in_features=768, out_features=768, bias=True)\n",
|
269 |
+
" (dropout): Dropout(p=0.0, inplace=False)\n",
|
270 |
+
" )\n",
|
271 |
+
" )\n",
|
272 |
+
" (intermediate): TimesformerIntermediate(\n",
|
273 |
+
" (dense): Linear(in_features=768, out_features=3072, bias=True)\n",
|
274 |
+
" (dropout): Dropout(p=0.0, inplace=False)\n",
|
275 |
+
" (intermediate_act_fn): GELUActivation()\n",
|
276 |
+
" )\n",
|
277 |
+
" (output): TimesformerOutput(\n",
|
278 |
+
" (dense): Linear(in_features=3072, out_features=768, bias=True)\n",
|
279 |
+
" (dropout): Dropout(p=0.0, inplace=False)\n",
|
280 |
+
" )\n",
|
281 |
+
" (layernorm_before): LayerNorm((768,), eps=1e-06, elementwise_affine=True)\n",
|
282 |
+
" (layernorm_after): LayerNorm((768,), eps=1e-06, elementwise_affine=True)\n",
|
283 |
+
" (temporal_layernorm): LayerNorm((768,), eps=1e-06, elementwise_affine=True)\n",
|
284 |
+
" (temporal_attention): TimeSformerAttention(\n",
|
285 |
+
" (attention): TimesformerSelfAttention(\n",
|
286 |
+
" (qkv): Linear(in_features=768, out_features=2304, bias=True)\n",
|
287 |
+
" (attn_drop): Dropout(p=0.0, inplace=False)\n",
|
288 |
+
" )\n",
|
289 |
+
" (output): TimesformerSelfOutput(\n",
|
290 |
+
" (dense): Linear(in_features=768, out_features=768, bias=True)\n",
|
291 |
+
" (dropout): Dropout(p=0.0, inplace=False)\n",
|
292 |
+
" )\n",
|
293 |
+
" )\n",
|
294 |
+
" (temporal_dense): Linear(in_features=768, out_features=768, bias=True)\n",
|
295 |
+
" )\n",
|
296 |
+
" (4): TimesformerLayer(\n",
|
297 |
+
" (drop_path): Identity()\n",
|
298 |
+
" (attention): TimeSformerAttention(\n",
|
299 |
+
" (attention): TimesformerSelfAttention(\n",
|
300 |
+
" (qkv): Linear(in_features=768, out_features=2304, bias=True)\n",
|
301 |
+
" (attn_drop): Dropout(p=0.0, inplace=False)\n",
|
302 |
+
" )\n",
|
303 |
+
" (output): TimesformerSelfOutput(\n",
|
304 |
+
" (dense): Linear(in_features=768, out_features=768, bias=True)\n",
|
305 |
+
" (dropout): Dropout(p=0.0, inplace=False)\n",
|
306 |
+
" )\n",
|
307 |
+
" )\n",
|
308 |
+
" (intermediate): TimesformerIntermediate(\n",
|
309 |
+
" (dense): Linear(in_features=768, out_features=3072, bias=True)\n",
|
310 |
+
" (dropout): Dropout(p=0.0, inplace=False)\n",
|
311 |
+
" (intermediate_act_fn): GELUActivation()\n",
|
312 |
+
" )\n",
|
313 |
+
" (output): TimesformerOutput(\n",
|
314 |
+
" (dense): Linear(in_features=3072, out_features=768, bias=True)\n",
|
315 |
+
" (dropout): Dropout(p=0.0, inplace=False)\n",
|
316 |
+
" )\n",
|
317 |
+
" (layernorm_before): LayerNorm((768,), eps=1e-06, elementwise_affine=True)\n",
|
318 |
+
" (layernorm_after): LayerNorm((768,), eps=1e-06, elementwise_affine=True)\n",
|
319 |
+
" (temporal_layernorm): LayerNorm((768,), eps=1e-06, elementwise_affine=True)\n",
|
320 |
+
" (temporal_attention): TimeSformerAttention(\n",
|
321 |
+
" (attention): TimesformerSelfAttention(\n",
|
322 |
+
" (qkv): Linear(in_features=768, out_features=2304, bias=True)\n",
|
323 |
+
" (attn_drop): Dropout(p=0.0, inplace=False)\n",
|
324 |
+
" )\n",
|
325 |
+
" (output): TimesformerSelfOutput(\n",
|
326 |
+
" (dense): Linear(in_features=768, out_features=768, bias=True)\n",
|
327 |
+
" (dropout): Dropout(p=0.0, inplace=False)\n",
|
328 |
+
" )\n",
|
329 |
+
" )\n",
|
330 |
+
" (temporal_dense): Linear(in_features=768, out_features=768, bias=True)\n",
|
331 |
+
" )\n",
|
332 |
+
" (5): TimesformerLayer(\n",
|
333 |
+
" (drop_path): Identity()\n",
|
334 |
+
" (attention): TimeSformerAttention(\n",
|
335 |
+
" (attention): TimesformerSelfAttention(\n",
|
336 |
+
" (qkv): Linear(in_features=768, out_features=2304, bias=True)\n",
|
337 |
+
" (attn_drop): Dropout(p=0.0, inplace=False)\n",
|
338 |
+
" )\n",
|
339 |
+
" (output): TimesformerSelfOutput(\n",
|
340 |
+
" (dense): Linear(in_features=768, out_features=768, bias=True)\n",
|
341 |
+
" (dropout): Dropout(p=0.0, inplace=False)\n",
|
342 |
+
" )\n",
|
343 |
+
" )\n",
|
344 |
+
" (intermediate): TimesformerIntermediate(\n",
|
345 |
+
" (dense): Linear(in_features=768, out_features=3072, bias=True)\n",
|
346 |
+
" (dropout): Dropout(p=0.0, inplace=False)\n",
|
347 |
+
" (intermediate_act_fn): GELUActivation()\n",
|
348 |
+
" )\n",
|
349 |
+
" (output): TimesformerOutput(\n",
|
350 |
+
" (dense): Linear(in_features=3072, out_features=768, bias=True)\n",
|
351 |
+
" (dropout): Dropout(p=0.0, inplace=False)\n",
|
352 |
+
" )\n",
|
353 |
+
" (layernorm_before): LayerNorm((768,), eps=1e-06, elementwise_affine=True)\n",
|
354 |
+
" (layernorm_after): LayerNorm((768,), eps=1e-06, elementwise_affine=True)\n",
|
355 |
+
" (temporal_layernorm): LayerNorm((768,), eps=1e-06, elementwise_affine=True)\n",
|
356 |
+
" (temporal_attention): TimeSformerAttention(\n",
|
357 |
+
" (attention): TimesformerSelfAttention(\n",
|
358 |
+
" (qkv): Linear(in_features=768, out_features=2304, bias=True)\n",
|
359 |
+
" (attn_drop): Dropout(p=0.0, inplace=False)\n",
|
360 |
+
" )\n",
|
361 |
+
" (output): TimesformerSelfOutput(\n",
|
362 |
+
" (dense): Linear(in_features=768, out_features=768, bias=True)\n",
|
363 |
+
" (dropout): Dropout(p=0.0, inplace=False)\n",
|
364 |
+
" )\n",
|
365 |
+
" )\n",
|
366 |
+
" (temporal_dense): Linear(in_features=768, out_features=768, bias=True)\n",
|
367 |
+
" )\n",
|
368 |
+
" (6): TimesformerLayer(\n",
|
369 |
+
" (drop_path): Identity()\n",
|
370 |
+
" (attention): TimeSformerAttention(\n",
|
371 |
+
" (attention): TimesformerSelfAttention(\n",
|
372 |
+
" (qkv): Linear(in_features=768, out_features=2304, bias=True)\n",
|
373 |
+
" (attn_drop): Dropout(p=0.0, inplace=False)\n",
|
374 |
+
" )\n",
|
375 |
+
" (output): TimesformerSelfOutput(\n",
|
376 |
+
" (dense): Linear(in_features=768, out_features=768, bias=True)\n",
|
377 |
+
" (dropout): Dropout(p=0.0, inplace=False)\n",
|
378 |
+
" )\n",
|
379 |
+
" )\n",
|
380 |
+
" (intermediate): TimesformerIntermediate(\n",
|
381 |
+
" (dense): Linear(in_features=768, out_features=3072, bias=True)\n",
|
382 |
+
" (dropout): Dropout(p=0.0, inplace=False)\n",
|
383 |
+
" (intermediate_act_fn): GELUActivation()\n",
|
384 |
+
" )\n",
|
385 |
+
" (output): TimesformerOutput(\n",
|
386 |
+
" (dense): Linear(in_features=3072, out_features=768, bias=True)\n",
|
387 |
+
" (dropout): Dropout(p=0.0, inplace=False)\n",
|
388 |
+
" )\n",
|
389 |
+
" (layernorm_before): LayerNorm((768,), eps=1e-06, elementwise_affine=True)\n",
|
390 |
+
" (layernorm_after): LayerNorm((768,), eps=1e-06, elementwise_affine=True)\n",
|
391 |
+
" (temporal_layernorm): LayerNorm((768,), eps=1e-06, elementwise_affine=True)\n",
|
392 |
+
" (temporal_attention): TimeSformerAttention(\n",
|
393 |
+
" (attention): TimesformerSelfAttention(\n",
|
394 |
+
" (qkv): Linear(in_features=768, out_features=2304, bias=True)\n",
|
395 |
+
" (attn_drop): Dropout(p=0.0, inplace=False)\n",
|
396 |
+
" )\n",
|
397 |
+
" (output): TimesformerSelfOutput(\n",
|
398 |
+
" (dense): Linear(in_features=768, out_features=768, bias=True)\n",
|
399 |
+
" (dropout): Dropout(p=0.0, inplace=False)\n",
|
400 |
+
" )\n",
|
401 |
+
" )\n",
|
402 |
+
" (temporal_dense): Linear(in_features=768, out_features=768, bias=True)\n",
|
403 |
+
" )\n",
|
404 |
+
" (7): TimesformerLayer(\n",
|
405 |
+
" (drop_path): Identity()\n",
|
406 |
+
" (attention): TimeSformerAttention(\n",
|
407 |
+
" (attention): TimesformerSelfAttention(\n",
|
408 |
+
" (qkv): Linear(in_features=768, out_features=2304, bias=True)\n",
|
409 |
+
" (attn_drop): Dropout(p=0.0, inplace=False)\n",
|
410 |
+
" )\n",
|
411 |
+
" (output): TimesformerSelfOutput(\n",
|
412 |
+
" (dense): Linear(in_features=768, out_features=768, bias=True)\n",
|
413 |
+
" (dropout): Dropout(p=0.0, inplace=False)\n",
|
414 |
+
" )\n",
|
415 |
+
" )\n",
|
416 |
+
" (intermediate): TimesformerIntermediate(\n",
|
417 |
+
" (dense): Linear(in_features=768, out_features=3072, bias=True)\n",
|
418 |
+
" (dropout): Dropout(p=0.0, inplace=False)\n",
|
419 |
+
" (intermediate_act_fn): GELUActivation()\n",
|
420 |
+
" )\n",
|
421 |
+
" (output): TimesformerOutput(\n",
|
422 |
+
" (dense): Linear(in_features=3072, out_features=768, bias=True)\n",
|
423 |
+
" (dropout): Dropout(p=0.0, inplace=False)\n",
|
424 |
+
" )\n",
|
425 |
+
" (layernorm_before): LayerNorm((768,), eps=1e-06, elementwise_affine=True)\n",
|
426 |
+
" (layernorm_after): LayerNorm((768,), eps=1e-06, elementwise_affine=True)\n",
|
427 |
+
" (temporal_layernorm): LayerNorm((768,), eps=1e-06, elementwise_affine=True)\n",
|
428 |
+
" (temporal_attention): TimeSformerAttention(\n",
|
429 |
+
" (attention): TimesformerSelfAttention(\n",
|
430 |
+
" (qkv): Linear(in_features=768, out_features=2304, bias=True)\n",
|
431 |
+
" (attn_drop): Dropout(p=0.0, inplace=False)\n",
|
432 |
+
" )\n",
|
433 |
+
" (output): TimesformerSelfOutput(\n",
|
434 |
+
" (dense): Linear(in_features=768, out_features=768, bias=True)\n",
|
435 |
+
" (dropout): Dropout(p=0.0, inplace=False)\n",
|
436 |
+
" )\n",
|
437 |
+
" )\n",
|
438 |
+
" (temporal_dense): Linear(in_features=768, out_features=768, bias=True)\n",
|
439 |
+
" )\n",
|
440 |
+
" (8): TimesformerLayer(\n",
|
441 |
+
" (drop_path): Identity()\n",
|
442 |
+
" (attention): TimeSformerAttention(\n",
|
443 |
+
" (attention): TimesformerSelfAttention(\n",
|
444 |
+
" (qkv): Linear(in_features=768, out_features=2304, bias=True)\n",
|
445 |
+
" (attn_drop): Dropout(p=0.0, inplace=False)\n",
|
446 |
+
" )\n",
|
447 |
+
" (output): TimesformerSelfOutput(\n",
|
448 |
+
" (dense): Linear(in_features=768, out_features=768, bias=True)\n",
|
449 |
+
" (dropout): Dropout(p=0.0, inplace=False)\n",
|
450 |
+
" )\n",
|
451 |
+
" )\n",
|
452 |
+
" (intermediate): TimesformerIntermediate(\n",
|
453 |
+
" (dense): Linear(in_features=768, out_features=3072, bias=True)\n",
|
454 |
+
" (dropout): Dropout(p=0.0, inplace=False)\n",
|
455 |
+
" (intermediate_act_fn): GELUActivation()\n",
|
456 |
+
" )\n",
|
457 |
+
" (output): TimesformerOutput(\n",
|
458 |
+
" (dense): Linear(in_features=3072, out_features=768, bias=True)\n",
|
459 |
+
" (dropout): Dropout(p=0.0, inplace=False)\n",
|
460 |
+
" )\n",
|
461 |
+
" (layernorm_before): LayerNorm((768,), eps=1e-06, elementwise_affine=True)\n",
|
462 |
+
" (layernorm_after): LayerNorm((768,), eps=1e-06, elementwise_affine=True)\n",
|
463 |
+
" (temporal_layernorm): LayerNorm((768,), eps=1e-06, elementwise_affine=True)\n",
|
464 |
+
" (temporal_attention): TimeSformerAttention(\n",
|
465 |
+
" (attention): TimesformerSelfAttention(\n",
|
466 |
+
" (qkv): Linear(in_features=768, out_features=2304, bias=True)\n",
|
467 |
+
" (attn_drop): Dropout(p=0.0, inplace=False)\n",
|
468 |
+
" )\n",
|
469 |
+
" (output): TimesformerSelfOutput(\n",
|
470 |
+
" (dense): Linear(in_features=768, out_features=768, bias=True)\n",
|
471 |
+
" (dropout): Dropout(p=0.0, inplace=False)\n",
|
472 |
+
" )\n",
|
473 |
+
" )\n",
|
474 |
+
" (temporal_dense): Linear(in_features=768, out_features=768, bias=True)\n",
|
475 |
