Datasets:
mteb
/

Modalities:
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
pandas
Dataset Viewer
Auto-converted to Parquet
query-id
string
corpus-id
string
score
int64
test_query0
apositive_test_query0_00000
1
test_query0
apositive_test_query0_00001
1
test_query0
negative_test_query0_00000
0
test_query0
negative_test_query0_00001
0
test_query0
negative_test_query0_00002
0
test_query0
negative_test_query0_00003
0
test_query0
negative_test_query0_00004
0
test_query0
negative_test_query0_00005
0
test_query0
negative_test_query0_00006
0
test_query0
negative_test_query0_00007
0
test_query0
negative_test_query0_00008
0
test_query0
negative_test_query0_00009
0
test_query0
negative_test_query0_00010
0
test_query0
negative_test_query0_00011
0
test_query0
negative_test_query0_00012
0
test_query0
negative_test_query0_00013
0
test_query0
negative_test_query0_00014
0
test_query0
negative_test_query0_00015
0
test_query0
negative_test_query0_00016
0
test_query0
negative_test_query0_00017
0
test_query0
negative_test_query0_00018
0
test_query0
negative_test_query0_00019
0
test_query0
negative_test_query0_00020
0
test_query0
negative_test_query0_00021
0
test_query0
negative_test_query0_00022
0
test_query0
negative_test_query0_00023
0
test_query0
negative_test_query0_00024
0
test_query0
negative_test_query0_00025
0
test_query0
negative_test_query0_00026
0
test_query0
negative_test_query0_00027
0
test_query0
negative_test_query0_00028
0
test_query0
negative_test_query0_00029
0
test_query0
negative_test_query0_00030
0
test_query0
negative_test_query0_00031
0
test_query0
negative_test_query0_00032
0
test_query0
negative_test_query0_00033
0
test_query0
negative_test_query0_00034
0
test_query0
negative_test_query0_00035
0
test_query0
negative_test_query0_00036
0
test_query0
negative_test_query0_00037
0
test_query0
negative_test_query0_00038
0
test_query0
negative_test_query0_00039
0
test_query0
negative_test_query0_00040
0
test_query0
negative_test_query0_00041
0
test_query0
negative_test_query0_00042
0
test_query0
negative_test_query0_00043
0
test_query0
negative_test_query0_00044
0
test_query0
negative_test_query0_00045
0
test_query0
negative_test_query0_00046
0
test_query0
negative_test_query0_00047
0
test_query0
negative_test_query0_00048
0
test_query0
negative_test_query0_00049
0
test_query0
negative_test_query0_00050
0
test_query0
negative_test_query0_00051
0
test_query0
negative_test_query0_00052
0
test_query0
negative_test_query0_00053
0
test_query0
negative_test_query0_00054
0
test_query0
negative_test_query0_00055
0
test_query0
negative_test_query0_00056
0
test_query0
negative_test_query0_00057
0
test_query0
negative_test_query0_00058
0
test_query0
negative_test_query0_00059
0
test_query0
negative_test_query0_00060
0
test_query0
negative_test_query0_00061
0
test_query0
negative_test_query0_00062
0
test_query0
negative_test_query0_00063
0
test_query0
negative_test_query0_00064
0
test_query0
negative_test_query0_00065
0
test_query0
negative_test_query0_00066
0
test_query0
negative_test_query0_00067
0
test_query0
negative_test_query0_00068
0
test_query0
negative_test_query0_00069
0
test_query0
negative_test_query0_00070
0
test_query0
negative_test_query0_00071
0
test_query0
negative_test_query0_00072
0
test_query0
negative_test_query0_00073
0
test_query0
negative_test_query0_00074
0
test_query0
negative_test_query0_00075
0
test_query0
negative_test_query0_00076
0
test_query0
negative_test_query0_00077
0
test_query0
negative_test_query0_00078
0
test_query0
negative_test_query0_00079
0
test_query0
negative_test_query0_00080
0
test_query0
negative_test_query0_00081
0
test_query0
negative_test_query0_00082
0
test_query0
negative_test_query0_00083
0
test_query0
negative_test_query0_00084
0
test_query0
negative_test_query0_00085
0
test_query0
negative_test_query0_00086
0
test_query0
negative_test_query0_00087
0
test_query0
negative_test_query0_00088
0
test_query0
negative_test_query0_00089
0
test_query0
negative_test_query0_00090
0
test_query0
negative_test_query0_00091
0
test_query0
negative_test_query0_00092
0
test_query0
negative_test_query0_00093
0
test_query0
negative_test_query0_00094
0
test_query0
negative_test_query0_00095
0
test_query0
negative_test_query0_00096
0
test_query0
negative_test_query0_00097
0
End of preview. Expand in Data Studio

