pubchemqc-pm6 / README.md
smostafanejad's picture
adds the dataset usage section to README.md
a0321f2
---
license:
- cc-by-4.0
license_link: https://creativecommons.org/licenses/by/4.0
tags:
- homo-lumo-gaps
- energy
- dipole-moments
- quantum-chemistry
- pubchem
- small-molecules
- ir-frequencies
- ir-intensities
annotations_creators:
- crowdsourced
pretty_name: pubchemqc-pm6
size_categories:
- 10K<n<300M
source_datasets:
- pubchem
- pubchemqc-pm6
task_categories:
- tabular-regression
- other
task_ids:
- tabular-single-column-regression
viewer: false
configs:
- config_name: pm6opt
data_files:
- split: train
path: "data/pm6opt/train/*.json"
default: true
- config_name: pm6opt_chon300nosalt
data_files:
- split: train
path: "data/pm6opt_chon300nosalt/train/*.json"
- config_name: pm6opt_chon500nosalt
data_files:
- split: train
path: "data/pm6opt_chon500nosalt/train/*.json"
- config_name: pm6opt_chnops500nosalt
data_files:
- split: train
path: "data/pm6opt_chnops500nosalt/train/*.json"
- config_name: pm6opt_chnopsfcl300nosalt
data_files:
- split: train
path: "data/pm6opt_chnopsfcl300nosalt/train/*.json"
- config_name: pm6opt_chnopsfcl500nosalt
data_files:
- split: train
path: "data/pm6opt_chnopsfcl500nosalt/train/*.json"
- config_name: pm6opt_chnopsfclnakmgca500
data_files:
- split: train
path: "data/pm6opt_chnopsfclnakmgca500/train/*.json"
---
# PubChemQC PM6 Dataset
## Table of Contents
- [PubChemQC PM6 Dataset](#pubchemqc-pm6-dataset)
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits and Configurations](#data-splits-and-configurations)
- [How to Use the Dataset](#how-to-use-the-dataset)
- [Prerequisites](#prerequisites)
- [Accessing the Data](#accessing-the-data)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Initial Data Collection and Normalization](#initial-data-collection-and-normalization)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** https://nakatamaho.riken.jp/pubchemqc.riken.jp/pm6_datasets.html
- **Repository:** https://nakatamaho.riken.jp/pubchemqc.riken.jp/pm6_datasets.html
- **Paper:** https://pubs.acs.org/doi/abs/10.1021/acs.jcim.0c00740
- **Point of Contact:** [Maho Nakata]([email protected])
- **Point of Contact:** [Mohammad Mostafanejad]([email protected])
- **Point of Contact:** [MolSSI-AI Hub]([email protected])
### Dataset Summary
The **PubChemQC PM6** dataset consists of optimized molecular geometries
and electronic properties calculated by the PM6 method for 94.0% of the 91.6 million
molecules cataloged in PubChem Compounds retrieved on August 29, 2016. In addition to
neutral states, the cationic, anionic, and spin flipped electronic states of respectively
56.2%, 49.7%, and 41.3% of the molecules have also been studied. As such, the grand total
of the PM6 calculations amounted to 221 million.