+
" )\n",
|
476 |
+
" (9): TimesformerLayer(\n",
|
477 |
+
" (drop_path): Identity()\n",
|
478 |
+
" (attention): TimeSformerAttention(\n",
|
479 |
+
" (attention): TimesformerSelfAttention(\n",
|
480 |
+
" (qkv): Linear(in_features=768, out_features=2304, bias=True)\n",
|
481 |
+
" (attn_drop): Dropout(p=0.0, inplace=False)\n",
|
482 |
+
" )\n",
|
483 |
+
" (output): TimesformerSelfOutput(\n",
|
484 |
+
" (dense): Linear(in_features=768, out_features=768, bias=True)\n",
|
485 |
+
" (dropout): Dropout(p=0.0, inplace=False)\n",
|
486 |
+
" )\n",
|
487 |
+
" )\n",
|
488 |
+
" (intermediate): TimesformerIntermediate(\n",
|
489 |
+
" (dense): Linear(in_features=768, out_features=3072, bias=True)\n",
|
490 |
+
" (dropout): Dropout(p=0.0, inplace=False)\n",
|
491 |
+
" (intermediate_act_fn): GELUActivation()\n",
|
492 |
+
" )\n",
|
493 |
+
" (output): TimesformerOutput(\n",
|
494 |
+
" (dense): Linear(in_features=3072, out_features=768, bias=True)\n",
|
495 |
+
" (dropout): Dropout(p=0.0, inplace=False)\n",
|
496 |
+
" )\n",
|
497 |
+
" (layernorm_before): LayerNorm((768,), eps=1e-06, elementwise_affine=True)\n",
|
498 |
+
" (layernorm_after): LayerNorm((768,), eps=1e-06, elementwise_affine=True)\n",
|
499 |
+
" (temporal_layernorm): LayerNorm((768,), eps=1e-06, elementwise_affine=True)\n",
|
500 |
+
" (temporal_attention): TimeSformerAttention(\n",
|
501 |
+
" (attention): TimesformerSelfAttention(\n",
|
502 |
+
" (qkv): Linear(in_features=768, out_features=2304, bias=True)\n",
|
503 |
+
" (attn_drop): Dropout(p=0.0, inplace=False)\n",
|
504 |
+
" )\n",
|
505 |
+
" (output): TimesformerSelfOutput(\n",
|
506 |
+
" (dense): Linear(in_features=768, out_features=768, bias=True)\n",
|
507 |
+
" (dropout): Dropout(p=0.0, inplace=False)\n",
|
508 |
+
" )\n",
|
509 |
+
" )\n",
|
510 |
+
" (temporal_dense): Linear(in_features=768, out_features=768, bias=True)\n",
|
511 |
+
" )\n",
|
512 |
+
" (10): TimesformerLayer(\n",
|
513 |
+
" (drop_path): Identity()\n",
|
514 |
+
" (attention): TimeSformerAttention(\n",
|
515 |
+
" (attention): TimesformerSelfAttention(\n",
|
516 |
+
" (qkv): Linear(in_features=768, out_features=2304, bias=True)\n",
|
517 |
+
" (attn_drop): Dropout(p=0.0, inplace=False)\n",
|
518 |
+
" )\n",
|
519 |
+
" (output): TimesformerSelfOutput(\n",
|
520 |
+
" (dense): Linear(in_features=768, out_features=768, bias=True)\n",
|
521 |
+
" (dropout): Dropout(p=0.0, inplace=False)\n",
|
522 |
+
" )\n",
|
523 |
+
" )\n",
|
524 |
+
" (intermediate): TimesformerIntermediate(\n",
|
525 |
+
" (dense): Linear(in_features=768, out_features=3072, bias=True)\n",
|
526 |
+
" (dropout): Dropout(p=0.0, inplace=False)\n",
|
527 |
+
" (intermediate_act_fn): GELUActivation()\n",
|
528 |
+
" )\n",
|
529 |
+
" (output): TimesformerOutput(\n",
|
530 |
+
" (dense): Linear(in_features=3072, out_features=768, bias=True)\n",
|
531 |
+
" (dropout): Dropout(p=0.0, inplace=False)\n",
|
532 |
+
" )\n",
|
533 |
+
" (layernorm_before): LayerNorm((768,), eps=1e-06, elementwise_affine=True)\n",
|
534 |
+
" (layernorm_after): LayerNorm((768,), eps=1e-06, elementwise_affine=True)\n",
|
535 |
+
" (temporal_layernorm): LayerNorm((768,), eps=1e-06, elementwise_affine=True)\n",
|
536 |
+
" (temporal_attention): TimeSformerAttention(\n",
|
537 |
+
" (attention): TimesformerSelfAttention(\n",
|
538 |
+
" (qkv): Linear(in_features=768, out_features=2304, bias=True)\n",
|
539 |
+
" (attn_drop): Dropout(p=0.0, inplace=False)\n",
|
540 |
+
" )\n",
|
541 |
+
" (output): TimesformerSelfOutput(\n",
|
542 |
+
" (dense): Linear(in_features=768, out_features=768, bias=True)\n",
|
543 |
+
" (dropout): Dropout(p=0.0, inplace=False)\n",
|
544 |
+
" )\n",
|
545 |
+
" )\n",
|
546 |
+
" (temporal_dense): Linear(in_features=768, out_features=768, bias=True)\n",
|
547 |
+
" )\n",
|
548 |
+
" (11): TimesformerLayer(\n",
|
549 |
+
" (drop_path): Identity()\n",
|
550 |
+
" (attention): TimeSformerAttention(\n",
|
551 |
+
" (attention): TimesformerSelfAttention(\n",
|
552 |
+
" (qkv): Linear(in_features=768, out_features=2304, bias=True)\n",
|
553 |
+
" (attn_drop): Dropout(p=0.0, inplace=False)\n",
|
554 |
+
" )\n",
|
555 |
+
" (output): TimesformerSelfOutput(\n",
|
556 |
+
" (dense): Linear(in_features=768, out_features=768, bias=True)\n",
|
557 |
+
" (dropout): Dropout(p=0.0, inplace=False)\n",
|
558 |
+
" )\n",
|
559 |
+
" )\n",
|
560 |
+
" (intermediate): TimesformerIntermediate(\n",
|
561 |
+
" (dense): Linear(in_features=768, out_features=3072, bias=True)\n",
|
562 |
+
" (dropout): Dropout(p=0.0, inplace=False)\n",
|
563 |
+
" (intermediate_act_fn): GELUActivation()\n",
|
564 |
+
" )\n",
|
565 |
+
" (output): TimesformerOutput(\n",
|
566 |
+
" (dense): Linear(in_features=3072, out_features=768, bias=True)\n",
|
567 |
+
" (dropout): Dropout(p=0.0, inplace=False)\n",
|
568 |
+
" )\n",
|
569 |
+
" (layernorm_before): LayerNorm((768,), eps=1e-06, elementwise_affine=True)\n",
|
570 |
+
" (layernorm_after): LayerNorm((768,), eps=1e-06, elementwise_affine=True)\n",
|
571 |
+
" (temporal_layernorm): LayerNorm((768,), eps=1e-06, elementwise_affine=True)\n",
|
572 |
+
" (temporal_attention): TimeSformerAttention(\n",
|
573 |
+
" (attention): TimesformerSelfAttention(\n",
|
574 |
+
" (qkv): Linear(in_features=768, out_features=2304, bias=True)\n",
|
575 |
+
" (attn_drop): Dropout(p=0.0, inplace=False)\n",
|
576 |
+
" )\n",
|
577 |
+
" (output): TimesformerSelfOutput(\n",
|
578 |
+
" (dense): Linear(in_features=768, out_features=768, bias=True)\n",
|
579 |
+
" (dropout): Dropout(p=0.0, inplace=False)\n",
|
580 |
+
" )\n",
|
581 |
+
" )\n",
|
582 |
+
" (temporal_dense): Linear(in_features=768, out_features=768, bias=True)\n",
|
583 |
+
" )\n",
|
584 |
+
" )\n",
|
585 |
+
" )\n",
|
586 |
+
" (layernorm): LayerNorm((768,), eps=1e-06, elementwise_affine=True)\n",
|
587 |
+
" )\n",
|
588 |
+
" )\n",
|
589 |
+
" (head): LinearHead(\n",
|
590 |
+
" (linear): Linear(in_features=768, out_features=2, bias=True)\n",
|
591 |
+
" )\n",
|
592 |
+
")"
|
593 |
+
]
|
594 |
+
},
|
595 |
+
"execution_count": 8,
|
596 |
+
"metadata": {},
|
597 |
+
"output_type": "execute_result"
|
598 |
+
}
|
599 |
+
],
|
600 |
+
"source": [
|
601 |
+
"model"
|
602 |
+
]
|
603 |
+
},
|
604 |
+
{
|
605 |
+
"cell_type": "code",
|
606 |
+
"execution_count": 9,
|
607 |
+
"id": "a9d97e70-f539-4f34-8859-f69f1033a57e",
|
608 |
+
"metadata": {},
|
609 |
+
"outputs": [],
|
610 |
+
"source": [
|
611 |
+
"optimizer = AdamW(model.parameters(), lr=1e-4)\n",
|
612 |
+
"\n",
|
613 |
+
"Trainer = trainer_factory(\"single_label_classification\")\n",
|
614 |
+
"trainer = Trainer(datamodule, model, optimizer=optimizer, max_epochs=10, \n",
|
615 |
+
" mixed_precision=\"fp16\")"
|
616 |
+
]
|
617 |
+
},
|
618 |
+
{
|
619 |
+
"cell_type": "code",
|
620 |
+
"execution_count": 10,
|
621 |
+
"id": "552054ca-55bd-4692-90ae-5f36b1c4d030",
|
622 |
+
"metadata": {
|
623 |
+
"scrolled": true
|
624 |
+
},
|
625 |
+
"outputs": [
|
626 |
+
{
|
627 |
+
"name": "stdout",
|
628 |
+
"output_type": "stream",
|
629 |
+
"text": [
|
630 |
+
"Trainable parameteres: 10045442\n",
|
631 |
+
"Total parameteres: 121260290\n"
|
632 |
+
]
|
633 |
+
},
|
634 |
+
{
|
635 |
+
"name": "stderr",
|
636 |
+
"output_type": "stream",
|
637 |
+
"text": [
|
638 |
+
"Epoch 0 (Done) : 100%|█████████████████████████████████████████████████████████████████████████████| 168/168 [01:13<00:00, 2.30 batch/s, loss=0.6949, val/f1=0.488, train/f1=0.504]\n",
|
639 |
+
"Epoch 1 (Done) : 100%|█████████████████████████████████████████████████████████████████████████████| 168/168 [01:13<00:00, 2.29 batch/s, loss=0.5825, val/f1=0.738, train/f1=0.711]\n",
|
640 |
+
"Epoch 2 (Done) : 100%|█████████████████████████████████████████████████████████████████████████████| 168/168 [01:15<00:00, 2.23 batch/s, loss=0.4997, val/f1=0.755, train/f1=0.794]\n",
|
641 |
+
"Epoch 3 (Done) : 100%|█████████████████████████████████████████████████████████████████████████████| 168/168 [01:16<00:00, 2.20 batch/s, loss=0.5583, val/f1=0.744, train/f1=0.813]\n",
|
642 |
+
"Epoch 4 (Done) : 100%|█████████████████████████████████████████████████████████████████████████████| 168/168 [01:16<00:00, 2.20 batch/s, loss=0.5624, val/f1=0.711, train/f1=0.846]\n",
|
643 |
+
"Epoch 5 (Done) : 100%|█████████████████████████████████████████████████████████████████████████████| 168/168 [01:16<00:00, 2.18 batch/s, loss=0.5908, val/f1=0.735, train/f1=0.857]\n",
|
644 |
+
"Epoch 6 (Done) : 100%|█████████████████████████████████████████████████████████████████████████████| 168/168 [01:17<00:00, 2.17 batch/s, loss=0.5492, val/f1=0.743, train/f1=0.846]\n",
|
645 |
+
"Epoch 7 (Done) : 100%|█████████████████████████████████████████████████████████████████████████████| 168/168 [01:16<00:00, 2.19 batch/s, loss=0.5395, val/f1=0.752, train/f1=0.879]\n",
|
646 |
+
"Epoch 8 (Done) : 100%|█████████████████████████████████████████████████████████████████████████████| 168/168 [01:16<00:00, 2.21 batch/s, loss=0.5304, val/f1=0.741, train/f1=0.886]\n",
|
647 |
+
"Epoch 9 (Done) : 100%|█████████████████████████████████████████████████████████████████████████████| 168/168 [01:16<00:00, 2.20 batch/s, loss=0.5423, val/f1=0.758, train/f1=0.910]\n"
|
648 |
+
]
|
649 |
+
}
|
650 |
+
],
|
651 |
+
"source": [
|
652 |
+
"trainer.fit()"
|
653 |
+
]
|
654 |
+
},
|
655 |
+
{
|
656 |
+
"cell_type": "code",
|
657 |
+
"execution_count": 11,
|
658 |
+
"id": "7f378e22-d85b-4714-981e-4b68c3fdeb73",
|
659 |
+
"metadata": {},
|
660 |
+
"outputs": [
|
661 |
+
{
|
662 |
+
"data": {
|
663 |
+
"text/plain": [
|
664 |
+
"['khongxarac', 'xarac']"
|
665 |
+
]
|
666 |
+
},
|
667 |
+
"execution_count": 11,
|
668 |
+
"metadata": {},
|
669 |
+
"output_type": "execute_result"
|
670 |
+
}
|
671 |
+
],
|
672 |
+
"source": [
|
673 |
+
"datamodule.labels"
|
674 |
+
]
|
675 |
+
},
|
676 |
+
{
|
677 |
+
"cell_type": "code",
|
678 |
+
"execution_count": 12,
|
679 |
+
"id": "ef16f8e1-6ad1-446a-a817-b01d4259e60b",
|
680 |
+
"metadata": {},
|
681 |
+
"outputs": [
|
682 |
+
{
|
683 |
+
"data": {
|
684 |
+
"text/plain": [
|
685 |
+
"{'num_timesteps': 8,\n",
|
686 |
+
" 'input_size': 224,\n",
|
687 |
+
" 'means': [0.45, 0.45, 0.45],\n",
|
688 |
+
" 'stds': [0.225, 0.225, 0.225],\n",
|
689 |
+
" 'min_short_side': 256,\n",
|
690 |
+
" 'max_short_side': 320,\n",
|
691 |
+
" 'horizontal_flip_p': 0.5,\n",
|
692 |
+
" 'clip_duration': 1}"
|
693 |
+
]
|
694 |
+
},
|
695 |
+
"execution_count": 12,
|
696 |
+
"metadata": {},
|
697 |
+
"output_type": "execute_result"
|
698 |
+
}
|
699 |
+
],
|
700 |
+
"source": [
|
701 |
+
"datamodule.preprocessor_config"
|
702 |
+
]
|
703 |
+
},
|
704 |
+
{
|
705 |
+
"cell_type": "code",
|
706 |
+
"execution_count": 13,
|
707 |
+
"id": "8e9c61dc-8c52-4280-8a02-becadafd304b",
|
708 |
+
"metadata": {},
|
709 |
+
"outputs": [],
|
710 |
+
"source": [
|
711 |
+
"import os, glob\n",
|
712 |
+
"from pathlib import Path\n",
|
713 |
+
"from tqdm import tqdm\n",
|
714 |
