title
stringclasses
1 value
text
stringlengths
30
426k
id
stringlengths
27
30
asv_bench/benchmarks/groupby.py/Size/setup class Size: def setup(self): n = 10**5 offsets = np.random.randint(n, size=n).astype("timedelta64[ns]") dates = np.datetime64("now") + offsets self.df = DataFrame( { "key1": np.random.randint(0, 500, size=n), "key2": np.random.randint(0, 100, size=n), "value1": np.random.randn(n), "value2": np.random.randn(n), "value3": np.random.randn(n), "dates": dates, } ) self.draws = Series(np.random.randn(n)) labels = Series(["foo", "bar", "baz", "qux"] * (n // 4)) self.cats = labels.astype("category")
negative_train_query0_00398
asv_bench/benchmarks/groupby.py/Size/time_multi_size class Size: def time_multi_size(self): self.df.groupby(["key1", "key2"]).size()
negative_train_query0_00399
asv_bench/benchmarks/groupby.py/Size/time_category_size class Size: def time_category_size(self): self.draws.groupby(self.cats, observed=True).size()
negative_train_query0_00400
asv_bench/benchmarks/groupby.py/Shift/setup class Shift: def setup(self): N = 18 self.df = DataFrame({"g": ["a", "b"] * 9, "v": list(range(N))})
negative_train_query0_00401
asv_bench/benchmarks/groupby.py/Shift/time_defaults class Shift: def time_defaults(self): self.df.groupby("g").shift()
negative_train_query0_00402
asv_bench/benchmarks/groupby.py/Shift/time_fill_value class Shift: def time_fill_value(self): self.df.groupby("g").shift(fill_value=99)
negative_train_query0_00403
asv_bench/benchmarks/groupby.py/Fillna/setup class Fillna: def setup(self): N = 100 self.df = DataFrame( {"group": [1] * N + [2] * N, "value": [np.nan, 1.0] * N} ).set_index("group")
negative_train_query0_00404
asv_bench/benchmarks/groupby.py/Fillna/time_df_ffill class Fillna: def time_df_ffill(self): self.df.groupby("group").ffill()
negative_train_query0_00405
asv_bench/benchmarks/groupby.py/Fillna/time_df_bfill class Fillna: def time_df_bfill(self): self.df.groupby("group").bfill()
negative_train_query0_00406
asv_bench/benchmarks/groupby.py/Fillna/time_srs_ffill class Fillna: def time_srs_ffill(self): self.df.groupby("group")["value"].ffill()
negative_train_query0_00407
asv_bench/benchmarks/groupby.py/Fillna/time_srs_bfill class Fillna: def time_srs_bfill(self): self.df.groupby("group")["value"].bfill()
negative_train_query0_00408
asv_bench/benchmarks/groupby.py/GroupByMethods/setup class GroupByMethods: def setup(self, dtype, method, application, ncols, engine): if method in method_blocklist.get(dtype, {}): raise NotImplementedError # skip benchmark if ncols != 1 and method in ["value_counts", "unique"]: # DataFrameGroupBy doesn't have these methods raise NotImplementedError if application == "transformation" and method in [ "describe", "head", "tail", "unique", "value_counts", "size", ]: # DataFrameGroupBy doesn't have these methods raise NotImplementedError # Numba currently doesn't support # multiple transform functions or strs for transform, # grouping on multiple columns # and we lack kernels for a bunch of methods if ( (engine == "numba" and method in _numba_unsupported_methods) or ncols > 1 or application == "transformation" or dtype == "datetime" ): raise NotImplementedError if method == "describe": ngroups = 20 elif method == "skew": ngroups = 100 else: ngroups = 1000 size = ngroups * 2 rng = np.arange(ngroups).reshape(-1, 1) rng = np.broadcast_to(rng, (len(rng), ncols)) taker = np.random.randint(0, ngroups, size=size) values = rng.take(taker, axis=0) if dtype == "int": key = np.random.randint(0, size, size=size) elif dtype in ("int16", "uint"): key = np.random.randint(0, size, size=size, dtype=dtype) elif dtype == "float": key = np.concatenate( [np.random.random(ngroups) * 0.1, np.random.random(ngroups) * 10.0] ) elif dtype == "object": key = ["foo"] * size elif dtype == "datetime": key = date_range("1/1/2011", periods=size, freq="s") cols = [f"values{n}" for n in range(ncols)] df = DataFrame(values, columns=cols) df["key"] = key if len(cols) == 1: cols = cols[0] # Not everything supports the engine keyword yet kwargs = {} if engine == "numba": kwargs["engine"] = engine if application == "transformation": self.as_group_method = lambda: df.groupby("key")[cols].transform( method, **kwargs ) self.as_field_method = lambda: df.groupby(cols)["key"].transform( method, **kwargs ) else: self.as_group_method = partial( getattr(df.groupby("key")[cols], method), **kwargs ) self.as_field_method = partial( getattr(df.groupby(cols)["key"], method), **kwargs )
negative_train_query0_00409
asv_bench/benchmarks/groupby.py/GroupByMethods/time_dtype_as_group class GroupByMethods: def time_dtype_as_group(self, dtype, method, application, ncols, engine): self.as_group_method()
negative_train_query0_00410
asv_bench/benchmarks/groupby.py/GroupByMethods/time_dtype_as_field class GroupByMethods: def time_dtype_as_field(self, dtype, method, application, ncols, engine): self.as_field_method()
negative_train_query0_00411
asv_bench/benchmarks/groupby.py/GroupByCythonAgg/setup class GroupByCythonAgg: def setup(self, dtype, method): N = 1_000_000 df = DataFrame(np.random.randn(N, 10), columns=list("abcdefghij")) df["key"] = np.random.randint(0, 100, size=N) self.df = df
negative_train_query0_00412
asv_bench/benchmarks/groupby.py/GroupByCythonAgg/time_frame_agg class GroupByCythonAgg: def time_frame_agg(self, dtype, method): self.df.groupby("key").agg(method)
negative_train_query0_00413
asv_bench/benchmarks/groupby.py/GroupByNumbaAgg/setup class GroupByNumbaAgg: def setup(self, dtype, method): if method in _numba_unsupported_methods: raise NotImplementedError super().setup(dtype, method)
negative_train_query0_00414
asv_bench/benchmarks/groupby.py/GroupByNumbaAgg/time_frame_agg class GroupByNumbaAgg: def time_frame_agg(self, dtype, method): self.df.groupby("key").agg(method, engine="numba")
negative_train_query0_00415
asv_bench/benchmarks/groupby.py/GroupByCythonAggEaDtypes/setup class GroupByCythonAggEaDtypes: def setup(self, dtype, method): N = 1_000_000 df = DataFrame( np.random.randint(0, high=100, size=(N, 10)), columns=list("abcdefghij"), dtype=dtype, ) df.loc[list(range(1, N, 5)), list("abcdefghij")] = NA df["key"] = np.random.randint(0, 100, size=N) self.df = df
negative_train_query0_00416
asv_bench/benchmarks/groupby.py/GroupByCythonAggEaDtypes/time_frame_agg class GroupByCythonAggEaDtypes: def time_frame_agg(self, dtype, method): self.df.groupby("key").agg(method)
negative_train_query0_00417
asv_bench/benchmarks/groupby.py/Cumulative/setup class Cumulative: def setup(self, dtype, method, with_nans): if with_nans and dtype == "int64": raise NotImplementedError("Construction of df would raise") N = 500_000 keys = np.random.randint(0, 100, size=N) vals = np.random.randint(-10, 10, (N, 5)) if with_nans: null_vals = vals.astype(float, copy=True) null_vals[::2, :] = np.nan null_vals[::3, :] = np.nan df = DataFrame(null_vals, columns=list("abcde"), dtype=dtype) df["key"] = keys self.df = df else: df = DataFrame(vals, columns=list("abcde")).astype(dtype, copy=False) df["key"] = keys self.df = df
negative_train_query0_00418
asv_bench/benchmarks/groupby.py/Cumulative/time_frame_transform class Cumulative: def time_frame_transform(self, dtype, method, with_nans): self.df.groupby("key").transform(method)
negative_train_query0_00419
asv_bench/benchmarks/groupby.py/RankWithTies/setup class RankWithTies: def setup(self, dtype, tie_method): N = 10**4 if dtype == "datetime64": data = np.array([Timestamp("2011/01/01")] * N, dtype=dtype) else: data = np.ones(N, dtype=dtype) self.df = DataFrame({"values": data, "key": ["foo"] * N})
negative_train_query0_00420