## Dataset Structure
### Data Instances
An example of a data instance is as follows:
```json
{
"cid": 1,
"state": "S0",
"pubchem-inchi": "InChI=1S/C9H17NO4/c1-7(11)14-8(5-9(12)13)6-10(2,3)4/h8H,5-6H2,1-4H3",
"pubchem-charge": 0,
"pubchem-version": "20160829",
"name": "000000001.PM6.S0",
"coordinates": [4.543146, -2.8411939999999998, -1.641861, ..., 4.345637],
"atomic-numbers": [6, 6, 8, ..., 1],
"atom-count": 31,
"heavy-atom-count": 14,
"core-electrons": [0, 0, 0,..., 0],
"version": "2.0",
"obabel-inchi": "InChI=1S/C9H17NO4/c1-7(11)14-8(5-9(12)13)6-10(2,3)4/h8H,5-6H2,1-4H3/t8-/m0/s1",
"pm6-obabel-canonical-smiles": "[O]C(=O)C[C@@H](C[N](C)(C)C)OC(=O)C",
"charge": 0,
"energy-beta-gap": 8.458931156643,
"energy-beta-homo": -8.8325434733795,
"energy-beta-lumo": -0.37361231673649903,
"energy-alpha-gap": 8.458931156643,
"energy-alpha-homo": -8.8325434733795,
"energy-alpha-lumo": -0.37361231673649903,
"total-energy": -7.558832783207512,
"enthalpy": -0.021744,
"homos": [40],
"orbital-energies": [
[-34.149199782348006,
-32.51760513475,
-30.809274381311,
...,
6.947610830966
]
],
"mo-count": 73,
"basis-count": 73,
"temperature": 298.15,
"multiplicity": 1,
"number-of-atoms": 31,
"mulliken-partial-charges": [-0.5888869999999999,
0.6862539999999999,
-0.580137,
...,
0.18249
],
"dipole-moment": 13.22226250268841,
"frequencies": [26.1465, 37.9831, 50.1099, ..., 2779.2147],
"intensities": [0.771, 11.6909, 2.5082, ..., 111.8945],
"pubchem-multiplicity": 1,
"pubchem-obabel-canonical-smiles": "[O-]C(=O)CC(C[N+](C)(C)C)OC(=O)C",
"pubchem-isomeric-smiles": "CC(=O)OC(CC(=O)[O-])C[N+](C)(C)C",
"pubchem-molecular-weight": 203.23558,
"pubchem-molecular-formula": "C9H17NO4"
}
```
### Data Fields
| Field | Description |
| ------------------------------- | ------------------------------------------------------------------------------------------------------------------------------- |
| cid | Pubchem Compound ID |
| state | Electronic state |
| pubchem-inchi | InChI extracted from PubChem Compound entry |
| pubchem-charge | Molecular charge extracted from PubChem Compound entry |
| pubchem-version | PubChem Compound Database version |
| name | Name of the input file used for the PM6 calculation |
| coordinates | Cartesian coordinates of the molecular geometry optimized with PM6 method in Angstroem |
| atomic-numbers | An array of atomic numbers |
| atom-count | Number of atoms in the molecule |
| heavy-atom-count | Number of heavy atoms in the molecule |
| core-electrons | The number of core electrons in each atom's pseudopotentials |
| version | Version number |
| obabel-inchi | InChI of the structure generated by Open Babel |
| pm6-obabel-canonical-smiles | Canonical SMILES for the structure generated by Open Babel |
| charge | Molecular charge |
| energy-beta-gap | HOMO-LUMO energy gap for beta spin orbitals |
| energy-beta-homo | Energy of the highest-occupied molecular orbital (HOMO) of beta spin symmetry |
| energy-beta-lumo | Energy of the lowest-unoccupied molecular orbital (LUMO) of beta spin symmetry |
| energy-alpha-gap | HOMO-LUMO energy gap for alpha spin orbitals |
| energy-alpha-homo | Energy of the highest-occupied molecular orbital (HOMO) of alpha spin symmetry |
| energy-alpha-lumo | Energy of the lowest-unoccupied molecular orbital (LUMO) of alpha spin symmetry |
| total-energy | Total electronic energy of the molecule calculated using PM6 method |
| enthalpy | Enthalpy |
| homos | 1D index array of the highest occupied molecular orbital (HOMOs) with one (two) element(s) for the (un)restricted wavefunctions |
| orbital-energies | 1D array of orbital energies in hartree with one (two) member(s) for the (un)restricted wavefunction |
| mo-count | Number of molecular orbitals |
| basis-count | Number of basis functions |
| temperature | Temperature (in K) |
| multiplicity | Spin multiplicity |
| number-of-atoms | Number of atoms in the molecule |
| mulliken-partial-charges | Mulliken partial atomic charges |
| dipole-moment | Dipole moment |
| frequencies | Infrared (IR) frequencies (in cm$^{-1}$) |
| intensities | Infrared intensities |
| pubchem-multiplicity | Spin multiplicity of the molecule extracted from PubChem Compound |
| pubchem-obabel-canonical-smiles | Canonical SMILES of the molecule extracted from PubChem Compound generated by Open Babel |
| pubchem-isomeric-smiles | Isomeric SMILES of the molecule extracted from PubChem Compound calculated by the OpenEye's OEChem Toolkit |
| pubchem-molecular-weight | Molecular weight extracted from the PubChem Compound entry |
| pubchem-molecular-formula | Molecular formula extracted from the PubChem Compound entry |
### Data Splits and Configurations
The dataset has only one `train` split. The PubChemQC PM6 dataset
has seven configurations/subsets:
- `pm6opt` (default)
- `pm6opt_chon300nosalt`
- `pm6opt_chon500nosalt`
- `pm6opt_chnops500nosalt`
- `pm6opt_chnopsfcl300nosalt`
- `pm6opt_chnopsfcl500nosalt`
- `pm6opt_chnopsfclnakmgca500`
## How to Use the Dataset
### Prerequisites
We recommend isolating your work in a virtualenv or conda environment.