+
"from sklearn.metrics import accuracy_score, f1_score, classification_report, confusion_matrix"
|
715 |
+
]
|
716 |
+
},
|
717 |
+
{
|
718 |
+
"cell_type": "code",
|
719 |
+
"execution_count": 14,
|
720 |
+
"id": "a215c096-f988-4cb8-a5bd-7d320cc0d86b",
|
721 |
+
"metadata": {},
|
722 |
+
"outputs": [],
|
723 |
+
"source": [
|
724 |
+
"test_loader = datamodule.test_dataloader\n",
|
725 |
+
"class_names = datamodule.labels"
|
726 |
+
]
|
727 |
+
},
|
728 |
+
{
|
729 |
+
"cell_type": "code",
|
730 |
+
"execution_count": 15,
|
731 |
+
"id": "ba8fa1bc-3796-4076-ab46-ab1cbb44ce66",
|
732 |
+
"metadata": {},
|
733 |
+
"outputs": [
|
734 |
+
{
|
735 |
+
"name": "stderr",
|
736 |
+
"output_type": "stream",
|
737 |
+
"text": [
|
738 |
+
"Testing: 32it [00:12, 2.47it/s] \n"
|
739 |
+
]
|
740 |
+
}
|
741 |
+
],
|
742 |
+
"source": [
|
743 |
+
"import torch\n",
|
744 |
+
"model.eval()\n",
|
745 |
+
"y_true, y_pred = [], []\n",
|
746 |
+
"with torch.no_grad():\n",
|
747 |
+
" for batch in tqdm(test_loader, desc=\"Testing\"):\n",
|
748 |
+
" inputs = batch[\"video\"].to(\"cuda\")\n",
|
749 |
+
" labels = batch[\"label\"].to(\"cuda\")\n",
|
750 |
+
" outputs = model(inputs)\n",
|
751 |
+
" probabilities = torch.nn.functional.softmax(outputs, dim=1)\n",
|
752 |
+
" predictions = probabilities.argmax(dim=-1)\n",
|
753 |
+
" y_true.extend(labels.cpu().tolist())\n",
|
754 |
+
" y_pred.extend(predictions.cpu().tolist())"
|
755 |
+
]
|
756 |
+
},
|
757 |
+
{
|
758 |
+
"cell_type": "code",
|
759 |
+
"execution_count": 16,
|
760 |
+
"id": "6fbcc06f-d230-4c46-9cd8-c2aa83aeca19",
|
761 |
+
"metadata": {},
|
762 |
+
"outputs": [
|
763 |
+
{
|
764 |
+
"name": "stdout",
|
765 |
+
"output_type": "stream",
|
766 |
+
"text": [
|
767 |
+
"Accuracy: 0.7692 | F1-macro: 0.7608\n",
|
768 |
+
" precision recall f1-score support\n",
|
769 |
+
"\n",
|
770 |
+
" khongxarac 0.79 0.82 0.81 68\n",
|
771 |
+
" xarac 0.74 0.69 0.72 49\n",
|
772 |
+
"\n",
|
773 |
+
" accuracy 0.77 117\n",
|
774 |
+
" macro avg 0.76 0.76 0.76 117\n",
|
775 |
+
"weighted avg 0.77 0.77 0.77 117\n",
|
776 |
+
"\n",
|
777 |
+
"Confusion matrix:\n",
|
778 |
+
" [[56 12]\n",
|
779 |
+
" [15 34]]\n"
|
780 |
+
]
|
781 |
+
}
|
782 |
+
],
|
783 |
+
"source": [
|
784 |
+
"acc = accuracy_score(y_true, y_pred)\n",
|
785 |
+
"f1m = f1_score(y_true, y_pred, average=\"macro\")\n",
|
786 |
+
"print(f\"Accuracy: {acc:.4f} | F1-macro: {f1m:.4f}\")\n",
|
787 |
+
"print(classification_report(y_true, y_pred, target_names=class_names))\n",
|
788 |
+
"print(\"Confusion matrix:\\n\", confusion_matrix(y_true, y_pred))"
|
789 |
+
]
|
790 |
+
},
|
791 |
+
{
|
792 |
+
"cell_type": "code",
|
793 |
+
"execution_count": null,
|
794 |
+
"id": "0b78a3c0-72ef-4207-bb66-03a8a3b02782",
|
795 |
+
"metadata": {},
|
796 |
+
"outputs": [],
|
797 |
+
"source": []
|
798 |
+
},
|
799 |
+
{
|
800 |
+
"cell_type": "code",
|
801 |
+
"execution_count": null,
|
802 |
+
"id": "7acdbc58-f8c8-4841-84c5-78fbe837f4fb",
|
803 |
+
"metadata": {},
|
804 |
+
"outputs": [],
|
805 |
+
"source": []
|
806 |
+
}
|
807 |
+
],
|
808 |
+
"metadata": {
|
809 |
+
"kernelspec": {
|
810 |
+
"display_name": "TQKhang-ViViT",
|
811 |
+
"language": "python",
|
812 |
+
"name": "tqkhang-vivit"
|
813 |
+
},
|
814 |
+
"language_info": {
|
815 |
+
"codemirror_mode": {
|
816 |
+
"name": "ipython",
|
817 |
+
"version": 3
|
818 |
+
},
|
819 |
+
"file_extension": ".py",
|
820 |
+
"mimetype": "text/x-python",
|
821 |
+
"name": "python",
|
822 |
+
"nbconvert_exporter": "python",
|
823 |
+
"pygments_lexer": "ipython3",
|
824 |
+
"version": "3.7.16"
|
825 |
+
}
|
826 |
+
},
|
827 |
+
"nbformat": 4,
|
828 |
+
"nbformat_minor": 5
|
829 |
+
}
|
scripts/.ipynb_checkpoints/VideoMAE-checkpoint.ipynb
ADDED
@@ -0,0 +1,713 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"id": "18122027-63d4-45bc-a155-11d941da97b9",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [],
|
9 |
+
"source": [
|
10 |
+
"DATASET_PATH = \"/media/khmt/HDD1/TQKhang/datasets/xarac\""
|
11 |
+
]
|
12 |
+
},
|
13 |
+
{
|
14 |
+
"cell_type": "code",
|
15 |
+
"execution_count": 2,
|
16 |
+
"id": "bc5b5096-93dd-4661-bd32-e1c66a3facfc",
|
17 |
+
"metadata": {},
|
18 |
+
"outputs": [],
|
19 |
+
"source": [
|
20 |
+
"%load_ext autoreload\n",
|
21 |
+
"%autoreload 2"
|
22 |
+
]
|
23 |
+
},
|
24 |
+
{
|
25 |
+
"cell_type": "code",
|
26 |
+
"execution_count": 3,
|
27 |
+
"id": "59965104-6b47-4bd4-ae52-9924a91feed3",
|
28 |
+
"metadata": {},
|
29 |
+
"outputs": [
|
30 |
+
{
|
31 |
+
"name": "stderr",
|
32 |
+
"output_type": "stream",
|
33 |
+
"text": [
|
34 |
+
"/home/khmt/anaconda3/envs/tqkhang-vivit/lib/python3.7/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
|
35 |
+
" from .autonotebook import tqdm as notebook_tqdm\n"
|
36 |
+
]
|
37 |
+
}
|
38 |
+
],
|
39 |
+
"source": [
|
40 |
+
"from torch.optim import AdamW\n",
|
41 |
+
"from video_transformers import VideoModel\n",
|
42 |
+
"from video_transformers.backbones.transformers import TransformersBackbone\n",
|
43 |
+
"from video_transformers.backbones.timm import TimmBackbone\n",
|
44 |
+
"from video_transformers.data import VideoDataModule\n",
|
45 |
+
"from video_transformers.heads import LinearHead\n",
|
46 |
+
"from video_transformers.trainer import trainer_factory"
|
47 |
+
]
|
48 |
+
},
|
49 |
+
{
|
50 |
+
"cell_type": "code",
|
51 |
+
"execution_count": 5,
|
52 |
+
"id": "2f5c18af-5a5a-4e6d-91dd-446123218792",
|
53 |
+
"metadata": {
|
54 |
+
"scrolled": true
|
55 |
+
},
|
56 |
+
"outputs": [
|
57 |
+
{
|
58 |
+
"name": "stderr",
|
59 |
+
"output_type": "stream",
|
60 |
+
"text": [
|
61 |
+
"Downloading: 22.9kB [00:00, 10.8MB/s]\n",
|
62 |
+
"Downloading: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 346M/346M [00:29<00:00, 11.9MB/s]\n",
|
63 |
+
"Some weights of the model checkpoint at MCG-NJU/videomae-base-finetuned-kinetics were not used when initializing VideoMAEModel: ['fc_norm.weight', 'fc_norm.bias', 'classifier.bias', 'classifier.weight']\n",
|
64 |
+
"- This IS expected if you are initializing VideoMAEModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n",
|
65 |
+
"- This IS NOT expected if you are initializing VideoMAEModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n",
|
66 |
+
"Downloading: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 271/271 [00:00<00:00, 220kB/s]\n",
|
67 |
+
"/home/khmt/anaconda3/envs/tqkhang-vivit/lib/python3.7/site-packages/transformers/models/videomae/feature_extraction_videomae.py:31: FutureWarning: The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please use VideoMAEImageProcessor instead.\n",
|
68 |
+
" FutureWarning,\n"
|
69 |
+
]
|
70 |
+
}
|
71 |
+
],
|
72 |
+
"source": [
|
73 |
+
"backbone = TransformersBackbone(\"MCG-NJU/videomae-base-finetuned-kinetics\", num_unfrozen_stages=1)"
|
74 |
+
]
|
75 |
+
},
|
76 |
+
{
|
77 |
+
"cell_type": "code",
|
78 |
+
"execution_count": 12,
|
79 |
+
"id": "04eb1ed9-0497-48d0-a72e-7223939f257b",
|
80 |
+
"metadata": {},
|
81 |
+
"outputs": [],
|
82 |
+
"source": [
|
83 |
+
"datamodule = VideoDataModule(\n",
|
84 |
+
" train_root=\"/media/khmt/HDD1/TQKhang/datasets/xarac/train\",\n",
|
85 |
+
" val_root=\"/media/khmt/HDD1/TQKhang/datasets/xarac/val\",\n",
|
86 |
+
" test_root=\"/media/khmt/HDD1/TQKhang/datasets/xarac/val\",\n",
|
87 |
+
" batch_size=4,\n",
|
88 |
+
" num_workers=4,\n",
|
89 |
+
" num_timesteps=16,\n",
|
90 |
+
" preprocess_input_size=224,\n",
|
91 |
+
" preprocess_clip_duration=1,\n",
|
92 |
+
" preprocess_means=backbone.mean,\n",
|
93 |
+
" preprocess_stds=backbone.std,\n",
|
94 |
+
" preprocess_min_short_side=256,\n",
|
95 |
+
" preprocess_max_short_side=320,\n",
|
96 |
+
" preprocess_horizontal_flip_p=0.5,\n",
|
97 |
+
")"
|
98 |
+
]
|
99 |
+
},
|
100 |
+
{
|
101 |
+
"cell_type": "code",
|
102 |
+
"execution_count": 13,
|
103 |
+
"id": "12b51c8e-8420-456a-96fb-a185165c990a",
|
104 |
+
"metadata": {},
|
105 |
+
"outputs": [
|
106 |
+
{
|
107 |
+
"data": {
|
108 |
+
"text/plain": [
|
109 |
+
"2"
|
110 |
+
]
|
111 |
+
},
|
112 |
+
"execution_count": 13,
|
113 |
+
"metadata": {},
|
114 |
+
"output_type": "execute_result"
|
115 |
+
}
|
116 |
+
],
|
117 |
+
"source": [
|
118 |
+
"datamodule.num_classes"
|
119 |
+
]
|
120 |
+
},
|
121 |
+
{
|
122 |
+
"cell_type": "code",
|
123 |
+
"execution_count": 14,
|
124 |
+
"id": "a6189aca-e28c-4147-8efc-fae604663d14",
|
125 |
+
"metadata": {},
|
126 |
+
"outputs": [],
|
127 |
+
"source": [
|
128 |
+
"head = LinearHead(hidden_size=backbone.num_features, num_classes=datamodule.num_classes)\n",
|
129 |
+
"model = VideoModel(backbone, head)"
|
130 |
+
]
|
131 |
+
},
|
132 |
+
{
|
133 |
+
"cell_type": "code",
|
134 |
+
"execution_count": 15,
|
135 |
+
"id": "f3ed0a1e-d90c-49b1-a213-55815d0cdf15",
|
136 |
+
"metadata": {
|
137 |
+
"scrolled": true
|
138 |
+
},
|
139 |
+
"outputs": [
|
140 |
+
{
|
141 |
+
"data": {
|
142 |
+
"text/plain": [
|
143 |
+
"VideoModel(\n",
|
144 |
+
" (backbone): TransformersBackbone(\n",
|
145 |
+
" (model): VideoMAEModel(\n",
|
146 |
+
" (embeddings): VideoMAEEmbeddings(\n",
|
147 |
+
" (patch_embeddings): VideoMAEPatchEmbeddings(\n",
|
148 |
+
" (projection): Conv3d(3, 768, kernel_size=(2, 16, 16), stride=(2, 16, 16))\n",
|
149 |
+
" )\n",
|
150 |
+
" )\n",
|
151 |
+
" (encoder): VideoMAEEncoder(\n",
|
152 |
+
" (layer): ModuleList(\n",
|
153 |
+
" (0): VideoMAELayer(\n",
|
154 |
+
" (attention): VideoMAEAttention(\n",
|
155 |
+
" (attention): VideoMAESelfAttention(\n",
|
156 |
+
" (query): Linear(in_features=768, out_features=768, bias=False)\n",
|
157 |
+
" (key): Linear(in_features=768, out_features=768, bias=False)\n",
|
158 |
+
" (value): Linear(in_features=768, out_features=768, bias=False)\n",
|
159 |
+
" (dropout): Dropout(p=0.0, inplace=False)\n",
|
160 |
+
" )\n",
|
161 |
+
" (output): VideoMAESelfOutput(\n",
|
162 |
+
" (dense): Linear(in_features=768, out_features=768, bias=True)\n",
|
163 |
+
" (dropout): Dropout(p=0.0, inplace=False)\n",
|
164 |
+
" )\n",
|
165 |
+
" )\n",
|
166 |
+
" (intermediate): VideoMAEIntermediate(\n",
|
167 |
+
" (dense): Linear(in_features=768, out_features=3072, bias=True)\n",
|
168 |
+
" (intermediate_act_fn): GELUActivation()\n",
|
169 |
+
" )\n",
|
170 |
+
" (output): VideoMAEOutput(\n",
|
171 |
+
" (dense): Linear(in_features=3072, out_features=768, bias=True)\n",
|
172 |
+
" (dropout): Dropout(p=0.0, inplace=False)\n",
|
173 |
+
" )\n",
|
174 |
+
" (layernorm_before): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n",
|
175 |
+
" (layernorm_after): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n",
|
176 |
+
" )\n",
|
177 |
+
" (1): VideoMAELayer(\n",
|
178 |
+
" (attention): VideoMAEAttention(\n",
|
179 |
+
" (attention): VideoMAESelfAttention(\n",
|
180 |
+
" (query): Linear(in_features=768, out_features=768, bias=False)\n",
|
181 |
+
" (key): Linear(in_features=768, out_features=768, bias=False)\n",
|
182 |
+
" (value): Linear(in_features=768, out_features=768, bias=False)\n",
|
183 |