asv_bench/benchmarks/groupby.py/RankWithTies/time_rank_ties class RankWithTies: def time_rank_ties(self, dtype, tie_method): self.df.groupby("key").rank(method=tie_method)
negative_train_query0_00421
asv_bench/benchmarks/groupby.py/Float32/setup class Float32: def setup(self): tmp1 = (np.random.random(10000) * 0.1).astype(np.float32) tmp2 = (np.random.random(10000) * 10.0).astype(np.float32) tmp = np.concatenate((tmp1, tmp2)) arr = np.repeat(tmp, 10) self.df = DataFrame({"a": arr, "b": arr})
negative_train_query0_00422
asv_bench/benchmarks/groupby.py/Float32/time_sum class Float32: def time_sum(self): self.df.groupby(["a"])["b"].sum()
negative_train_query0_00423
asv_bench/benchmarks/groupby.py/String/setup class String: def setup(self, dtype, method): cols = list("abcdefghjkl") self.df = DataFrame( np.random.randint(0, 100, size=(10_000, len(cols))), columns=cols, dtype=dtype, )
negative_train_query0_00424
asv_bench/benchmarks/groupby.py/String/time_str_func class String: def time_str_func(self, dtype, method): self.df.groupby("a")[self.df.columns[1:]].agg(method)
negative_train_query0_00425
asv_bench/benchmarks/groupby.py/Categories/setup class Categories: def setup(self, observed): N = 10**5 arr = np.random.random(N) data = {"a": Categorical(np.random.randint(10000, size=N)), "b": arr} self.df = DataFrame(data) data = { "a": Categorical(np.random.randint(10000, size=N), ordered=True), "b": arr, } self.df_ordered = DataFrame(data) data = { "a": Categorical( np.random.randint(100, size=N), categories=np.arange(10000) ), "b": arr, } self.df_extra_cat = DataFrame(data)
negative_train_query0_00426
asv_bench/benchmarks/groupby.py/Categories/time_groupby_sort class Categories: def time_groupby_sort(self, observed): self.df.groupby("a", observed=observed)["b"].count()
negative_train_query0_00427
asv_bench/benchmarks/groupby.py/Categories/time_groupby_nosort class Categories: def time_groupby_nosort(self, observed): self.df.groupby("a", observed=observed, sort=False)["b"].count()
negative_train_query0_00428
asv_bench/benchmarks/groupby.py/Categories/time_groupby_ordered_sort class Categories: def time_groupby_ordered_sort(self, observed): self.df_ordered.groupby("a", observed=observed)["b"].count()
negative_train_query0_00429
asv_bench/benchmarks/groupby.py/Categories/time_groupby_ordered_nosort class Categories: def time_groupby_ordered_nosort(self, observed): self.df_ordered.groupby("a", observed=observed, sort=False)["b"].count()
negative_train_query0_00430
asv_bench/benchmarks/groupby.py/Categories/time_groupby_extra_cat_sort class Categories: def time_groupby_extra_cat_sort(self, observed): self.df_extra_cat.groupby("a", observed=observed)["b"].count()
negative_train_query0_00431
asv_bench/benchmarks/groupby.py/Categories/time_groupby_extra_cat_nosort class Categories: def time_groupby_extra_cat_nosort(self, observed): self.df_extra_cat.groupby("a", observed=observed, sort=False)["b"].count()
negative_train_query0_00432
asv_bench/benchmarks/groupby.py/MultipleCategories/setup class MultipleCategories: def setup(self): N = 10**3 arr = np.random.random(N) data = { "a1": Categorical(np.random.randint(10000, size=N)), "a2": Categorical(np.random.randint(10000, size=N)), "b": arr, } self.df = DataFrame(data) data = { "a1": Categorical(np.random.randint(10000, size=N), ordered=True), "a2": Categorical(np.random.randint(10000, size=N), ordered=True), "b": arr, } self.df_ordered = DataFrame(data) data = { "a1": Categorical(np.random.randint(100, size=N), categories=np.arange(N)), "a2": Categorical(np.random.randint(100, size=N), categories=np.arange(N)), "b": arr, } self.df_extra_cat = DataFrame(data)
negative_train_query0_00433
asv_bench/benchmarks/groupby.py/MultipleCategories/time_groupby_sort class MultipleCategories: def time_groupby_sort(self): self.df.groupby(["a1", "a2"], observed=False)["b"].count()
