Datasets:
mteb
/

Modalities:
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
pandas
License:
Dataset Viewer
Auto-converted to Parquet
query-id
stringlengths
32
32
corpus-id
stringlengths
32
32
score
int64
1
1
20960d5509bba258d150e6042b0f4589
73b19aa7dc6a0611ffa1a43a2633c692
1
7183027f0d2c3eeeecb9656ccf414396
f052f3d20faf684451cf8e5124656297
1
76371ef2c5ae14c00e779d14d2fdf3d2
20be88a08f2013aa0c49291ce0f97113
1
680317ac7898650bbff70b7aa146f6dd
1d455ea4d8947c728670b3a2579a84da
1
ce085e30188e503738350bae0961028a
995bb677972055a2c1d62fd6e86a1d2b
1
9a63170197b20f0f8d2738bdeca541b1
b53d8dd6b0044eec427428d0ec4c882a
1
a657871e60eb74046b473412eb95daef
e542e7fd6733644a388841345ef7330f
1
f2acc349adf9da2ad259ef036e04c668
ea46d5b4a8c860377f14a6e0adf82162
1
bd8141caa61d7cf60c1abd8a7ba281db
451ade8b776eddea6df9154ef522eb23
1
027fb278bd491f8fac9c6feeb2061f66
88e7111a10db795e6cf4ec3d3f34a641
1
d45a66d2a30995138a4d5222662eec65
9abd522d11efaeeb8147a1405b765d1f
1
3b5c7524868660d921c7774256971e7c
37e40d5bd078d233398c594a93ee92b0
1
52a3c653ec9b1b5c2312dc8c6f934c60
be995b95719b652a425731ee7f469829
1
73f625ed4a4a0a24a3f023f5f6cc56ce
9a7a107216875097f16da2dba0a467a4
1
b8b70822f0beeb119c272bcbdeba8583
7661759ff2ee58aac010f15c4cf38799
1
7f9283ae5b574b4d3101561af3d704cd
187efc34fe780f97ded0af847f703bb1
1
0298cac2257992c586db6fdc1993c3b4
f8107e135cc881ba5744652fa0c20ecf
1
5d640e65685723dbad949589280d1f6c
d4c5da7dc2b9ce8bd3e97b88cb0678b4
1
a292e38b04922a39267cf52407f39c38
28fdcac599638770def407e29ffe8f57
1
325fa73f627563445f5a421462fbf1ec
fee180c8d7f2a5466e6e884f0ff73e58
1
5a16df3683518ea1557aa98c56b2c22b
17057740dcde37cb833e450c5b8cbde8
1
3408e401c1cc5e3fe015632947a3bebf
696c1d8ee10c59a2f79f4715212d1ba2
1
d35d83659cab911163fae7f4f8f3c914
02b9d87e2d4db6f2af68307b366360c8
1
2686412390dfd10012537a4a76d43bb7
69c3b6d25e719323334ba2792a2525db
1
fb09c1a7a6178dd965d771e5d9c3eab4
6d31732590efc791bfc997d3c1b6b447
1
4ad7e7325df6c3863b1be3824fcdb702
ef0ae59ae0282868a764bdca7c913c87
1
4d77fb540215067492b2ba99b2aa34c3
a14ceaf833a0f5a59d891d45c05c33a5
1
70dfc995980b05f5d014132c40810ad0
d9f87d582eb6c68df7a8544ff5cd5710
1
062fa0b0ea9185a7ed487133ac7b584b
4d3f0d7f6c38969c3b2d313a78a682ea
1
34f3b02cfdc0129edd89cff77a787394
c33688281c70fa1c4c8800ea3f2eec20
1
15fe346c3c6d321b59c40cbd4f5037e2
413ef0674f896a790e3c6f0c9c51932a
1
f36d11e087119f11bde7a8670ca30294
9e59d9b4bf0e0c26f9727d45e4bf316c
1
5c4b6ab808f07ef111a14da0057a62b3
36b44eb634e14c367d4c1df0372954cb
1
8abc90dc300593f36cc5ddd77c6e1f2f
0e9d6ac0b7e7e2b4c952f5050bdc7069
1
900adfd6663600f025e6f0d3d31c8e07
2c4889af844318ae5be3c45383ff0c41
1
3c0ac74fc65ad9d3478f0e401ea598be
85375480d98880e06d08ed21fabdd6ce
1
ce34d48dbcb5e63c5a5b5795e8962c6c
bf84c7be6ad9b3f76a2152d0e2f9a65c
1
5becebe70922d4394bd1123d57094162
28f75e2b6017a147ea4fbb3787034779
1
f83ea89d7f472389b09cbd0223a0208a
5eccef735df1a59d26a669de464224f8
1
c4748de89bab493efab837903479b732
071912653da34a1d708fc6bb653b9479
1
a7178abb8db2c9fad339e09803c4ec8a
209c3b7029a05a72d96a03202fccb4b0
1
d58361e560acb22d673b66dd26a824ff
11f843fba664846b45887cc5b1459b9d
1
7cad7aa39801b71d52dcc1269ace548d
e8a5d1c9b883b1e63b1ef01abe0da365
1
39e25e2e97a99991cb1b0cb736dea0f2
5079965f0f1b04276a9912415752c8a2
1
ab303ad133666f37326b87889481a13d
48449f8f37d0053005273dd79c1ec252
1
410d6f3a53fdef46247a04550599a373
2d736a1c98611375bce45a3fb3003bb1
1
22d9a4071c7f116fe7d72b41ac668512
399278d391d4bb37b6a6aaceb8900233
1
6f41eb414e7a87bbb381ab4996b4e03c
c649b7ed7a8cf46f43373c6f12ed3f56
1
b064d3c25c679836b8bf9e3c456557df