+
" (dropout): Dropout(p=0.0, inplace=False)\n",
|
184 |
+
" )\n",
|
185 |
+
" (output): VideoMAESelfOutput(\n",
|
186 |
+
" (dense): Linear(in_features=768, out_features=768, bias=True)\n",
|
187 |
+
" (dropout): Dropout(p=0.0, inplace=False)\n",
|
188 |
+
" )\n",
|
189 |
+
" )\n",
|
190 |
+
" (intermediate): VideoMAEIntermediate(\n",
|
191 |
+
" (dense): Linear(in_features=768, out_features=3072, bias=True)\n",
|
192 |
+
" (intermediate_act_fn): GELUActivation()\n",
|
193 |
+
" )\n",
|
194 |
+
" (output): VideoMAEOutput(\n",
|
195 |
+
" (dense): Linear(in_features=3072, out_features=768, bias=True)\n",
|
196 |
+
" (dropout): Dropout(p=0.0, inplace=False)\n",
|
197 |
+
" )\n",
|
198 |
+
" (layernorm_before): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n",
|
199 |
+
" (layernorm_after): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n",
|
200 |
+
" )\n",
|
201 |
+
" (2): VideoMAELayer(\n",
|
202 |
+
" (attention): VideoMAEAttention(\n",
|
203 |
+
" (attention): VideoMAESelfAttention(\n",
|
204 |
+
" (query): Linear(in_features=768, out_features=768, bias=False)\n",
|
205 |
+
" (key): Linear(in_features=768, out_features=768, bias=False)\n",
|
206 |
+
" (value): Linear(in_features=768, out_features=768, bias=False)\n",
|
207 |
+
" (dropout): Dropout(p=0.0, inplace=False)\n",
|
208 |
+
" )\n",
|
209 |
+
" (output): VideoMAESelfOutput(\n",
|
210 |
+
" (dense): Linear(in_features=768, out_features=768, bias=True)\n",
|
211 |
+
" (dropout): Dropout(p=0.0, inplace=False)\n",
|
212 |
+
" )\n",
|
213 |
+
" )\n",
|
214 |
+
" (intermediate): VideoMAEIntermediate(\n",
|
215 |
+
" (dense): Linear(in_features=768, out_features=3072, bias=True)\n",
|
216 |
+
" (intermediate_act_fn): GELUActivation()\n",
|
217 |
+
" )\n",
|
218 |
+
" (output): VideoMAEOutput(\n",
|
219 |
+
" (dense): Linear(in_features=3072, out_features=768, bias=True)\n",
|
220 |
+
" (dropout): Dropout(p=0.0, inplace=False)\n",
|
221 |
+
" )\n",
|
222 |
+
" (layernorm_before): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n",
|
223 |
+
" (layernorm_after): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n",
|
224 |
+
" )\n",
|
225 |
+
" (3): VideoMAELayer(\n",
|
226 |
+
" (attention): VideoMAEAttention(\n",
|
227 |
+
" (attention): VideoMAESelfAttention(\n",
|
228 |
+
" (query): Linear(in_features=768, out_features=768, bias=False)\n",
|
229 |
+
" (key): Linear(in_features=768, out_features=768, bias=False)\n",
|
230 |
+
" (value): Linear(in_features=768, out_features=768, bias=False)\n",
|
231 |
+
" (dropout): Dropout(p=0.0, inplace=False)\n",
|
232 |
+
" )\n",
|
233 |
+
" (output): VideoMAESelfOutput(\n",
|
234 |
+
" (dense): Linear(in_features=768, out_features=768, bias=True)\n",
|
235 |
+
" (dropout): Dropout(p=0.0, inplace=False)\n",
|
236 |
+
" )\n",
|
237 |
+
" )\n",
|
238 |
+
" (intermediate): VideoMAEIntermediate(\n",
|
239 |
+
" (dense): Linear(in_features=768, out_features=3072, bias=True)\n",
|
240 |
+
" (intermediate_act_fn): GELUActivation()\n",
|
241 |
+
" )\n",
|
242 |
+
" (output): VideoMAEOutput(\n",
|
243 |
+
" (dense): Linear(in_features=3072, out_features=768, bias=True)\n",
|
244 |
+
" (dropout): Dropout(p=0.0, inplace=False)\n",
|
245 |
+
" )\n",
|
246 |
+
" (layernorm_before): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n",
|
247 |
+
" (layernorm_after): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n",
|
248 |
+
" )\n",
|
249 |
+
" (4): VideoMAELayer(\n",
|
250 |
+
" (attention): VideoMAEAttention(\n",
|
251 |
+
" (attention): VideoMAESelfAttention(\n",
|
252 |
+
" (query): Linear(in_features=768, out_features=768, bias=False)\n",
|
253 |
+
" (key): Linear(in_features=768, out_features=768, bias=False)\n",
|
254 |
+
" (value): Linear(in_features=768, out_features=768, bias=False)\n",
|
255 |
+
" (dropout): Dropout(p=0.0, inplace=False)\n",
|
256 |
+
" )\n",
|
257 |
+
" (output): VideoMAESelfOutput(\n",
|
258 |
+
" (dense): Linear(in_features=768, out_features=768, bias=True)\n",
|
259 |
+
" (dropout): Dropout(p=0.0, inplace=False)\n",
|
260 |
+
" )\n",
|
261 |
+
" )\n",
|
262 |
+
" (intermediate): VideoMAEIntermediate(\n",
|
263 |
+
" (dense): Linear(in_features=768, out_features=3072, bias=True)\n",
|
264 |
+
" (intermediate_act_fn): GELUActivation()\n",
|
265 |
+
" )\n",
|
266 |
+
" (output): VideoMAEOutput(\n",
|
267 |
+
" (dense): Linear(in_features=3072, out_features=768, bias=True)\n",
|
268 |
+
" (dropout): Dropout(p=0.0, inplace=False)\n",
|
269 |
+
" )\n",
|
270 |
+
" (layernorm_before): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n",
|
271 |
+
" (layernorm_after): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n",
|
272 |
+
" )\n",
|
273 |
+
" (5): VideoMAELayer(\n",
|
274 |
+
" (attention): VideoMAEAttention(\n",
|
275 |
+
" (attention): VideoMAESelfAttention(\n",
|
276 |
+
" (query): Linear(in_features=768, out_features=768, bias=False)\n",
|
277 |
+
" (key): Linear(in_features=768, out_features=768, bias=False)\n",
|
278 |
+
" (value): Linear(in_features=768, out_features=768, bias=False)\n",
|
279 |
+
" (dropout): Dropout(p=0.0, inplace=False)\n",
|
280 |
+
" )\n",
|
281 |
+
" (output): VideoMAESelfOutput(\n",
|
282 |
+
" (dense): Linear(in_features=768, out_features=768, bias=True)\n",
|
283 |
+
" (dropout): Dropout(p=0.0, inplace=False)\n",
|
284 |
+
" )\n",
|
285 |
+
" )\n",
|
286 |
+
" (intermediate): VideoMAEIntermediate(\n",
|
287 |
+
" (dense): Linear(in_features=768, out_features=3072, bias=True)\n",
|
288 |
+
" (intermediate_act_fn): GELUActivation()\n",
|
289 |
+
" )\n",
|
290 |
+
" (output): VideoMAEOutput(\n",
|
291 |
+
" (dense): Linear(in_features=3072, out_features=768, bias=True)\n",
|
292 |
+
" (dropout): Dropout(p=0.0, inplace=False)\n",
|
293 |
+
" )\n",
|
294 |
+
" (layernorm_before): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n",
|
295 |
+
" (layernorm_after): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n",
|
296 |
+
" )\n",
|
297 |
+
" (6): VideoMAELayer(\n",
|
298 |
+
" (attention): VideoMAEAttention(\n",
|
299 |
+
" (attention): VideoMAESelfAttention(\n",
|
300 |
+
" (query): Linear(in_features=768, out_features=768, bias=False)\n",
|
301 |
+
" (key): Linear(in_features=768, out_features=768, bias=False)\n",
|
302 |
+
" (value): Linear(in_features=768, out_features=768, bias=False)\n",
|
303 |
+
" (dropout): Dropout(p=0.0, inplace=False)\n",
|
304 |
+
" )\n",
|
305 |
+
" (output): VideoMAESelfOutput(\n",
|
306 |
+
" (dense): Linear(in_features=768, out_features=768, bias=True)\n",
|
307 |
+
" (dropout): Dropout(p=0.0, inplace=False)\n",
|
308 |
+
" )\n",
|
309 |
+
" )\n",
|
310 |
+
" (intermediate): VideoMAEIntermediate(\n",
|
311 |
+
" (dense): Linear(in_features=768, out_features=3072, bias=True)\n",
|
312 |
+
" (intermediate_act_fn): GELUActivation()\n",
|
313 |
+
" )\n",
|
314 |
+
" (output): VideoMAEOutput(\n",
|
315 |
+
" (dense): Linear(in_features=3072, out_features=768, bias=True)\n",
|
316 |
+
" (dropout): Dropout(p=0.0, inplace=False)\n",
|
317 |
+
" )\n",
|
318 |
+
" (layernorm_before): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n",
|
319 |
+
" (layernorm_after): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n",
|
320 |
+
" )\n",
|
321 |
+
" (7): VideoMAELayer(\n",
|
322 |
+
" (attention): VideoMAEAttention(\n",
|
323 |
+
" (attention): VideoMAESelfAttention(\n",
|
324 |
+
" (query): Linear(in_features=768, out_features=768, bias=False)\n",
|
325 |
+
" (key): Linear(in_features=768, out_features=768, bias=False)\n",
|
326 |
+
" (value): Linear(in_features=768, out_features=768, bias=False)\n",
|
327 |
+
" (dropout): Dropout(p=0.0, inplace=False)\n",
|
328 |
+
" )\n",
|
329 |
+
" (output): VideoMAESelfOutput(\n",
|
330 |
+
" (dense): Linear(in_features=768, out_features=768, bias=True)\n",
|
331 |
+
" (dropout): Dropout(p=0.0, inplace=False)\n",
|
332 |
+
" )\n",
|
333 |
+
" )\n",
|
334 |
+
" (intermediate): VideoMAEIntermediate(\n",
|
335 |
+
" (dense): Linear(in_features=768, out_features=3072, bias=True)\n",
|
336 |
+
" (intermediate_act_fn): GELUActivation()\n",
|
337 |
+
" )\n",
|
338 |
+
" (output): VideoMAEOutput(\n",
|
339 |
+
" (dense): Linear(in_features=3072, out_features=768, bias=True)\n",
|
340 |
+
" (dropout): Dropout(p=0.0, inplace=False)\n",
|
341 |
+
" )\n",
|
342 |
+
" (layernorm_before): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n",
|
343 |
+
" (layernorm_after): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n",
|
344 |
+
" )\n",
|
345 |
+
" (8): VideoMAELayer(\n",
|
346 |
+
" (attention): VideoMAEAttention(\n",
|
347 |
+
" (attention): VideoMAESelfAttention(\n",
|
348 |
+
" (query): Linear(in_features=768, out_features=768, bias=False)\n",
|
349 |
+
" (key): Linear(in_features=768, out_features=768, bias=False)\n",
|
350 |
+
" (value): Linear(in_features=768, out_features=768, bias=False)\n",
|
351 |
+
" (dropout): Dropout(p=0.0, inplace=False)\n",
|
352 |
+
" )\n",
|
353 |
+
" (output): VideoMAESelfOutput(\n",
|
354 |
+
" (dense): Linear(in_features=768, out_features=768, bias=True)\n",
|
355 |
+
" (dropout): Dropout(p=0.0, inplace=False)\n",
|
356 |
+
" )\n",
|
357 |
+
" )\n",
|
358 |
+
" (intermediate): VideoMAEIntermediate(\n",
|
359 |
+
" (dense): Linear(in_features=768, out_features=3072, bias=True)\n",
|
360 |
+
" (intermediate_act_fn): GELUActivation()\n",
|
361 |
+
" )\n",
|
362 |
+
" (output): VideoMAEOutput(\n",
|
363 |
+
" (dense): Linear(in_features=3072, out_features=768, bias=True)\n",
|
364 |
+
" (dropout): Dropout(p=0.0, inplace=False)\n",
|
365 |
+
" )\n",
|
366 |
+
" (layernorm_before): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n",
|
367 |
+
" (layernorm_after): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n",
|
368 |
+
" )\n",
|
369 |
+
" (9): VideoMAELayer(\n",
|
370 |
+
" (attention): VideoMAEAttention(\n",
|
371 |
+
" (attention): VideoMAESelfAttention(\n",
|
372 |
+
" (query): Linear(in_features=768, out_features=768, bias=False)\n",
|
373 |
+
" (key): Linear(in_features=768, out_features=768, bias=False)\n",
|
374 |
+
" (value): Linear(in_features=768, out_features=768, bias=False)\n",
|
375 |
+
" (dropout): Dropout(p=0.0, inplace=False)\n",
|
376 |
+
" )\n",
|
377 |
+
" (output): VideoMAESelfOutput(\n",
|
378 |
+
" (dense): Linear(in_features=768, out_features=768, bias=True)\n",
|
379 |
+
" (dropout): Dropout(p=0.0, inplace=False)\n",
|
380 |
+
" )\n",
|
381 |
+
" )\n",
|
382 |
+
" (intermediate): VideoMAEIntermediate(\n",
|
383 |
+
" (dense): Linear(in_features=768, out_features=3072, bias=True)\n",
|
384 |
+
" (intermediate_act_fn): GELUActivation()\n",
|
385 |
+
" )\n",
|
386 |
+
" (output): VideoMAEOutput(\n",
|
387 |
+
" (dense): Linear(in_features=3072, out_features=768, bias=True)\n",
|
388 |
+
" (dropout): Dropout(p=0.0, inplace=False)\n",
|
389 |
+
" )\n",
|
390 |
+
" (layernorm_before): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n",
|
391 |
+
" (layernorm_after): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n",