negative_train_query0_00434
asv_bench/benchmarks/groupby.py/MultipleCategories/time_groupby_nosort class MultipleCategories: def time_groupby_nosort(self): self.df.groupby(["a1", "a2"], observed=False, sort=False)["b"].count()
negative_train_query0_00435
asv_bench/benchmarks/groupby.py/MultipleCategories/time_groupby_ordered_sort class MultipleCategories: def time_groupby_ordered_sort(self): self.df_ordered.groupby(["a1", "a2"], observed=False)["b"].count()
negative_train_query0_00436
asv_bench/benchmarks/groupby.py/MultipleCategories/time_groupby_ordered_nosort class MultipleCategories: def time_groupby_ordered_nosort(self): self.df_ordered.groupby(["a1", "a2"], observed=False, sort=False)["b"].count()
negative_train_query0_00437
asv_bench/benchmarks/groupby.py/MultipleCategories/time_groupby_extra_cat_sort class MultipleCategories: def time_groupby_extra_cat_sort(self): self.df_extra_cat.groupby(["a1", "a2"], observed=False)["b"].count()
negative_train_query0_00438
asv_bench/benchmarks/groupby.py/MultipleCategories/time_groupby_extra_cat_nosort class MultipleCategories: def time_groupby_extra_cat_nosort(self): self.df_extra_cat.groupby(["a1", "a2"], observed=False, sort=False)["b"].count()
negative_train_query0_00439
asv_bench/benchmarks/groupby.py/MultipleCategories/time_groupby_transform class MultipleCategories: def time_groupby_transform(self): self.df_extra_cat.groupby(["a1", "a2"], observed=False)["b"].cumsum()
negative_train_query0_00440
asv_bench/benchmarks/groupby.py/Datelike/setup class Datelike: def setup(self, grouper): N = 10**4 rng_map = { "period_range": period_range, "date_range": date_range, "date_range_tz": partial(date_range, tz="US/Central"), } self.grouper = rng_map[grouper]("1900-01-01", freq="D", periods=N) self.df = DataFrame(np.random.randn(10**4, 2))
negative_train_query0_00441
asv_bench/benchmarks/groupby.py/Datelike/time_sum class Datelike: def time_sum(self, grouper): self.df.groupby(self.grouper).sum()
negative_train_query0_00442
asv_bench/benchmarks/groupby.py/SumBools/setup class SumBools: def setup(self): N = 500 self.df = DataFrame({"ii": range(N), "bb": [True] * N})
negative_train_query0_00443
asv_bench/benchmarks/groupby.py/SumBools/time_groupby_sum_booleans class SumBools: def time_groupby_sum_booleans(self): self.df.groupby("ii").sum()
negative_train_query0_00444
asv_bench/benchmarks/groupby.py/SumMultiLevel/setup class SumMultiLevel: def setup(self): N = 50 self.df = DataFrame( {"A": list(range(N)) * 2, "B": range(N * 2), "C": 1} ).set_index(["A", "B"])
negative_train_query0_00445
asv_bench/benchmarks/groupby.py/SumMultiLevel/time_groupby_sum_multiindex class SumMultiLevel: def time_groupby_sum_multiindex(self): self.df.groupby(level=[0, 1]).sum()
negative_train_query0_00446
asv_bench/benchmarks/groupby.py/SumTimeDelta/setup class SumTimeDelta: def setup(self): N = 10**4 self.df = DataFrame( np.random.randint(1000, 100000, (N, 100)), index=np.random.randint(200, size=(N,)), ).astype("timedelta64[ns]") self.df_int = self.df.copy().astype("int64")
negative_train_query0_00447
asv_bench/benchmarks/groupby.py/SumTimeDelta/time_groupby_sum_timedelta class SumTimeDelta: def time_groupby_sum_timedelta(self): self.df.groupby(lambda x: x).sum()
negative_train_query0_00448
asv_bench/benchmarks/groupby.py/SumTimeDelta/time_groupby_sum_int class SumTimeDelta: def time_groupby_sum_int(self): self.df_int.groupby(lambda x: x).sum()
negative_train_query0_00449