27f86a445bd2691246da3eed49b0a8e3
1
78f40b5a6968177d047e38725cf04313
507988d123d63bcea524b3f953457aff
1
be881152f439849b19da45e0a37f12a0
c501f96e8c7a6ddc5b30dd74f9345df1
1
60b69a5e32c9663d1187895f69cdc9a7
74b2a4d3c5c45333a76edb91fd8ac1f4
1
ab147fdd5626d3bd5a2afc5ab99dc261
6f9e9b48366a9a8ca9f793ecfa3b720f
1
d077afa2b6aaae42ae7c31a7e0c1d27d
f01f06b5507b90fc055cc795347904c9
1
0060b77165be44ed86fac9993fe2e5ec
82291868e75522a8c0ef485eed30a9bb
1
6ffc44e3b4e44f93b9f2354488f1d1ff
2ceeca669adc741e438aeac46671b982
1
65a53496943ba9a4b3407cea8c2e7a77
26a669706fc3edd3896d6c309cedc2d9
1
7c89f7f4b5c3403b45aaaba76123f5ac
e6408e0e255367f3350c03829b16de72
1
e7b3ffb991b7445295dbdcd33de8b2ed
d2437b5240e3753e799b06a8fd5e2646
1
0fa4038dee1094c089350735297b2e2c
9fd051066b49fe609851f7ebe9ccaa48
1
3f97182cb9bbc43314b43613c4694ed1
dbcf2af81d8afa90956683b4c9267898
1
85177c26a37f90e104eb076069438d50
5e802d7a5092dc2bb3688ebaa3c366db
1
f025f0b0256763358315e2c5cc0e085f
df7b7abfc7e92d2cb21a038c6707fb54
1
61d9d21b5d7bffab9103edf73afad8f3
8ba9b75274c4389863a16838fc6612e9
1
5830bcd364ed99581e51309873c59cb7
f5d2de4e2cb0656ce1f79f39b2654233
1
e00504edc3d6c984c42c8b4eb9bc049b
bff468aa524387c0fb66851ac980e766
1
a08b384a805baab9f9a1f7507eb21c48
17612d873f0a3a5ba9d2b30be3c25ab3
1
edaef47905b36839681aca1d95b4225e
98199931f0127df39ba9d8abfbb759cd
1
d3e01e40909a6dc3f5dc56691a5e28f6
4d2a8ef41b7d40841a6e945e48468813
1
f647de3e25aab0fbad6d4321c6b86747
356691c239f420fe502808896031be7f
1
a3cd3d8a711e896e90a4e4cc8aa5c419
47e69b1d32be219a88d1c05b0c213406
1
ee88e6565358df03bed68598e1c4446e
a6ad213f4d58d42745bdd265f77d58b4
1
adf7aa14c1b315752ff4c44a6ce2c612
c27fef7db1cecf1ed938c41b62f5fef5
1
e0345506ce7b3a8ffb9a5e1c776bea4e
16d4af59219905eee1321b8341ad7172
1
4cec50343562ac6afc08ac04bd3321f7
77d24e3eb5700df93a2f1b47bbe753da
1
cf5e7c6431589a3369c1b81430fe95b4
da399f5fa4c9c8c687b259df5bc4f069
1
f451b1d45bf78b4020c4238730f281fc
957f3da5c0395f251c2620a3d558f252
1
90b20799016fbd3686c515efcc9d48cd
9ab46bdf25c9b9e205dbb1bc81e0499d
1
f1807d35480a0970cdefbedcf9b39add
355598a904ad285204797b30c19767c1
1
3d3ec9a5e7b5862566a98ea90460196e
adbd7440de754947b348989df6e6e1e6
1
2b1ce0eec2645cf452c91bc874f2346c
df7f079a8ce53f757621ef4886549596
1
86946076d633aab4b6f51958be5bfea7
ff7f5edb764d4a6f73b506c5ea5355a3
1
89cac4c39a8964a6f6930e05222107a9
5dc807650268ee69ff4ea02a0776489d
1
93182b38778982e88959a24a07569a06
422b218479e25779d89709534d05ee33
1
6001c888b7814689b5606586d8ee5d45
9f4cb84a67e4581d8d9d2ca9fb0c04c9
1
353d6d3abac2e022e33785b80ffc58d4
3ab87e8dc2e9d2ad4e63e6fa30746761
1
ebb6334b7df1e2a85677f7835e3d2181
a26b2debdc4e3f6f2480e25ffb87b878
1
259c89a892d5c5d92a82b6ce14a998f4
a25730d5671c7e61693ac854ef145dc6
1
a2e9114024a6e2670d8b5dddd938f991
d8d695d846cfdb49682a2b07fee2820c
1
c68992470b0c053023d25b4557437f1e
60a8275ecd11d9540e5d3e3bec972213
1
496da8428169af3fa3f368af03b70aa0
efbeece98045e7cfefed1d0486ea16f3
1
e57c9ee83bf4045559a069f5975bff7d
6ea8010c75088976daf714aee1eea983
1
a3e6e2d06c05d44b2d01f9f669fc86c2
d7ece22b160abd2606896e0fff925597
1
3db42b93802847eee87364ca624cd6ef
1fc6a8204540698e9f1af231b0eacdd6
1
332da61bb91109b54207fba16f75d483
681af4f5d1b7012ba62f931d4524be1c
1
425b269760f2ded7478f731f720b2380
1bd1502471bfc5183a7c6ff6aa8b05dd
1
f6aae6a40cb5669206fbd40fcb7083eb
3c78478a966dd01869811085d6072fd2
1
5aeb3abbbedf91663959499a3849431a
d62677a04ba82daa5b30562441eb088b
1
c21f62c86f52ad72186da47c32215fe5
838382163a5b90ee4d16111bb5ca8c7e
1
c21f62c86f52ad72186da47c32215fe5
5d98690d9830c8ac1b22c34d03142c6a
1
End of preview. Expand in Data Studio