|
392 |
+
" )\n",
|
393 |
+
" (10): VideoMAELayer(\n",
|
394 |
+
" (attention): VideoMAEAttention(\n",
|
395 |
+
" (attention): VideoMAESelfAttention(\n",
|
396 |
+
" (query): Linear(in_features=768, out_features=768, bias=False)\n",
|
397 |
+
" (key): Linear(in_features=768, out_features=768, bias=False)\n",
|
398 |
+
" (value): Linear(in_features=768, out_features=768, bias=False)\n",
|
399 |
+
" (dropout): Dropout(p=0.0, inplace=False)\n",
|
400 |
+
" )\n",
|
401 |
+
" (output): VideoMAESelfOutput(\n",
|
402 |
+
" (dense): Linear(in_features=768, out_features=768, bias=True)\n",
|
403 |
+
" (dropout): Dropout(p=0.0, inplace=False)\n",
|
404 |
+
" )\n",
|
405 |
+
" )\n",
|
406 |
+
" (intermediate): VideoMAEIntermediate(\n",
|
407 |
+
" (dense): Linear(in_features=768, out_features=3072, bias=True)\n",
|
408 |
+
" (intermediate_act_fn): GELUActivation()\n",
|
409 |
+
" )\n",
|
410 |
+
" (output): VideoMAEOutput(\n",
|
411 |
+
" (dense): Linear(in_features=3072, out_features=768, bias=True)\n",
|
412 |
+
" (dropout): Dropout(p=0.0, inplace=False)\n",
|
413 |
+
" )\n",
|
414 |
+
" (layernorm_before): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n",
|
415 |
+
" (layernorm_after): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n",
|
416 |
+
" )\n",
|
417 |
+
" (11): VideoMAELayer(\n",
|
418 |
+
" (attention): VideoMAEAttention(\n",
|
419 |
+
" (attention): VideoMAESelfAttention(\n",
|
420 |
+
" (query): Linear(in_features=768, out_features=768, bias=False)\n",
|
421 |
+
" (key): Linear(in_features=768, out_features=768, bias=False)\n",
|
422 |
+
" (value): Linear(in_features=768, out_features=768, bias=False)\n",
|
423 |
+
" (dropout): Dropout(p=0.0, inplace=False)\n",
|
424 |
+
" )\n",
|
425 |
+
" (output): VideoMAESelfOutput(\n",
|
426 |
+
" (dense): Linear(in_features=768, out_features=768, bias=True)\n",
|
427 |
+
" (dropout): Dropout(p=0.0, inplace=False)\n",
|
428 |
+
" )\n",
|
429 |
+
" )\n",
|
430 |
+
" (intermediate): VideoMAEIntermediate(\n",
|
431 |
+
" (dense): Linear(in_features=768, out_features=3072, bias=True)\n",
|
432 |
+
" (intermediate_act_fn): GELUActivation()\n",
|
433 |
+
" )\n",
|
434 |
+
" (output): VideoMAEOutput(\n",
|
435 |
+
" (dense): Linear(in_features=3072, out_features=768, bias=True)\n",
|
436 |
+
" (dropout): Dropout(p=0.0, inplace=False)\n",
|
437 |
+
" )\n",
|
438 |
+
" (layernorm_before): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n",
|
439 |
+
" (layernorm_after): LayerNorm((768,), eps=1e-12, elementwise_affine=True)\n",
|
440 |
+
" )\n",
|
441 |
+
" )\n",
|
442 |
+
" )\n",
|
443 |
+
" )\n",
|
444 |
+
" )\n",
|
445 |
+
" (head): LinearHead(\n",
|
446 |
+
" (linear): Linear(in_features=768, out_features=2, bias=True)\n",
|
447 |
+
" )\n",
|
448 |
+
")"
|
449 |
+
]
|
450 |
+
},
|
451 |
+
"execution_count": 15,
|
452 |
+
"metadata": {},
|
453 |
+
"output_type": "execute_result"
|
454 |
+
}
|
455 |
+
],
|
456 |
+
"source": [
|
457 |
+
"model"
|
458 |
+
]
|
459 |
+
},
|
460 |
+
{
|
461 |
+
"cell_type": "code",
|
462 |
+
"execution_count": 16,
|
463 |
+
"id": "a9d97e70-f539-4f34-8859-f69f1033a57e",
|
464 |
+
"metadata": {},
|
465 |
+
"outputs": [],
|
466 |
+
"source": [
|
467 |
+
"optimizer = AdamW(model.parameters(), lr=1e-4)\n",
|
468 |
+
"\n",
|
469 |
+
"Trainer = trainer_factory(\"single_label_classification\")\n",
|
470 |
+
"trainer = Trainer(datamodule, model, optimizer=optimizer, max_epochs=10, \n",
|
471 |
+
" mixed_precision=\"fp16\")"
|
472 |
+
]
|
473 |
+
},
|
474 |
+
{
|
475 |
+
"cell_type": "code",
|
476 |
+
"execution_count": 17,
|
477 |
+
"id": "552054ca-55bd-4692-90ae-5f36b1c4d030",
|
478 |
+
"metadata": {
|
479 |
+
"scrolled": true
|
480 |
+
},
|
481 |
+
"outputs": [
|
482 |
+
{
|
483 |
+
"name": "stdout",
|
484 |
+
"output_type": "stream",
|
485 |
+
"text": [
|
486 |
+
"Trainable parameteres: 7088642\n",
|
487 |
+
"Total parameteres: 86227202\n"
|
488 |
+
]
|
489 |
+
},
|
490 |
+
{
|
491 |
+
"name": "stderr",
|
492 |
+
"output_type": "stream",
|
493 |
+
"text": [
|
494 |
+
"Epoch 0 (Done) : 100%|███████████���█████████████████████████████████████████████████████████████████| 168/168 [01:27<00:00, 1.92 batch/s, loss=0.9388, val/f1=0.483, train/f1=0.471]\n",
|
495 |
+
"Epoch 1 (Done) : 100%|█████████████████████████████████████████████████████████████████████████████| 168/168 [01:27<00:00, 1.91 batch/s, loss=0.5735, val/f1=0.755, train/f1=0.696]\n",
|
496 |
+
"Epoch 2 (Done) : 100%|█████████████████████████████████████████████████████████████████████████████| 168/168 [01:28<00:00, 1.89 batch/s, loss=0.5928, val/f1=0.727, train/f1=0.802]\n",
|
497 |
+
"Epoch 3 (Done) : 100%|█████████████████████████████████████████████████████████████████████████████| 168/168 [01:29<00:00, 1.87 batch/s, loss=0.5903, val/f1=0.737, train/f1=0.822]\n",
|
498 |
+
"Epoch 4 (Done) : 100%|█████████████████████████████████████████████████████████████████████████████| 168/168 [01:30<00:00, 1.86 batch/s, loss=0.5391, val/f1=0.769, train/f1=0.855]\n",
|
499 |
+
"Epoch 5 (Done) : 100%|█████████████████████████████████████████████████████████████████████████████| 168/168 [01:30<00:00, 1.85 batch/s, loss=0.6027, val/f1=0.767, train/f1=0.884]\n",
|
500 |
+
"Epoch 6 (Done) : 100%|█████████████████████████████████████████████████████████████████████████████| 168/168 [01:30<00:00, 1.85 batch/s, loss=0.5935, val/f1=0.754, train/f1=0.887]\n",
|
501 |
+
"Epoch 7 (Done) : 100%|█████████████████████████████████████████████████████████████████████████████| 168/168 [01:29<00:00, 1.87 batch/s, loss=0.5759, val/f1=0.740, train/f1=0.892]\n",
|
502 |
+
"Epoch 8 (Done) : 100%|█████████████████████████████████████████████████████████████████████████████| 168/168 [01:29<00:00, 1.88 batch/s, loss=0.6144, val/f1=0.746, train/f1=0.921]\n",
|
503 |
+
"Epoch 9 (Done) : 100%|█████████████████████████████████████████████████████████████████████████████| 168/168 [01:30<00:00, 1.85 batch/s, loss=0.5750, val/f1=0.740, train/f1=0.923]\n"
|
504 |
+
]
|
505 |
+
}
|
506 |
+
],
|
507 |
+
"source": [
|
508 |
+
"trainer.fit()"
|
509 |
+
]
|
510 |
+
},
|
511 |
+
{
|
512 |
+
"cell_type": "code",
|
513 |
+
"execution_count": 18,
|
514 |
+
"id": "7f378e22-d85b-4714-981e-4b68c3fdeb73",
|
515 |
+
"metadata": {},
|
516 |
+
"outputs": [
|
517 |
+
{
|
518 |
+
"data": {
|
519 |
+
"text/plain": [
|
520 |
+
"['khongxarac', 'xarac']"
|
521 |
+
]
|
522 |
+
},
|
523 |
+
"execution_count": 18,
|
524 |
+
"metadata": {},
|
525 |
+
"output_type": "execute_result"
|
526 |
+
}
|
527 |
+
],
|
528 |
+
"source": [
|
529 |
+
"datamodule.labels"
|
530 |
+
]
|
531 |
+
},
|
532 |
+
{
|
533 |
+
"cell_type": "code",
|
534 |
+
"execution_count": 19,
|
535 |
+
"id": "ef16f8e1-6ad1-446a-a817-b01d4259e60b",
|
536 |
+
"metadata": {},
|
537 |
+
"outputs": [
|
538 |
+
{
|
539 |
+
"data": {
|
540 |
+
"text/plain": [
|
541 |
+
"{'num_timesteps': 16,\n",
|
542 |
+
" 'input_size': 224,\n",
|
543 |
+
" 'means': [0.485, 0.456, 0.406],\n",
|
544 |
+
" 'stds': [0.229, 0.224, 0.225],\n",
|
545 |
+
" 'min_short_side': 256,\n",
|
546 |
+
" 'max_short_side': 320,\n",
|
547 |
+
" 'horizontal_flip_p': 0.5,\n",
|
548 |
+
" 'clip_duration': 1}"
|
549 |
+
]
|
550 |
+
},
|
551 |
+
"execution_count": 19,
|
552 |
+
"metadata": {},
|
553 |
+
"output_type": "execute_result"
|
554 |
+
}
|
555 |
+
],
|
556 |
+
"source": [
|
557 |
+
"datamodule.preprocessor_config"
|
558 |
+
]
|
559 |
+
},
|
560 |
+
{
|
561 |
+
"cell_type": "code",
|
562 |
+
"execution_count": 20,
|
563 |
+
"id": "8e9c61dc-8c52-4280-8a02-becadafd304b",
|
564 |
+
"metadata": {},
|
565 |
+
"outputs": [],
|
566 |
+
"source": [
|
567 |
+
"import os, glob\n",
|
568 |
+
"from pathlib import Path\n",
|
569 |
+
"from tqdm import tqdm\n",
|
570 |
+
"from sklearn.metrics import accuracy_score, f1_score, classification_report, confusion_matrix"
|
571 |
+
]
|
572 |
+
},
|
573 |
+
{
|
574 |
+
"cell_type": "code",
|
575 |
+
"execution_count": 21,
|
576 |
+
"id": "a215c096-f988-4cb8-a5bd-7d320cc0d86b",
|
577 |
+
"metadata": {},
|
578 |
+
"outputs": [],
|
579 |
+
"source": [
|
580 |
+
"test_loader = datamodule.test_dataloader\n",
|
581 |
+
"class_names = datamodule.labels"
|
582 |
+
]
|
583 |
+
},
|
584 |
+
{
|
585 |
+
"cell_type": "code",
|
586 |
+
"execution_count": 26,
|
587 |
+
"id": "ba8fa1bc-3796-4076-ab46-ab1cbb44ce66",
|
588 |
+
"metadata": {},
|
589 |
+
"outputs": [
|
590 |
+
{
|
591 |
+
"name": "stderr",
|
592 |
+
"output_type": "stream",
|
593 |
+
"text": [
|
594 |
+
"Testing: 0%| | 0/30 [00:00<?, ?it/s]Exception ignored in: <function _MultiProcessingDataLoaderIter.__del__ at 0x75ce96bc04d0>\n",
|
595 |
+
"Traceback (most recent call last):\n",
|
596 |
+
" File \"/home/khmt/anaconda3/envs/tqkhang-vivit/lib/python3.7/site-packages/torch/utils/data/dataloader.py\", line 1358, in __del__\n",
|
597 |
+
" self._shutdown_workers()\n",
|
598 |
+
" File \"/home/khmt/anaconda3/envs/tqkhang-vivit/lib/python3.7/site-packages/torch/utils/data/dataloader.py\", line 1341, in _shutdown_workers\n",
|
599 |
+
" if w.is_alive():\n",
|
600 |
+
" File \"/home/khmt/anaconda3/envs/tqkhang-vivit/lib/python3.7/multiprocessing/process.py\", line 151, in is_alive\n",
|
601 |
+
" assert self._parent_pid == os.getpid(), 'can only test a child process'\n",
|
602 |
+
"AssertionError: can only test a child process\n",
|
603 |
+
"Exception ignored in: <function _MultiProcessingDataLoaderIter.__del__ at 0x75ce96bc04d0>\n",
|
604 |
+
"Traceback (most recent call last):\n",
|
605 |
+
" File \"/home/khmt/anaconda3/envs/tqkhang-vivit/lib/python3.7/site-packages/torch/utils/data/dataloader.py\", line 1358, in __del__\n",
|
606 |
+
" self._shutdown_workers()\n",
|
607 |
+
" File \"/home/khmt/anaconda3/envs/tqkhang-vivit/lib/python3.7/site-packages/torch/utils/data/dataloader.py\", line 1341, in _shutdown_workers\n",
|
608 |
+
" if w.is_alive():\n",
|
609 |
+
" File \"/home/khmt/anaconda3/envs/tqkhang-vivit/lib/python3.7/multiprocessing/process.py\", line 151, in is_alive\n",
|
610 |
+
" assert self._parent_pid == os.getpid(), 'can only test a child process'\n",
|
611 |
+
"AssertionError: can only test a child process\n",
|
612 |
+
"Exception ignored in: <function _MultiProcessingDataLoaderIter.__del__ at 0x75ce96bc04d0>\n",
|
613 |
+
"Traceback (most recent call last):\n",
|
614 |
+
" File \"/home/khmt/anaconda3/envs/tqkhang-vivit/lib/python3.7/site-packages/torch/utils/data/dataloader.py\", line 1358, in __del__\n",
|
615 |
+
" self._shutdown_workers()\n",
|
616 |
+
" File \"/home/khmt/anaconda3/envs/tqkhang-vivit/lib/python3.7/site-packages/torch/utils/data/dataloader.py\", line 1341, in _shutdown_workers\n",
|
617 |
+
" if w.is_alive():\n",
|
618 |
+
" File \"/home/khmt/anaconda3/envs/tqkhang-vivit/lib/python3.7/multiprocessing/process.py\", line 151, in is_alive\n",
|
619 |
+
" assert self._parent_pid == os.getpid(), 'can only test a child process'\n",
|
620 |
+
"AssertionError: can only test a child process\n",
|
