The Dataset Viewer has been disabled on this dataset.
Document OCR using Nanonets-OCR-s
This dataset contains markdown-formatted OCR results from images in /content/my_dataset using Nanonets-OCR-s.
Processing Details
- Source Dataset: /content/my_dataset
- Model: nanonets/Nanonets-OCR-s
- Number of Samples: 1
- Processing Time: 4.6 minutes
- Processing Date: 2025-08-11 09:33 UTC
Configuration
- Image Column:
image
- Output Column:
markdown
- Dataset Split:
train
- Batch Size: 1
- Max Model Length: 8,192 tokens
- Max Output Tokens: 4,096
- GPU Memory Utilization: 80.0%
Model Information
Nanonets-OCR-s is a state-of-the-art document OCR model that excels at:
- ๐ LaTeX equations - Mathematical formulas preserved in LaTeX format
- ๐ Tables - Extracted and formatted as HTML
- ๐ Document structure - Headers, lists, and formatting maintained
- ๐ผ๏ธ Images - Captions and descriptions included in
<img>
tags - โ๏ธ Forms - Checkboxes rendered as โ/โ
- ๐ Watermarks - Wrapped in
<watermark>
tags - ๐ Page numbers - Wrapped in
<page_number>
tags
Dataset Structure
The dataset contains all original columns plus:
markdown
: The extracted text in markdown format with preserved structureinference_info
: JSON list tracking all OCR models applied to this dataset
Usage
from datasets import load_dataset
import json
# Load the dataset
dataset = load_dataset("{output_dataset_id}", split="train")
# Access the markdown text
for example in dataset:
print(example["markdown"])
break
# View all OCR models applied to this dataset
inference_info = json.loads(dataset[0]["inference_info"])
for info in inference_info:
print(f"Column: {info['column_name']} - Model: {info['model_id']}")
Reproduction
This dataset was generated using the uv-scripts/ocr Nanonets OCR script:
uv run https://huggingface.co/datasets/uv-scripts/ocr/raw/main/nanonets-ocr.py \
/content/my_dataset \
<output-dataset> \
--image-column image \
--batch-size 1 \
--max-model-len 8192 \
--max-tokens 4096 \
--gpu-memory-utilization 0.8
Performance
- Processing Speed: ~0.0 images/second
- GPU Configuration: vLLM with 80% GPU memory utilization
Generated with ๐ค UV Scripts
- Downloads last month
- 37