Datasets:
mteb
/

Modalities:
Text
Formats:
parquet
Languages:
German
ArXiv:
Libraries:
Datasets
pandas
License:
GermanSTSBenchmark / README.md
Samoed's picture
Add dataset card
75829b7 verified
metadata
language:
  - deu
license: cc-by-sa-3.0
multilinguality: monolingual
task_categories:
  - sentence-similarity
task_ids:
  - semantic-similarity-scoring
dataset_info:
  features:
    - name: sentence1
      dtype: string
    - name: sentence2
      dtype: string
    - name: score
      dtype: float64
  splits:
    - name: train
      num_bytes: 863133
      num_examples: 5749
    - name: validation
      num_bytes: 246492
      num_examples: 1500
    - name: test
      num_bytes: 193606
      num_examples: 1379
  download_size: 794551
  dataset_size: 1303231
configs:
  - config_name: default
    data_files:
      - split: train
        path: data/train-*
      - split: validation
        path: data/validation-*
      - split: test
        path: data/test-*
tags:
  - mteb
  - text

GermanSTSBenchmark

An MTEB dataset
Massive Text Embedding Benchmark

Semantic Textual Similarity Benchmark (STSbenchmark) dataset translated into German. Translations were originally done by T-Systems on site services GmbH.

How to evaluate on this task

You can evaluate an embedding model on this dataset using the following code:

import mteb

task = mteb.get_tasks(["GermanSTSBenchmark"])
evaluator = mteb.MTEB(task)

model = mteb.get_model(YOUR_MODEL)
evaluator.run(model)

To learn more about how to run models on mteb task check out the GitHub repitory.

Citation

If you use this dataset, please cite the dataset as well as mteb, as this dataset likely includes additional processing as a part of the MMTEB Contribution.


@inproceedings{huggingface:dataset:stsb_multi_mt,
  author = {Philip May},
  title = {Machine translated multilingual STS benchmark dataset.},
  url = {https://github.com/PhilipMay/stsb-multi-mt},
  year = {2021},
}


@article{enevoldsen2025mmtebmassivemultilingualtext,
  title={MMTEB: Massive Multilingual Text Embedding Benchmark},
  author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2502.13595},
  year={2025},
  url={https://arxiv.org/abs/2502.13595},
  doi = {10.48550/arXiv.2502.13595},
}

@article{muennighoff2022mteb,
  author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
  title = {MTEB: Massive Text Embedding Benchmark},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2210.07316},
  year = {2022}
  url = {https://arxiv.org/abs/2210.07316},
  doi = {10.48550/ARXIV.2210.07316},
}

Dataset Statistics

Dataset Statistics

The following code contains the descriptive statistics from the task. These can also be obtained using:

import mteb

task = mteb.get_task("GermanSTSBenchmark")

desc_stats = task.metadata.descriptive_stats
{
    "validation": {
        "num_samples": 1500,
        "number_of_characters": 218610,
        "unique_pairs": 1497,
        "min_sentence1_length": 14,
        "average_sentence1_len": 73.23733333333334,
        "max_sentence1_length": 241,
        "unique_sentence1": 1468,
        "min_sentence2_length": 14,
        "average_sentence2_len": 72.50266666666667,
        "max_sentence2_length": 245,
        "unique_sentence2": 1458,
        "min_score": 0.0,
        "avg_score": 2.363907555555555,
        "max_score": 5.0
    },
    "test": {
        "num_samples": 1379,
        "number_of_characters": 168618,
        "unique_pairs": 1376,
        "min_sentence1_length": 14,
        "average_sentence1_len": 61.184916606236406,
        "max_sentence1_length": 232,
        "unique_sentence1": 1245,
        "min_sentence2_length": 13,
        "average_sentence2_len": 61.090645395213926,
        "max_sentence2_length": 238,
        "unique_sentence2": 1327,
        "min_score": 0.0,
        "avg_score": 2.607916606236405,
        "max_score": 5.0
    }
}

This dataset card was automatically generated using MTEB