621 |
+
"Exception ignored in: <function _MultiProcessingDataLoaderIter.__del__ at 0x75ce96bc04d0>\n",
|
622 |
+
"Traceback (most recent call last):\n",
|
623 |
+
" File \"/home/khmt/anaconda3/envs/tqkhang-vivit/lib/python3.7/site-packages/torch/utils/data/dataloader.py\", line 1358, in __del__\n",
|
624 |
+
" self._shutdown_workers()\n",
|
625 |
+
" File \"/home/khmt/anaconda3/envs/tqkhang-vivit/lib/python3.7/site-packages/torch/utils/data/dataloader.py\", line 1341, in _shutdown_workers\n",
|
626 |
+
" if w.is_alive():\n",
|
627 |
+
" File \"/home/khmt/anaconda3/envs/tqkhang-vivit/lib/python3.7/multiprocessing/process.py\", line 151, in is_alive\n",
|
628 |
+
" assert self._parent_pid == os.getpid(), 'can only test a child process'\n",
|
629 |
+
"AssertionError: can only test a child process\n",
|
630 |
+
"Testing: 32it [00:15, 2.06it/s] \n"
|
631 |
+
]
|
632 |
+
}
|
633 |
+
],
|
634 |
+
"source": [
|
635 |
+
"import torch\n",
|
636 |
+
"model.eval()\n",
|
637 |
+
"y_true, y_pred = [], []\n",
|
638 |
+
"with torch.no_grad():\n",
|
639 |
+
" for batch in tqdm(test_loader, desc=\"Testing\"):\n",
|
640 |
+
" inputs = batch[\"video\"].to(\"cuda\")\n",
|
641 |
+
" labels = batch[\"label\"].to(\"cuda\")\n",
|
642 |
+
" outputs = model(inputs)\n",
|
643 |
+
" probabilities = torch.nn.functional.softmax(outputs, dim=1)\n",
|
644 |
+
" predictions = probabilities.argmax(dim=-1)\n",
|
645 |
+
" y_true.extend(labels.cpu().tolist())\n",
|
646 |
+
" y_pred.extend(predictions.cpu().tolist())"
|
647 |
+
]
|
648 |
+
},
|
649 |
+
{
|
650 |
+
"cell_type": "code",
|
651 |
+
"execution_count": 27,
|
652 |
+
"id": "6fbcc06f-d230-4c46-9cd8-c2aa83aeca19",
|
653 |
+
"metadata": {},
|
654 |
+
"outputs": [
|
655 |
+
{
|
656 |
+
"name": "stdout",
|
657 |
+
"output_type": "stream",
|
658 |
+
"text": [
|
659 |
+
"Accuracy: 0.7607 | F1-macro: 0.7426\n",
|
660 |
+
" precision recall f1-score support\n",
|
661 |
+
"\n",
|
662 |
+
" khongxarac 0.75 0.88 0.81 68\n",
|
663 |
+
" xarac 0.78 0.59 0.67 49\n",
|
664 |
+
"\n",
|
665 |
+
" accuracy 0.76 117\n",
|
666 |
+
" macro avg 0.77 0.74 0.74 117\n",
|
667 |
+
"weighted avg 0.76 0.76 0.75 117\n",
|
668 |
+
"\n",
|
669 |
+
"Confusion matrix:\n",
|
670 |
+
" [[60 8]\n",
|
671 |
+
" [20 29]]\n"
|
672 |
+
]
|
673 |
+
}
|
674 |
+
],
|
675 |
+
"source": [
|
676 |
+
"acc = accuracy_score(y_true, y_pred)\n",
|
677 |
+
"f1m = f1_score(y_true, y_pred, average=\"macro\")\n",
|
678 |
+
"print(f\"Accuracy: {acc:.4f} | F1-macro: {f1m:.4f}\")\n",
|
679 |
+
"print(classification_report(y_true, y_pred, target_names=class_names))\n",
|
680 |
+
"print(\"Confusion matrix:\\n\", confusion_matrix(y_true, y_pred))"
|
681 |
+
]
|
682 |
+
},
|
683 |
+
{
|
684 |
+
"cell_type": "code",
|
685 |
+
"execution_count": null,
|
686 |
+
"id": "0b78a3c0-72ef-4207-bb66-03a8a3b02782",
|
687 |
+
"metadata": {},
|
688 |
+
"outputs": [],
|
689 |
+
"source": []
|
690 |
+
}
|
691 |
+
],
|
692 |
+
"metadata": {
|
693 |
+
"kernelspec": {
|
694 |
+
"display_name": "TQKhang-ViViT",
|
695 |
+
"language": "python",
|
696 |
+
"name": "tqkhang-vivit"
|
697 |
+
},
|
698 |
+
"language_info": {
|
699 |
+
"codemirror_mode": {
|
700 |
+
"name": "ipython",
|
701 |
+
"version": 3
|
702 |
+
},
|
703 |
+
"file_extension": ".py",
|
704 |
+
"mimetype": "text/x-python",
|
705 |
+
"name": "python",
|
706 |
+
"nbconvert_exporter": "python",
|
707 |
+
"pygments_lexer": "ipython3",
|
708 |
+
"version": "3.7.16"
|
709 |
+
}
|
710 |
+
},
|
711 |
+
"nbformat": 4,
|
712 |
+
"nbformat_minor": 5
|
713 |
+
}
|
scripts/.ipynb_checkpoints/run_self_influence-checkpoint.sh
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env bash
|
2 |
+
|
3 |
+
CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-09-01_16-22-06-caformer_s36/f1/model_epoch_16_f1_0.7191.pth'
|
4 |
+
|
5 |
+
python -m soups.self_influence \
|
6 |
+
--seed 42 \
|
7 |
+
--checkpoint_path "${CHECKPOINTS_DIR}" \
|
8 |
+
--device cpu \
|
9 |
+
--output_file self_influence_results/_test.json \
|
10 |
+
--model timm/caformer_s36.sail_in22k_ft_in1k \
|
11 |
+
--dataset_dir data/ich-split-renamed \
|
12 |
+
--eval_batch_size 16 \
|
13 |
+
--num_workers 8
|
scripts/.ipynb_checkpoints/soup_caformer_b36-checkpoint.sh
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env bash
|
2 |
+
|
3 |
+
CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-09-19_19-37-23-caformer_m36-one_cycle_lr'
|
4 |
+
|
5 |
+
python -m soups.run_test_with_model_soups \
|
6 |
+
--seed 42 \
|
7 |
+
--checkpoint_path "$CHECKPOINTS_DIR" \
|
8 |
+
--model timm/caformer_b36.sail_in22k_ft_in1k \
|
9 |
+
--uniform_soup \
|
10 |
+
--greedy_soup \
|
11 |
+
--pruned_soup \
|
12 |
+
--pruned_soup_num_iters 64 \
|
13 |
+
--greedy_soup_comparison_metric f1 \
|
14 |
+
--dataset_dir data/ich-split-renamed \
|
15 |
+
--output_dir "${CHECKPOINTS_DIR}/soups_results"
|
scripts/.ipynb_checkpoints/soup_caformer_m36-checkpoint.sh
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env bash
|
2 |
+
|
3 |
+
CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-09-19_19-37-23-caformer_m36-one_cycle_lr'
|
4 |
+
|
5 |
+
python -m soups.run_test_with_model_soups \
|
6 |
+
--seed 42 \
|
7 |
+
--checkpoint_path '/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-09-19_19-37-23-caformer_m36-one_cycle_lr/f1-top8' \
|
8 |
+
'/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-09-19_19-37-23-caformer_m36-one_cycle_lr/loss-top8' \
|
9 |
+
'/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-09-19_19-37-23-caformer_m36-one_cycle_lr/accuracy-top8' \
|
10 |
+
--model timm/caformer_m36.sail_in22k_ft_in1k \
|
11 |
+
--uniform_soup \
|
12 |
+
--greedy_soup \
|
13 |
+
--pruned_soup \
|
14 |
+
--pruned_soup_num_iters 64 \
|
15 |
+
--greedy_soup_comparison_metric f1 \
|
16 |
+
--dataset_dir data/ich-split-renamed \
|
17 |
+
--output_dir "${CHECKPOINTS_DIR}/soups_results"
|
scripts/.ipynb_checkpoints/soup_caformer_s36-checkpoint.sh
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env bash
|
2 |
+
|
3 |
+
CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-09-01_16-22-06-caformer_s36/f1'
|
4 |
+
|
5 |
+
python -m soups.run_test_with_model_soups \
|
6 |
+
--seed 42 \
|
7 |
+
--checkpoint_path "$CHECKPOINTS_DIR" \
|
8 |
+
--model timm/caformer_s36.sail_in22k_ft_in1k \
|
9 |
+
--uniform_soup \
|
10 |
+
--greedy_soup \
|
11 |
+
--dataset_dir data/ich-split-renamed \
|
12 |
+
--output_dir "${CHECKPOINTS_DIR}/soups_results"
|
scripts/.ipynb_checkpoints/soup_coatnet_0-merged_4_15-checkpoint.sh
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env bash
|
2 |
+
|
3 |
+
CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-08-26_20-43-44-coatnet_0_merged_4_15/loss'
|
4 |
+
|
5 |
+
python -m soups.run_test_with_model_soups \
|
6 |
+
--seed 42 \
|
7 |
+
--checkpoint_path "$CHECKPOINTS_DIR" \
|
8 |
+
--model timm/coatnet_0_rw_224.sw_in1k \
|
9 |
+
--uniform_soup \
|
10 |
+
--greedy_soup \
|
11 |
+
--dataset_dir data/ich-split-renamed-merged-4-15 \
|
12 |
+
--output_dir "${CHECKPOINTS_DIR}/soups_results"
|
scripts/.ipynb_checkpoints/soup_coatnet_0_co_teaching-checkpoint.sh
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env bash
|
2 |
+
|
3 |
+
CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-08-23_15-36-45-coatnet_0_co_teaching_forget_0_2/model_1_loss'
|
4 |
+
|
5 |
+
python -m soups.run_test_with_model_soups \
|
6 |
+
--seed 42 \
|
7 |
+
--checkpoint_path "$CHECKPOINTS_DIR" \
|
8 |
+
--model timm/coatnet_0_rw_224.sw_in1k \
|
9 |
+
--uniform_soup \
|
10 |
+
--greedy_soup \
|
11 |
+
--dataset_dir data/ich-split-renamed \
|
12 |
+
--output_dir "${CHECKPOINTS_DIR}/soups_results"
|
scripts/.ipynb_checkpoints/soup_coatnet_0_random-checkpoint.sh
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env bash
|
2 |
+
|
3 |
+
CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-08-23_10-38-52-coatnet_0_random/accuracy'
|
4 |
+
|
5 |
+
python -m soups.run_test_with_model_soups \
|
6 |
+
--seed 42 \
|
7 |
+
--checkpoint_path "$CHECKPOINTS_DIR" \
|
8 |
+
--model timm/coatnet_0_rw_224.sw_in1k \
|
9 |
+
--uniform_soup \
|
10 |
+
--greedy_soup \
|
11 |
+
--dataset_dir data/ich-split-renamed \
|
12 |
+
--output_dir "${CHECKPOINTS_DIR}/soups_results"
|
scripts/.ipynb_checkpoints/soup_coatnet_2-merged_4_15-checkpoint.sh
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env bash
|
2 |
+
|
3 |
+
CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-08-26_20-57-11-coatnet_2_merged_4_15/loss'
|
4 |
+
|
5 |
+
python -m soups.run_test_with_model_soups \
|
6 |
+
--seed 42 \
|
7 |
+
--checkpoint_path "$CHECKPOINTS_DIR" \
|
8 |
+
--model timm/coatnet_2_rw_224.sw_in12k_ft_in1k \
|
9 |
+
--uniform_soup \
|
10 |
+
--greedy_soup \
|
11 |
+
--dataset_dir data/ich-split-renamed-merged-4-15 \
|
12 |
+
--output_dir "${CHECKPOINTS_DIR}/soups_results"
|
scripts/.ipynb_checkpoints/soup_coatnet_2_random-checkpoint.sh
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env bash
|
2 |
+
|
3 |
+
CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-08-23_10-41-55-coatnet_2_random/accuracy'
|
4 |
+
|
5 |
+
python -m soups.run_test_with_model_soups \
|
6 |
+
--seed 42 \
|
7 |
+
--checkpoint_path "$CHECKPOINTS_DIR" \
|
8 |
+
--model timm/coatnet_2_rw_224.sw_in12k_ft_in1k \
|
9 |
+
--uniform_soup \
|
10 |
+
--greedy_soup \
|
11 |
+
--dataset_dir data/ich-split-renamed \
|
12 |
+
--output_dir "${CHECKPOINTS_DIR}/soups_results"
|
scripts/.ipynb_checkpoints/soup_convnext_base-checkpoint.sh
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env bash
|
2 |
+
|
3 |
+
CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-09-10_16-27-06-convnext_base'
|
4 |
+
|
5 |
+
python -m soups.run_test_with_model_soups \
|
6 |
+
--seed 42 \
|
7 |
+
--checkpoint_path "$CHECKPOINTS_DIR" \
|
8 |
+
--model timm/convnext_base.fb_in22k_ft_in1k \
|
9 |
+
--uniform_soup \
|
10 |
+
--greedy_soup \
|
11 |
+
--pruned_soup \
|
12 |
+
--pruned_soup_num_iters 64 \
|
13 |
+
--greedy_soup_comparison_metric f1 \
|
14 |
+
--dataset_dir data/ich-split-renamed \
|
15 |
+
--output_dir "${CHECKPOINTS_DIR}/soups_results"
|
scripts/.ipynb_checkpoints/soup_convnext_small-checkpoint.sh
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env bash
|
2 |
+
|
3 |
+
CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-09-10_14-54-53-convnext_small'
|
4 |
+
|
5 |
+
python -m soups.run_test_with_model_soups \
|
6 |
+
--seed 42 \
|
7 |
+
--checkpoint_path "$CHECKPOINTS_DIR" \
|
8 |
+
--model timm/convnext_small.in12k_ft_in1k \
|
9 |
+
--uniform_soup \
|
10 |
+
--greedy_soup \
|
11 |
+
--pruned_soup \
|
12 |
+
--pruned_soup_num_iters 64 \
|
13 |
+
--greedy_soup_comparison_metric f1 \
|
14 |
+
--dataset_dir data/ich-split-renamed \
|
15 |
+
--output_dir "${CHECKPOINTS_DIR}/soups_results"
|
scripts/.ipynb_checkpoints/soup_convnext_tiny-checkpoint.sh
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env bash
|
2 |
+
|
3 |
+
CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-09-10_15-23-36-convnext_tiny'
|
4 |
+
|
5 |
+