asv_bench/benchmarks/groupby.py/Transform/setup class Transform: def setup(self): n1 = 400 n2 = 250 index = MultiIndex( levels=[np.arange(n1), Index([f"i-{i}" for i in range(n2)], dtype=object)], codes=[np.repeat(range(n1), n2).tolist(), list(range(n2)) * n1], names=["lev1", "lev2"], ) arr = np.random.randn(n1 * n2, 3) arr[::10000, 0] = np.nan arr[1::10000, 1] = np.nan arr[2::10000, 2] = np.nan data = DataFrame(arr, index=index, columns=["col1", "col20", "col3"]) self.df = data n = 1000 self.df_wide = DataFrame( np.random.randn(n, n), index=np.random.choice(range(10), n), ) n = 1_000_000 self.df_tall = DataFrame( np.random.randn(n, 3), index=np.random.randint(0, 5, n), ) n = 20000 self.df1 = DataFrame( np.random.randint(1, n, (n, 3)), columns=["jim", "joe", "jolie"] ) self.df2 = self.df1.copy() self.df2["jim"] = self.df2["joe"] self.df3 = DataFrame( np.random.randint(1, (n / 10), (n, 3)), columns=["jim", "joe", "jolie"] ) self.df4 = self.df3.copy() self.df4["jim"] = self.df4["joe"]
negative_train_query0_00450
asv_bench/benchmarks/groupby.py/Transform/time_transform_lambda_max class Transform: def time_transform_lambda_max(self): self.df.groupby(level="lev1").transform(lambda x: max(x))
negative_train_query0_00451
asv_bench/benchmarks/groupby.py/Transform/time_transform_str_max class Transform: def time_transform_str_max(self): self.df.groupby(level="lev1").transform("max")
negative_train_query0_00452
asv_bench/benchmarks/groupby.py/Transform/time_transform_lambda_max_tall class Transform: def time_transform_lambda_max_tall(self): self.df_tall.groupby(level=0).transform(lambda x: np.max(x, axis=0))
negative_train_query0_00453
asv_bench/benchmarks/groupby.py/Transform/time_transform_lambda_max_wide class Transform: def time_transform_lambda_max_wide(self): self.df_wide.groupby(level=0).transform(lambda x: np.max(x, axis=0))
negative_train_query0_00454
asv_bench/benchmarks/groupby.py/Transform/time_transform_multi_key1 class Transform: def time_transform_multi_key1(self): self.df1.groupby(["jim", "joe"])["jolie"].transform("max")
negative_train_query0_00455
asv_bench/benchmarks/groupby.py/Transform/time_transform_multi_key2 class Transform: def time_transform_multi_key2(self): self.df2.groupby(["jim", "joe"])["jolie"].transform("max")
negative_train_query0_00456
asv_bench/benchmarks/groupby.py/Transform/time_transform_multi_key3 class Transform: def time_transform_multi_key3(self): self.df3.groupby(["jim", "joe"])["jolie"].transform("max")
negative_train_query0_00457
asv_bench/benchmarks/groupby.py/Transform/time_transform_multi_key4 class Transform: def time_transform_multi_key4(self): self.df4.groupby(["jim", "joe"])["jolie"].transform("max")
negative_train_query0_00458
asv_bench/benchmarks/groupby.py/TransformBools/setup class TransformBools: def setup(self): N = 120000 transition_points = np.sort(np.random.choice(np.arange(N), 1400)) transitions = np.zeros(N, dtype=np.bool_) transitions[transition_points] = True self.g = transitions.cumsum() self.df = DataFrame({"signal": np.random.rand(N)})
negative_train_query0_00459
asv_bench/benchmarks/groupby.py/TransformBools/time_transform_mean class TransformBools: def time_transform_mean(self): self.df["signal"].groupby(self.g).transform("mean")
negative_train_query0_00460
asv_bench/benchmarks/groupby.py/TransformNaN/setup class TransformNaN: def setup(self): self.df_nans = DataFrame( {"key": np.repeat(np.arange(1000), 10), "B": np.nan, "C": np.nan} ) self.df_nans.loc[4::10, "B":"C"] = 5
negative_train_query0_00461
asv_bench/benchmarks/groupby.py/TransformNaN/time_first class TransformNaN: def time_first(self): self.df_nans.groupby("key").transform("first")
negative_train_query0_00462
asv_bench/benchmarks/groupby.py/TransformEngine/setup class TransformEngine: def setup(self, parallel): N = 10**3 data = DataFrame( {0: [str(i) for i in range(100)] * N, 1: list(range(100)) * N}, columns=[0, 1], ) self.parallel = parallel self.grouper = data.groupby(0)
negative_train_query0_00463
asv_bench/benchmarks/groupby.py/TransformEngine/time_series_numba class TransformEngine: def time_series_numba(self, parallel): def function(values, index): return values * 5 self.grouper[1].transform( function, engine="numba", engine_kwargs={"parallel": self.parallel} )
