|
|
--- |
|
|
task_categories: |
|
|
- image-classification |
|
|
pretty_name: Multilingual Document Type Classification |
|
|
size_categories: |
|
|
- 10K<n<100K |
|
|
language: |
|
|
- ar |
|
|
- bg |
|
|
- de |
|
|
- en |
|
|
- es |
|
|
- fr |
|
|
- hi |
|
|
- it |
|
|
- ja |
|
|
- ru |
|
|
- zh |
|
|
tags: |
|
|
- document-classification |
|
|
- computer-vision |
|
|
- multilingual |
|
|
--- |
|
|
|
|
|
# DocLang: Multilingual Document Type Classification |
|
|
|
|
|
A multilingual document type classification dataset for identifying various document and visual content types. The dataset contains 13,200 images across 11 languages, with 1,200 images per language. |
|
|
|
|
|
## Dataset Structure |
|
|
|
|
|
The dataset is organized by language code: |
|
|
- `ar/` - Arabic (1,200 images) |
|
|
- `bg/` - Bulgarian (1,200 images) |
|
|
- `de/` - German (1,200 images) |
|
|
- `en/` - English (1,200 images) |
|
|
- `es/` - Spanish (1,200 images) |
|
|
- `fr/` - French (1,200 images) |
|
|
- `hi/` - Hindi (1,200 images) |
|
|
- `it/` - Italian (1,200 images) |
|
|
- `ja/` - Japanese (1,200 images) |
|
|
- `ru/` - Russian (1,200 images) |
|
|
- `zh/` - Chinese (1,200 images) |
|
|
|
|
|
All images are in JPG format and represent the **test split**. |
|
|
|
|
|
## Task |
|
|
|
|
|
This dataset is designed for image-based document type classification. |