python -m soups.run_test_with_model_soups \
|
6 |
+
--seed 42 \
|
7 |
+
--checkpoint_path "$CHECKPOINTS_DIR" \
|
8 |
+
--model timm/convnext_tiny.in12k_ft_in1k \
|
9 |
+
--uniform_soup \
|
10 |
+
--greedy_soup \
|
11 |
+
--pruned_soup \
|
12 |
+
--pruned_soup_num_iters 64 \
|
13 |
+
--greedy_soup_comparison_metric f1 \
|
14 |
+
--dataset_dir data/ich-split-renamed \
|
15 |
+
--output_dir "${CHECKPOINTS_DIR}/soups_results"
|
scripts/.ipynb_checkpoints/soup_eva02_base-checkpoint.sh
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env bash
|
2 |
+
|
3 |
+
CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-09-02_00-11-46-eva02_base/accuracy'
|
4 |
+
|
5 |
+
python -m soups.run_test_with_model_soups \
|
6 |
+
--seed 42 \
|
7 |
+
--checkpoint_path "$CHECKPOINTS_DIR" \
|
8 |
+
--model timm/eva02_base_patch14_224.mim_in22k \
|
9 |
+
--uniform_soup \
|
10 |
+
--greedy_soup \
|
11 |
+
--greedy_soup_comparison_metric f1 \
|
12 |
+
--dataset_dir data/ich-split-renamed \
|
13 |
+
--output_dir "${CHECKPOINTS_DIR}/soups_results"
|
scripts/.ipynb_checkpoints/soup_eva02_large-checkpoint.sh
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env bash
|
2 |
+
|
3 |
+
CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-09-02_01-21-34-eva02_large'
|
4 |
+
|
5 |
+
python -m soups.run_test_with_model_soups \
|
6 |
+
--seed 42 \
|
7 |
+
--checkpoint_path "$CHECKPOINTS_DIR" \
|
8 |
+
--model timm/eva02_large_patch14_224.mim_in22k \
|
9 |
+
--uniform_soup \
|
10 |
+
--greedy_soup \
|
11 |
+
--pruned_soup \
|
12 |
+
--pruned_soup_num_iters 64 \
|
13 |
+
--greedy_soup_comparison_metric f1 \
|
14 |
+
--eval_batch_size 4 \
|
15 |
+
--dataset_dir data/ich-split-renamed \
|
16 |
+
--output_dir "${CHECKPOINTS_DIR}/soups_results"
|
scripts/.ipynb_checkpoints/soup_eva02_small-checkpoint.sh
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env bash
|
2 |
+
|
3 |
+
CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-09-20_14-45-41-eva02_small-reproduced'
|
4 |
+
|
5 |
+
python -m soups.run_test_with_model_soups \
|
6 |
+
--seed 42 \
|
7 |
+
--checkpoint_path "$CHECKPOINTS_DIR" \
|
8 |
+
--model timm/eva02_small_patch14_224.mim_in22k \
|
9 |
+
--uniform_soup \
|
10 |
+
--greedy_soup \
|
11 |
+
--pruned_soup \
|
12 |
+
--pruned_soup_num_iters 64 \
|
13 |
+
--remove_duplicate_checkpoints \
|
14 |
+
--greedy_soup_comparison_metric f1 \
|
15 |
+
--dataset_dir data/ich-split-renamed \
|
16 |
+
--output_dir "${CHECKPOINTS_DIR}/soups_results"
|
scripts/.ipynb_checkpoints/soup_focalnet_base_srf-checkpoint.sh
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env bash
|
2 |
+
|
3 |
+
CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-09-10_14-12-59-focalnet_base_srf/accuracy'
|
4 |
+
|
5 |
+
python -m soups.run_test_with_model_soups \
|
6 |
+
--seed 42 \
|
7 |
+
--checkpoint_path "$CHECKPOINTS_DIR" \
|
8 |
+
--model timm/focalnet_base_srf.ms_in1k \
|
9 |
+
--uniform_soup \
|
10 |
+
--greedy_soup \
|
11 |
+
--pruned_soup \
|
12 |
+
--pruned_soup_num_iters 64 \
|
13 |
+
--greedy_soup_comparison_metric f1 \
|
14 |
+
--dataset_dir data/ich-split-renamed \
|
15 |
+
--output_dir "${CHECKPOINTS_DIR}/soups_results"
|
scripts/.ipynb_checkpoints/soup_focalnet_small_lrf-checkpoint.sh
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env bash
|
2 |
+
|
3 |
+
CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-09-10_14-43-07-focalnet_small_lrf/accuracy'
|
4 |
+
|
5 |
+
python -m soups.run_test_with_model_soups \
|
6 |
+
--seed 42 \
|
7 |
+
--checkpoint_path "$CHECKPOINTS_DIR" \
|
8 |
+
--model timm/focalnet_small_lrf.ms_in1k \
|
9 |
+
--uniform_soup \
|
10 |
+
--greedy_soup \
|
11 |
+
--pruned_soup \
|
12 |
+
--pruned_soup_num_iters 64 \
|
13 |
+
--greedy_soup_comparison_metric f1 \
|
14 |
+
--dataset_dir data/ich-split-renamed \
|
15 |
+
--output_dir "${CHECKPOINTS_DIR}/soups_results"
|
scripts/.ipynb_checkpoints/soup_focalnet_small_srf-checkpoint.sh
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env bash
|
2 |
+
|
3 |
+
CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-09-02_10-13-09-focalnet_small_srf/accuracy'
|
4 |
+
|
5 |
+
python -m soups.run_test_with_model_soups \
|
6 |
+
--seed 42 \
|
7 |
+
--checkpoint_path "$CHECKPOINTS_DIR" \
|
8 |
+
--model timm/focalnet_small_srf.ms_in1k \
|
9 |
+
--uniform_soup \
|
10 |
+
--greedy_soup \
|
11 |
+
--pruned_soup \
|
12 |
+
--pruned_soup_num_iters 64 \
|
13 |
+
--greedy_soup_comparison_metric f1 \
|
14 |
+
--dataset_dir data/ich-split-renamed \
|
15 |
+
--output_dir "${CHECKPOINTS_DIR}/soups_results"
|
scripts/.ipynb_checkpoints/soup_hgnetv2_b6_ssld_stage2-checkpoint.sh
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env bash
|
2 |
+
|
3 |
+
CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-09-19_11-57-53-hgnetv2_b6.ssld_stage2_ft_in1k-one_cycle_lr'
|
4 |
+
|
5 |
+
python -m soups.run_test_with_model_soups \
|
6 |
+
--seed 42 \
|
7 |
+
--checkpoint_path "$CHECKPOINTS_DIR" \
|
8 |
+
--model timm/hgnetv2_b6.ssld_stage2_ft_in1k \
|
9 |
+
--uniform_soup \
|
10 |
+
--greedy_soup \
|
11 |
+
--pruned_soup \
|
12 |
+
--pruned_soup_num_iters 64 \
|
13 |
+
--greedy_soup_comparison_metric f1 \
|
14 |
+
--dataset_dir data/ich-split-renamed \
|
15 |
+
--output_dir "${CHECKPOINTS_DIR}/soups_results"
|
scripts/.ipynb_checkpoints/soup_maxvit_base-checkpoint.sh
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env bash
|
2 |
+
|
3 |
+
CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-09-01_15-07-03-maxvit_base'
|
4 |
+
|
5 |
+
python -m soups.run_test_with_model_soups \
|
6 |
+
--seed 42 \
|
7 |
+
--checkpoint_path "$CHECKPOINTS_DIR" \
|
8 |
+
--model timm/maxvit_base_tf_224.in1k \
|
9 |
+
--uniform_soup \
|
10 |
+
--greedy_soup \
|
11 |
+
--pruned_soup \
|
12 |
+
--pruned_soup_num_iters 64 \
|
13 |
+
--greedy_soup_comparison_metric f1 \
|
14 |
+
--dataset_dir data/ich-split-renamed \
|
15 |
+
--output_dir "${CHECKPOINTS_DIR}/soups_results"
|
scripts/.ipynb_checkpoints/soup_swin-checkpoint.sh
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env bash
|
2 |
+
|
3 |
+
CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-08-31_11-32-23-swin'
|
4 |
+
|
5 |
+
python -m soups.run_test_with_model_soups \
|
6 |
+
--seed 42 \
|
7 |
+
--checkpoint_path '/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-08-31_11-32-23-swin/accuracy' '/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-08-31_11-32-23-swin/f1' '/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-08-31_11-32-23-swin/loss' \
|
8 |
+
--model timm/swin_base_patch4_window7_224.ms_in22k_ft_in1k \
|
9 |
+
--uniform_soup \
|
10 |
+
--greedy_soup \
|
11 |
+
--pruned_soup \
|
12 |
+
--pruned_soup_num_iters 64 \
|
13 |
+
--dataset_dir data/ich-split-renamed \
|
14 |
+
--output_dir "${CHECKPOINTS_DIR}/soups_results"
|
scripts/.ipynb_checkpoints/soup_tiny_vit_21m-checkpoint.sh
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env bash
|
2 |
+
|
3 |
+
CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-09-01_13-56-39-tiny_vit_21m_dist'
|
4 |
+
|
5 |
+
python -m soups.run_test_with_model_soups \
|
6 |
+
--seed 42 \
|
7 |
+
--checkpoint_path "$CHECKPOINTS_DIR" \
|
8 |
+
--model timm/tiny_vit_21m_224.dist_in22k_ft_in1k \
|
9 |
+
--uniform_soup \
|
10 |
+
--greedy_soup \
|
11 |
+
--pruned_soup \
|
12 |
+
--pruned_soup_num_iters 64 \
|
13 |
+
--greedy_soup_comparison_metric f1 \
|
14 |
+
--dataset_dir data/ich-split-renamed \
|
15 |
+
--output_dir "${CHECKPOINTS_DIR}/soups_results"
|
scripts/.ipynb_checkpoints/soup_vit_base-checkpoint.sh
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env bash
|
2 |
+
|
3 |
+
CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-09-17_20-27-15-vit_base'
|
4 |
+
|
5 |
+
python -m soups.run_test_with_model_soups \
|
6 |
+
--seed 42 \
|
7 |
+
--checkpoint_path "$CHECKPOINTS_DIR" \
|
8 |
+
--model timm/vit_base_patch16_224.augreg2_in21k_ft_in1k \
|
9 |
+
--uniform_soup \
|
10 |
+
--greedy_soup \
|
11 |
+
--pruned_soup \
|
12 |
+
--pruned_soup_num_iters 64 \
|
13 |
+
--greedy_soup_comparison_metric f1 \
|
14 |
+
--dataset_dir data/ich-split-renamed \
|
15 |
+
--output_dir "${CHECKPOINTS_DIR}/soups_results"
|
scripts/.ipynb_checkpoints/soup_vit_base_laion2b-checkpoint.sh
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env bash
|
2 |
+
|
3 |
+
CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-09-17_20-07-52-vit_base_laion2b'
|
4 |
+
|
5 |
+
python -m soups.run_test_with_model_soups \
|
6 |
+
--seed 42 \
|
7 |
+
--checkpoint_path "$CHECKPOINTS_DIR" \
|
8 |
+
--model timm/vit_base_patch16_clip_224.laion2b_ft_in1k \
|
9 |
+
--uniform_soup \
|
10 |
+
--greedy_soup \
|
11 |
+
--pruned_soup \
|
12 |
+
--pruned_soup_num_iters 64 \
|
13 |
+
--greedy_soup_comparison_metric f1 \
|
14 |
+
--dataset_dir data/ich-split-renamed \
|
15 |
+
--output_dir "${CHECKPOINTS_DIR}/soups_results"
|
scripts/.ipynb_checkpoints/test_caformer_b36-checkpoint.sh
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env bash
|
2 |
+
|
3 |
+
CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-09-14_09-18-13-caformer_b36-seed_7-one_cycle_lr'
|
4 |
+
|
5 |
+
python -m soups.run_test_multiple_checkpoints \
|
6 |
+
--seed 42 \
|
7 |
+
--checkpoint_path "$CHECKPOINTS_DIR" \
|
8 |
+
--model timm/caformer_b36.sail_in22k_ft_in1k \
|
9 |
+
--dataset_dir data/ich-split-renamed \
|
10 |
+
--output_file "${CHECKPOINTS_DIR}/test_results.json"
|
scripts/.ipynb_checkpoints/test_caformer_m36-checkpoint.sh
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env bash
|
2 |
+
|
3 |
+
CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-09-19_19-37-23-caformer_m36-one_cycle_lr'
|
4 |
+
|
5 |
+
python -m soups.run_test_multiple_checkpoints \
|
6 |
+
--seed 42 \
|
7 |
+
--checkpoint_paths '/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-09-19_19-37-23-caformer_m36-one_cycle_lr/f1-top8' \
|
8 |
+
'/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-09-19_19-37-23-caformer_m36-one_cycle_lr/accuracy-top8' \
|
9 |
+
'/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-09-19_19-37-23-caformer_m36-one_cycle_lr/loss-top8' \
|
10 |
+
--model timm/caformer_m36.sail_in22k_ft_in1k \
|
11 |
+
--dataset_dir data/ich-split-renamed \
|
12 |
+
--output_file "${CHECKPOINTS_DIR}/test_results.json"
|
scripts/.ipynb_checkpoints/test_caformer_s36-checkpoint.sh
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env bash
|
2 |
+
|
3 |
+
CHECKPOINTS_DIR='//home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-09-01_16-22-06-caformer_s36'
|
4 |
+
|
5 |
+
python -m soups.run_test_multiple_checkpoints \
|
6 |
+
--seed 42 \
|
7 |
+
--checkpoints_dir "$CHECKPOINTS_DIR" \
|
8 |
+
--model timm/caformer_s36.sail_in22k_ft_in1k \
|
9 |
+
--dataset_dir data/ich-split-renamed \
|
10 |
+
--output_file "${CHECKPOINTS_DIR}/test_results.json"
|
scripts/.ipynb_checkpoints/test_coatnet_0-checkpoint.sh
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env bash
|
2 |
+
|
3 |
+
CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-08-31_11-30-41-coatnet_0_filtered_1000'