CovidRetrieval

An MTEB dataset
Massive Text Embedding Benchmark

COVID-19 news articles

Task category t2t
Domains Medical, Entertainment
Reference https://arxiv.org/abs/2203.03367

How to evaluate on this task

You can evaluate an embedding model on this dataset using the following code:

import mteb

task = mteb.get_tasks(["CovidRetrieval"])
evaluator = mteb.MTEB(task)

model = mteb.get_model(YOUR_MODEL)
evaluator.run(model)

To learn more about how to run models on mteb task check out the GitHub repitory.

Citation

If you use this dataset, please cite the dataset as well as mteb, as this dataset likely includes additional processing as a part of the MMTEB Contribution.


@misc{long2022multicprmultidomainchinese,
  archiveprefix = {arXiv},
  author = {Dingkun Long and Qiong Gao and Kuan Zou and Guangwei Xu and Pengjun Xie and Ruijie Guo and Jian Xu and Guanjun Jiang and Luxi Xing and Ping Yang},
  eprint = {2203.03367},
  primaryclass = {cs.IR},
  title = {Multi-CPR: A Multi Domain Chinese Dataset for Passage Retrieval},
  url = {https://arxiv.org/abs/2203.03367},
  year = {2022},
}


@article{enevoldsen2025mmtebmassivemultilingualtext,
  title={MMTEB: Massive Multilingual Text Embedding Benchmark},
  author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2502.13595},
  year={2025},
  url={https://arxiv.org/abs/2502.13595},
  doi = {10.48550/arXiv.2502.13595},
}

@article{muennighoff2022mteb,
  author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
  title = {MTEB: Massive Text Embedding Benchmark},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2210.07316},
  year = {2022}
  url = {https://arxiv.org/abs/2210.07316},
  doi = {10.48550/ARXIV.2210.07316},
}

Dataset Statistics

Dataset Statistics

The following code contains the descriptive statistics from the task. These can also be obtained using:

import mteb

task = mteb.get_task("CovidRetrieval")

desc_stats = task.metadata.descriptive_stats
{
    "dev": {
        "num_samples": 100950,
        "number_of_characters": 33266467,
        "num_documents": 100001,
        "min_document_length": 1,
        "average_document_length": 332.4152658473415,
        "max_document_length": 60975,
        "unique_documents": 100001,
        "num_queries": 949,
        "min_query_length": 8,
        "average_query_length": 25.9304531085353,
        "max_query_length": 91,
        "unique_queries": 949,
        "none_queries": 0,
        "num_relevant_docs": 959,
        "min_relevant_docs_per_query": 1,
        "average_relevant_docs_per_query": 1.0105374077976819,
        "max_relevant_docs_per_query": 4,
        "unique_relevant_docs": 830,
        "num_instructions": null,
        "min_instruction_length": null,
        "average_instruction_length": null,
        "max_instruction_length": null,
        "unique_instructions": null,
        "num_top_ranked": null,
        "min_top_ranked_per_query": null,
        "average_top_ranked_per_query": null,
        "max_top_ranked_per_query": null
    }
}

This dataset card was automatically generated using MTEB

Downloads last month
74