File size: 1,832 Bytes
8034cf2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
# LNDb – Lung Nodule Database

## License
**CC BY-NC-ND 4.0**  
[Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License](https://creativecommons.org/licenses/by-nc-nd/4.0/)

## Citation
Paper BibTeX:

```bibtex
@article{pedrosa2021lndb,
  title={LNDb challenge on automatic lung cancer patient management},
  author={Pedrosa, Jo{\~a}o and Aresta, Guilherme and Ferreira, Carlos and Atwal, Gurraj and Phoulady, Hady Ahmady and Chen, Xiaoyu and Chen, Rongzhen and Li, Jiaoliang and Wang, Liansheng and Galdran, Adrian and others},
  journal={Medical image analysis},
  volume={70},
  pages={102027},
  year={2021},
  publisher={Elsevier}
}
```


## Dataset description
The Lung Nodule Database (LNDb) was developed as an external dataset to complement LIDC-IDRI, enabling external and comparable validation of computer-aided diagnosis systems. It contains 294 retrospectively collected CT scans from CHUSJ in Porto, Portugal, acquired between 2016 and 2018 under ethical approval and anonymised for research use.

**Challenge homepage**: https://lndb.grand-challenge.org/Home/
 
**Number of CT volumes**: 294

**Contrast**: -

**CT body coverage**: Chest

**Does the dataset include any ground truth annotations?**: Yes

**Original GT annotation targets**: Pulmonary nodules

**Number of annotated CT volumes**: -

**Annotator**: Human

**Acquisition centers**: Centro Hospitalar e Universitário de São João in Porto, Portugal.

**Pathology/Disease**: Pulmonary nodules for lung cancer screening and management

**Original dataset download link**: https://zenodo.org/records/7153205#.Yz_oVHbMJPZ

**Original dataset format**: mhd/.raw

## Note
In accordance with the license, CADS does **not** redistribute LNDb images. Please download the original images directly from the provided Zenodo link above.