|
4 |
+
|
5 |
+
python -m soups.run_test_multiple_checkpoints \
|
6 |
+
--seed 42 \
|
7 |
+
--checkpoints_dir "$CHECKPOINTS_DIR" \
|
8 |
+
--model timm/coatnet_0_rw_224.sw_in1k \
|
9 |
+
--dataset_dir data/ich-split-renamed \
|
10 |
+
--output_file "${CHECKPOINTS_DIR}/test_results.json"
|
scripts/.ipynb_checkpoints/test_coatnet_0-merged_4_15-checkpoint.sh
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env bash
|
2 |
+
|
3 |
+
CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-08-26_20-43-44-coatnet_0_merged_4_15'
|
4 |
+
|
5 |
+
python -m soups.run_test_multiple_checkpoints \
|
6 |
+
--seed 42 \
|
7 |
+
--checkpoints_dir "$CHECKPOINTS_DIR" \
|
8 |
+
--model timm/coatnet_0_rw_224.sw_in1k \
|
9 |
+
--dataset_dir data/ich-split-renamed-merged-4-15 \
|
10 |
+
--output_file "${CHECKPOINTS_DIR}/test_results.json"
|
scripts/.ipynb_checkpoints/test_coatnet_0_co_teaching-checkpoint.sh
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env bash
|
2 |
+
|
3 |
+
CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-08-23_15-36-45-coatnet_0_co_teaching_forget_0_2/model_1'
|
4 |
+
|
5 |
+
python -m soups.run_test_multiple_checkpoints \
|
6 |
+
--seed 42 \
|
7 |
+
--checkpoints_dir "$CHECKPOINTS_DIR" \
|
8 |
+
--model timm/coatnet_0_rw_224.sw_in1k \
|
9 |
+
--dataset_dir data/ich-split-renamed \
|
10 |
+
--output_file "${CHECKPOINTS_DIR}/test_results.json"
|
scripts/.ipynb_checkpoints/test_coatnet_0_random-checkpoint.sh
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env bash
|
2 |
+
|
3 |
+
CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-08-23_10-38-52-coatnet_0_random'
|
4 |
+
|
5 |
+
python -m soups.run_test_multiple_checkpoints \
|
6 |
+
--seed 42 \
|
7 |
+
--checkpoints_dir "$CHECKPOINTS_DIR" \
|
8 |
+
--model timm/coatnet_0_rw_224.sw_in1k \
|
9 |
+
--dataset_dir data/ich-split-renamed \
|
10 |
+
--output_file "${CHECKPOINTS_DIR}/test_results.json"
|
scripts/.ipynb_checkpoints/test_coatnet_2-merged_4_15-checkpoint.sh
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env bash
|
2 |
+
|
3 |
+
CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-08-26_20-57-11-coatnet_2_merged_4_15'
|
4 |
+
|
5 |
+
python -m soups.run_test_multiple_checkpoints \
|
6 |
+
--seed 42 \
|
7 |
+
--checkpoints_dir "$CHECKPOINTS_DIR" \
|
8 |
+
--model timm/coatnet_2_rw_224.sw_in12k_ft_in1k \
|
9 |
+
--dataset_dir data/ich-split-renamed-merged-4-15 \
|
10 |
+
--output_file "${CHECKPOINTS_DIR}/test_results.json"
|
scripts/.ipynb_checkpoints/test_coatnet_2_random-checkpoint.sh
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env bash
|
2 |
+
|
3 |
+
CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-08-23_10-41-55-coatnet_2_random'
|
4 |
+
|
5 |
+
python -m soups.run_test_multiple_checkpoints \
|
6 |
+
--seed 42 \
|
7 |
+
--checkpoints_dir "$CHECKPOINTS_DIR" \
|
8 |
+
--model timm/coatnet_2_rw_224.sw_in12k_ft_in1k \
|
9 |
+
--dataset_dir data/ich-split-renamed \
|
10 |
+
--output_file "${CHECKPOINTS_DIR}/test_results.json"
|
scripts/.ipynb_checkpoints/test_convnext_base-checkpoint.sh
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env bash
|
2 |
+
|
3 |
+
CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-09-10_16-27-06-convnext_base'
|
4 |
+
|
5 |
+
python -m soups.run_test_multiple_checkpoints \
|
6 |
+
--seed 42 \
|
7 |
+
--checkpoints_dir "$CHECKPOINTS_DIR" \
|
8 |
+
--model timm/convnext_base.fb_in22k_ft_in1k \
|
9 |
+
--dataset_dir data/ich-split-renamed \
|
10 |
+
--output_file "${CHECKPOINTS_DIR}/test_results.json"
|
scripts/.ipynb_checkpoints/test_convnext_femto-checkpoint.sh
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env bash
|
2 |
+
|
3 |
+
CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-09-10_15-31-58-convnext_femto'
|
4 |
+
|
5 |
+
python -m soups.run_test_multiple_checkpoints \
|
6 |
+
--seed 42 \
|
7 |
+
--checkpoints_dir "$CHECKPOINTS_DIR" \
|
8 |
+
--model timm/convnext_femto.d1_in1k \
|
9 |
+
--dataset_dir data/ich-split-renamed \
|
10 |
+
--output_file "${CHECKPOINTS_DIR}/test_results.json"
|
scripts/.ipynb_checkpoints/test_convnext_large-checkpoint.sh
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env bash
|
2 |
+
|
3 |
+
CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-09-11_16-47-37-convnext_large6'
|
4 |
+
|
5 |
+
python -m soups.run_test_multiple_checkpoints \
|
6 |
+
--seed 42 \
|
7 |
+
--checkpoints_dir "$CHECKPOINTS_DIR" \
|
8 |
+
--model timm/convnext_large.fb_in22k_ft_in1k \
|
9 |
+
--dataset_dir data/ich-split-renamed \
|
10 |
+
--output_file "${CHECKPOINTS_DIR}/test_results.json"
|
scripts/.ipynb_checkpoints/test_convnext_nano-checkpoint.sh
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env bash
|
2 |
+
|
3 |
+
CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-09-10_14-49-36-convnext_nano'
|
4 |
+
|
5 |
+
python -m soups.run_test_multiple_checkpoints \
|
6 |
+
--seed 42 \
|
7 |
+
--checkpoints_dir "$CHECKPOINTS_DIR" \
|
8 |
+
--model timm/convnext_nano.in12k_ft_in1k \
|
9 |
+
--dataset_dir data/ich-split-renamed \
|
10 |
+
--output_file "${CHECKPOINTS_DIR}/test_results.json"
|
scripts/.ipynb_checkpoints/test_convnext_pico-checkpoint.sh
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env bash
|
2 |
+
|
3 |
+
CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-09-10_15-24-36-convnext_pico'
|
4 |
+
|
5 |
+
python -m soups.run_test_multiple_checkpoints \
|
6 |
+
--seed 42 \
|
7 |
+
--checkpoints_dir "$CHECKPOINTS_DIR" \
|
8 |
+
--model timm/convnext_pico.d1_in1k \
|
9 |
+
--dataset_dir data/ich-split-renamed \
|
10 |
+
--output_file "${CHECKPOINTS_DIR}/test_results.json"
|
scripts/.ipynb_checkpoints/test_convnext_small-checkpoint.sh
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env bash
|
2 |
+
|
3 |
+
CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-09-10_14-54-53-convnext_small'
|
4 |
+
|
5 |
+
python -m soups.run_test_multiple_checkpoints \
|
6 |
+
--seed 42 \
|
7 |
+
--checkpoints_dir "$CHECKPOINTS_DIR" \
|
8 |
+
--model timm/convnext_small.in12k_ft_in1k \
|
9 |
+
--dataset_dir data/ich-split-renamed \
|
10 |
+
--output_file "${CHECKPOINTS_DIR}/test_results.json"
|
scripts/.ipynb_checkpoints/test_convnext_tiny-checkpoint.sh
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env bash
|
2 |
+
|
3 |
+
CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-09-10_15-23-36-convnext_tiny'
|
4 |
+
|
5 |
+
python -m soups.run_test_multiple_checkpoints \
|
6 |
+
--seed 42 \
|
7 |
+
--checkpoints_dir "$CHECKPOINTS_DIR" \
|
8 |
+
--model timm/convnext_tiny.in12k_ft_in1k \
|
9 |
+
--dataset_dir data/ich-split-renamed \
|
10 |
+
--output_file "${CHECKPOINTS_DIR}/test_results.json"
|
scripts/.ipynb_checkpoints/test_convnext_v2_large-checkpoint.sh
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env bash
|
2 |
+
|
3 |
+
CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync2/2025-09-11_17-25-36-convnext_v2_large'
|
4 |
+
|
5 |
+
python -m soups.run_test_multiple_checkpoints \
|
6 |
+
--seed 42 \
|
7 |
+
--checkpoints_dir "$CHECKPOINTS_DIR" \
|
8 |
+
--model timm/convnextv2_large.fcmae_ft_in22k_in1k \
|
9 |
+
--dataset_dir data/ich-split-renamed \
|
10 |
+
--output_file "${CHECKPOINTS_DIR}/test_results.json"
|
scripts/.ipynb_checkpoints/test_convnext_xlarge-checkpoint.sh
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env bash
|
2 |
+
|
3 |
+
CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync2/2025-09-11_11-58-22-convnext_xlarge'
|
4 |
+
|
5 |
+
python -m soups.run_test_multiple_checkpoints \
|
6 |
+
--seed 42 \
|
7 |
+
--checkpoints_dir "$CHECKPOINTS_DIR" \
|
8 |
+
--model timm/convnext_xlarge.fb_in22k_ft_in1k \
|
9 |
+
--dataset_dir data/ich-split-renamed \
|
10 |
+
--output_file "${CHECKPOINTS_DIR}/test_results.json"
|
scripts/.ipynb_checkpoints/test_convnext_xxlarge-checkpoint.sh
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env bash
|
2 |
+
|
3 |
+
CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync2/2025-09-11_13-53-47-convnext_xxlarge'
|
4 |
+
|
5 |
+
python -m soups.run_test_multiple_checkpoints \
|
6 |
+
--seed 42 \
|
7 |
+
--checkpoints_dir "$CHECKPOINTS_DIR" \
|
8 |
+
--model timm/convnext_xxlarge.clip_laion2b_soup_ft_in1k \
|
9 |
+
--dataset_dir data/ich-split-renamed \
|
10 |
+
--output_file "${CHECKPOINTS_DIR}/test_results.json"
|
scripts/.ipynb_checkpoints/test_eva02_base-checkpoint.sh
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env bash
|
2 |
+
|
3 |
+
CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-09-02_00-11-46-eva02_base'
|
4 |
+
|
5 |
+
python -m soups.run_test_multiple_checkpoints \
|
6 |
+
--seed 42 \
|
7 |
+
--checkpoints_dir "$CHECKPOINTS_DIR" \
|
8 |
+
--model timm/eva02_base_patch14_224.mim_in22k \
|
9 |
+
--dataset_dir data/ich-split-renamed \
|
10 |
+
--output_file "${CHECKPOINTS_DIR}/test_results.json"
|
scripts/.ipynb_checkpoints/test_eva02_large-checkpoint.sh
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env bash
|
2 |
+
|
3 |
+
CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-09-14_00-21-30-eva02_large-one_cycle_lr'
|
4 |
+
|
5 |
+
python -m soups.run_test_multiple_checkpoints \
|
6 |
+
--seed 42 \
|
7 |
+
--checkpoints_dir "$CHECKPOINTS_DIR" \
|
8 |
+
--model timm/eva02_large_patch14_224.mim_in22k \
|
9 |
+
--dataset_dir data/ich-split-renamed \
|
10 |
+
--output_file "${CHECKPOINTS_DIR}/test_results.json"
|
scripts/.ipynb_checkpoints/test_eva02_small-checkpoint.sh
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env bash
|
2 |
+
|
3 |
+
CHECKPOINTS_DIR='/home/khmt/Documents/TQKhangT/mthien/soups/checkpoints-sync/2025-09-20_14-45-41-eva02_small-reproduced'
|
4 |
+
|
5 |
+
python -m soups.run_test_multiple_checkpoints \
|
6 |
+
--seed 42 \
|
7 |
+
--checkpoint_paths "$CHECKPOINTS_DIR" \
|
8 |
+
--model timm/eva02_small_patch14_224.mim_in22k \
|
9 |
+
--dataset_dir data/ich-split-renamed \
|
10 |
+
--output_file "${CHECKPOINTS_DIR}/test_results.json"
|
scripts/.ipynb_checkpoints/test_focalnet_base_srf-checkpoint.sh
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env bash
|
2 |
+
|
3 |
+
CHECKPOINTS_DIR='/media/khmt/HDD1/TQKhang/mthien/soups/checkpoints/2025-09-10_14-12-59-focalnet_base_srf'
|
4 |
+
|
5 |
+
python -m soups.run_test_multiple_checkpoints \
|
6 |
+
--seed 42 \
|
7 |
+
--checkpoint_path "$CHECKPOINTS_DIR" \
|
8 |
+
--model timm/focalnet_base_srf.ms_in1k \
|
9 |
+
--dataset_dir data/ich-split-renamed \
|
10 |
+
--output_file "${CHECKPOINTS_DIR}/test_results.json"
|
scripts/.ipynb_checkpoints/test_focalnet_small_lrf-checkpoint.sh
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env bash
|
2 |
+
|
3 |
+
CHECKPOINTS_DIR='/media/khmt/HDD1/TQKhang/mthien/soups/checkpoints/2025-09-10_14-43-07-focalnet_small_lrf'
|
4 |
+
|
5 |
+
python -m soups.run_test_multiple_checkpoints \
|
6 |
+
--seed 42 \
|
7 |
+
--checkpoint_path "$CHECKPOINTS_DIR" \
|
8 |
+
--model timm/focalnet_small_lrf.ms_in1k \
|
9 |
+
--dataset_dir data/ich-split-renamed \
|
10 |
+
--output_file "${CHECKPOINTS_DIR}/test_results.json"
|