Datasets:

ArXiv:
License:
Dataset Viewer

The viewer is disabled because this dataset repo requires arbitrary Python code execution. Please consider removing the loading script and relying on automated data support (you can use convert_to_parquet from the datasets library). If this is not possible, please open a discussion for direct help.

Part of MONSTER: https://arxiv.org/abs/2502.15122.

STEW
Category EEG
Num. Examples 28,512
Num. Channels 14
Length 256
Sampling Freq. 128 Hz
Num. Classes 2
License CC BY 4.0
Citations [1] [2]

STEW comprises raw EEG recordings from 48 participants involved in a multitasking workload experiment [1]. Additionally, the subjects' baseline brain activity at rest was recorded before the test. The data was captured using the Emotiv Epoc device with a sampling frequency of 128Hz and 14 channels, resulting in 2.5 minutes of EEG recording for each case. Participants were instructed to assess their perceived mental workload after each stage using a rating scale ranging from 1 to 9, and these ratings are available in a separate file. The dataset has been divided into cross-validation folds based on individual participants. Additionally, binary class labels have been assigned to the data, categorizing workload ratings above 4 as "high" and those below or equal to 4 as "low". We utilize these labels for our specific problem. STEW can be accessed upon request through the IEEE DataPort [2]. The processed dataset consists of 28,512 multivariate time series each of length 256 (i.e., representing 2 seconds of data at 128 Hz).

[1] Wei Lun Lim, Olga Sourina, and Lipo Wang. (2018). STEW: Simultaneous task EEG workload data set. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 26(11):2106–2114.

[2] Wei Lun Lim, Olga Sourina, and Lipo Wang. (2020). STEW: Simultaneous task EEG workload data set. https://ieee-dataport.org/open-access/stew-simultaneous-task-eeg-workload-dataset. CC BY 4.0.

Downloads last month
103