You can create a new conda environment, `pubchemqc`,
```bash
conda create -n pubchemqc python=3.12
```
and activate it using the following command
```bash
conda activate pubchemqc
```
Once the conda environment is activated, you can
install the dependencies in it as shown below
```bash
pip install huggingface_hub ijson
```
### Accessing the Data
Once the required packages are installed, you can run the following code
to access the data
```python
# import the modules
from datasets import load_dataset
# load the dataset with streaming
hub_ds = load_dataset(path="molssiai-hub/pubchemqc-pm6",
name="pm6opt",
split="train",
streaming=True,
cache_dir="./tmp",
trust_remote_code=True)
# fetch a batch of 32 samples from the dataset
ds = list(hub_ds.take(32))
```
The argument `name` by default is set to `pm6opt` which refers to
the entire dataset. Other configurations (subsets), listed in
Sec. [Data Splits and Configurations](#data-splits-and-configurations),
can also be selected.
The `split` must be set to `train` as it is the only split in our dataset.
We recommend using `streaming=True` to avoid downloading the entire dataset
on disk. The `cache_dir` allows us to store the Hugging Face datasets' and
models' artifacts in a non-default directory (by default, it is set to
`~/.cache/huggingface`). As we are using a custom
[load script](https://huggingface.co/datasets/molssiai-hub/pubchemqc-pm6/blob/main/pubchemqc-pm6.py), the `trust_remote_code` argument should also be set to `True`.
## Dataset Creation
### Curation Rationale
The present version of PubChemQC PM6 dataset has been extracted
from its original Postgresql database, transformed into a dictionary and
stored in the `.json` format.
### Source Data
The link to the original PubChemQC PM6 dataset repository can be
found [here](https://nakatamaho.riken.jp/pubchemqc.riken.jp/pm6_datasets.html)
#### Initial Data Collection and Normalization
Other than the changes detailed in Sec. [Curation Rationale](#curation-rationale),
no data modification has been performed on the PubChemQC PM6 dataset.
### Personal and Sensitive Information
The PubChemQC PM6 dataset does not involve any personal or sensitive information.
## Considerations for Using the Data
### Social Impact of Dataset
The PubChemQC PM6 dataset paves the way for applications in drug discovery and materials science, among others.
## Additional Information
### Dataset Curators
- **Maho Nakata**, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- **Tomomi Shimazaki**, Graduate School of System Informatics, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, JAPAN
- **Masatomo Hashimoto**, Software Technology and Artificial Intelligence Research Laboratory, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba 275-0016, Japan
- **Toshiyuki Maeda**, Software Technology and Artificial Intelligence Research Laboratory, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba 275-0016, Japan
### Licensing Information
[Creative Commons Attribution 4.0 International License](https://creativecommons.org/licenses/by/4.0)
### Citation Information
```tex
@article{Nakata:2020:5891,
author = {Maho Nakata and Tomomi Shimazaki and Masatomo Hashimoto and Toshiyuki Maeda},
doi = {10.1021/acs.jcim.0c00740},
issn = {1549960X},
issue = {12},
journal = {Journal of Chemical Information and Modeling},W
month = {12},
pages = {5891-5899},
pmid = {33104339},
publisher = {American Chemical Society},
title = {PubChemQC PM6: Data Sets of 221 Million Molecules with Optimized Molecular Geometries and Electronic Properties},
volume = {60},
url = {https://pubs.acs.org/doi/abs/10.1021/acs.jcim.0c00740},
year = {2020},
}
```
### Contributions
- **Mohammad Mostafanejad**, The Molecular Sciences Software Institute (MolSSI)