negative_train_query0_00464
asv_bench/benchmarks/groupby.py/TransformEngine/time_series_numba/function class TransformEngine: def function(values, index): return values * 5
negative_train_query0_00465
asv_bench/benchmarks/groupby.py/TransformEngine/time_series_cython class TransformEngine: def time_series_cython(self, parallel): def function(values): return values * 5 self.grouper[1].transform(function, engine="cython")
negative_train_query0_00466
asv_bench/benchmarks/groupby.py/TransformEngine/time_series_cython/function class TransformEngine: def function(values): return values * 5
negative_train_query0_00467
asv_bench/benchmarks/groupby.py/TransformEngine/time_dataframe_numba class TransformEngine: def time_dataframe_numba(self, parallel): def function(values, index): return values * 5 self.grouper.transform( function, engine="numba", engine_kwargs={"parallel": self.parallel} )
negative_train_query0_00468
asv_bench/benchmarks/groupby.py/TransformEngine/time_dataframe_numba/function class TransformEngine: def function(values, index): return values * 5
negative_train_query0_00469
asv_bench/benchmarks/groupby.py/TransformEngine/time_dataframe_cython class TransformEngine: def time_dataframe_cython(self, parallel): def function(values): return values * 5 self.grouper.transform(function, engine="cython")
negative_train_query0_00470
asv_bench/benchmarks/groupby.py/TransformEngine/time_dataframe_cython/function class TransformEngine: def function(values): return values * 5
negative_train_query0_00471
asv_bench/benchmarks/groupby.py/AggEngine/setup class AggEngine: def setup(self, parallel): N = 10**3 data = DataFrame( {0: [str(i) for i in range(100)] * N, 1: list(range(100)) * N}, columns=[0, 1], ) self.parallel = parallel self.grouper = data.groupby(0)
negative_train_query0_00472
asv_bench/benchmarks/groupby.py/AggEngine/time_series_numba class AggEngine: def time_series_numba(self, parallel): def function(values, index): total = 0 for i, value in enumerate(values): if i % 2: total += value + 5 else: total += value * 2 return total self.grouper[1].agg( function, engine="numba", engine_kwargs={"parallel": self.parallel} )
negative_train_query0_00473
asv_bench/benchmarks/groupby.py/AggEngine/time_series_numba/function class AggEngine: def function(values, index): total = 0 for i, value in enumerate(values): if i % 2: total += value + 5 else: total += value * 2 return total
negative_train_query0_00474
asv_bench/benchmarks/groupby.py/AggEngine/time_series_cython class AggEngine: def time_series_cython(self, parallel): def function(values): total = 0 for i, value in enumerate(values): if i % 2: total += value + 5 else: total += value * 2 return total self.grouper[1].agg(function, engine="cython")
negative_train_query0_00475
asv_bench/benchmarks/groupby.py/AggEngine/time_series_cython/function class AggEngine: def function(values): total = 0 for i, value in enumerate(values): if i % 2: total += value + 5 else: total += value * 2 return total
negative_train_query0_00476
asv_bench/benchmarks/groupby.py/AggEngine/time_dataframe_numba class AggEngine: def time_dataframe_numba(self, parallel): def function(values, index): total = 0 for i, value in enumerate(values): if i % 2: total += value + 5 else: total += value * 2 return total self.grouper.agg( function, engine="numba", engine_kwargs={"parallel": self.parallel} )
negative_train_query0_00477
asv_bench/benchmarks/groupby.py/AggEngine/time_dataframe_numba/function class AggEngine: def function(values, index): total = 0 for i, value in enumerate(values): if i % 2: total += value + 5 else: total += value * 2 return total
negative_train_query0_00478