CMedQAv2-reranking

An MTEB dataset
Massive Text Embedding Benchmark

Chinese community medical question answering

Task category t2t
Domains Medical, Written
Reference https://github.com/zhangsheng93/cMedQA2

How to evaluate on this task

You can evaluate an embedding model on this dataset using the following code:

import mteb

task = mteb.get_tasks(["CMedQAv2-reranking"])
evaluator = mteb.MTEB(task)

model = mteb.get_model(YOUR_MODEL)
evaluator.run(model)

To learn more about how to run models on mteb task check out the GitHub repitory.

Citation

If you use this dataset, please cite the dataset as well as mteb, as this dataset likely includes additional processing as a part of the MMTEB Contribution.


@article{8548603,
  author = {S. Zhang and X. Zhang and H. Wang and L. Guo and S. Liu},
  doi = {10.1109/ACCESS.2018.2883637},
  issn = {2169-3536},
  journal = {IEEE Access},
  keywords = {Biomedical imaging;Data mining;Semantics;Medical services;Feature extraction;Knowledge discovery;Medical question answering;interactive attention;deep learning;deep neural networks},
  month = {},
  number = {},
  pages = {74061-74071},
  title = {Multi-Scale Attentive Interaction Networks for Chinese Medical Question Answer Selection},
  volume = {6},
  year = {2018},
}


@article{enevoldsen2025mmtebmassivemultilingualtext,
  title={MMTEB: Massive Multilingual Text Embedding Benchmark},
  author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2502.13595},
  year={2025},
  url={https://arxiv.org/abs/2502.13595},
  doi = {10.48550/arXiv.2502.13595},
}

@article{muennighoff2022mteb,
  author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
  title = {MTEB: Massive Text Embedding Benchmark},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2210.07316},
  year = {2022}
  url = {https://arxiv.org/abs/2210.07316},
  doi = {10.48550/ARXIV.2210.07316},
}

Dataset Statistics

Dataset Statistics

The following code contains the descriptive statistics from the task. These can also be obtained using:

import mteb

task = mteb.get_task("CMedQAv2-reranking")

desc_stats = task.metadata.descriptive_stats
{
    "test": {
        "num_samples": 101000,
        "number_of_characters": 10110234,
        "num_documents": 100000,
        "min_document_length": 11,
        "average_document_length": 100.61386,
        "max_document_length": 264,
        "unique_documents": 100000,
        "num_queries": 1000,
        "min_query_length": 11,
        "average_query_length": 48.848,
        "max_query_length": 153,
        "unique_queries": 1000,
        "none_queries": 0,
        "num_relevant_docs": 100000,
        "min_relevant_docs_per_query": 100,
        "average_relevant_docs_per_query": 1.91,
        "max_relevant_docs_per_query": 100,
        "unique_relevant_docs": 100000,
        "num_instructions": null,
        "min_instruction_length": null,
        "average_instruction_length": null,
        "max_instruction_length": null,
        "unique_instructions": null,
        "num_top_ranked": 1000,
        "min_top_ranked_per_query": 100,
        "average_top_ranked_per_query": 100.0,
        "max_top_ranked_per_query": 100
    }
}

This dataset card was automatically generated using MTEB

Downloads last month
49