asv_bench/benchmarks/groupby.py/AggEngine/time_dataframe_cython class AggEngine: def time_dataframe_cython(self, parallel): def function(values): total = 0 for i, value in enumerate(values): if i % 2: total += value + 5 else: total += value * 2 return total self.grouper.agg(function, engine="cython")
negative_train_query0_00479
asv_bench/benchmarks/groupby.py/AggEngine/time_dataframe_cython/function class AggEngine: def function(values): total = 0 for i, value in enumerate(values): if i % 2: total += value + 5 else: total += value * 2 return total
negative_train_query0_00480
asv_bench/benchmarks/groupby.py/Sample/setup class Sample: def setup(self): N = 10**3 self.df = DataFrame({"a": np.zeros(N)}) self.groups = np.arange(0, N) self.weights = np.ones(N)
negative_train_query0_00481
asv_bench/benchmarks/groupby.py/Sample/time_sample class Sample: def time_sample(self): self.df.groupby(self.groups).sample(n=1)
negative_train_query0_00482
asv_bench/benchmarks/groupby.py/Sample/time_sample_weights class Sample: def time_sample_weights(self): self.df.groupby(self.groups).sample(n=1, weights=self.weights)
negative_train_query0_00483
asv_bench/benchmarks/groupby.py/Resample/setup class Resample: def setup(self): num_timedeltas = 20_000 num_groups = 3 index = MultiIndex.from_product( [ np.arange(num_groups), to_timedelta(np.arange(num_timedeltas), unit="s"), ], names=["groups", "timedeltas"], ) data = np.random.randint(0, 1000, size=(len(index))) self.df = DataFrame(data, index=index).reset_index("timedeltas") self.df_multiindex = DataFrame(data, index=index)
negative_train_query0_00484
asv_bench/benchmarks/groupby.py/Resample/time_resample class Resample: def time_resample(self): self.df.groupby(level="groups").resample("10s", on="timedeltas").mean()
negative_train_query0_00485
asv_bench/benchmarks/groupby.py/Resample/time_resample_multiindex class Resample: def time_resample_multiindex(self): self.df_multiindex.groupby(level="groups").resample( "10s", level="timedeltas" ).mean()
negative_train_query0_00486
asv_bench/benchmarks/ctors.py/no_change def no_change(arr): return arr
negative_train_query0_00487
asv_bench/benchmarks/ctors.py/list_of_str def list_of_str(arr): return list(arr.astype(str))
negative_train_query0_00488
asv_bench/benchmarks/ctors.py/gen_of_str def gen_of_str(arr): return (x for x in arr.astype(str))
negative_train_query0_00489
asv_bench/benchmarks/ctors.py/arr_dict def arr_dict(arr): return dict(zip(range(len(arr)), arr))
negative_train_query0_00490
asv_bench/benchmarks/ctors.py/list_of_tuples def list_of_tuples(arr): return [(i, -i) for i in arr]
negative_train_query0_00491
asv_bench/benchmarks/ctors.py/gen_of_tuples def gen_of_tuples(arr): return ((i, -i) for i in arr)
negative_train_query0_00492
asv_bench/benchmarks/ctors.py/list_of_lists def list_of_lists(arr): return [[i, -i] for i in arr]
negative_train_query0_00493
asv_bench/benchmarks/ctors.py/list_of_tuples_with_none def list_of_tuples_with_none(arr): return [(i, -i) for i in arr][:-1] + [None]
negative_train_query0_00494
asv_bench/benchmarks/ctors.py/list_of_lists_with_none def list_of_lists_with_none(arr): return [[i, -i] for i in arr][:-1] + [None]
negative_train_query0_00495
asv_bench/benchmarks/ctors.py/SeriesConstructors/setup class SeriesConstructors: def setup(self, data_fmt, with_index, dtype): if data_fmt in (gen_of_str, gen_of_tuples) and with_index: raise NotImplementedError( "Series constructors do not support using generators with indexes" ) N = 10**4 if dtype == "float": arr = np.random.randn(N) else: arr = np.arange(N) self.data = data_fmt(arr) self.index = np.arange(N) if with_index else None
negative_train_query0_00496
asv_bench/benchmarks/ctors.py/SeriesConstructors/time_series_constructor class SeriesConstructors: def time_series_constructor(self, data_fmt, with_index, dtype): Series(self.data, index=self.index)
negative_train_query0_00497