Datasets:
mteb
/

Modalities:
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
pandas
Dataset Viewer
Auto-converted to Parquet
query-id
string
corpus-id
string
score
int64
dev_query0
apositive_dev_query0_00000
1
dev_query0
negative_dev_query0_00000
0
dev_query0
negative_dev_query0_00001
0
dev_query0
negative_dev_query0_00002
0
dev_query0
negative_dev_query0_00003
0
dev_query0
negative_dev_query0_00004
0
dev_query0
negative_dev_query0_00005
0
dev_query0
negative_dev_query0_00006
0
dev_query0
negative_dev_query0_00007
0
dev_query0
negative_dev_query0_00008
0
dev_query0
negative_dev_query0_00009
0
dev_query0
negative_dev_query0_00010
0
dev_query0
negative_dev_query0_00011
0
dev_query0
negative_dev_query0_00012
0
dev_query0
negative_dev_query0_00013
0
dev_query0
negative_dev_query0_00014
0
dev_query0
negative_dev_query0_00015
0
dev_query0
negative_dev_query0_00016
0
dev_query0
negative_dev_query0_00017
0
dev_query0
negative_dev_query0_00018
0
dev_query0
negative_dev_query0_00019
0
dev_query0
negative_dev_query0_00020
0
dev_query0
negative_dev_query0_00021
0
dev_query0
negative_dev_query0_00022
0
dev_query0
negative_dev_query0_00023
0
dev_query0
negative_dev_query0_00024
0
dev_query0
negative_dev_query0_00025
0
dev_query0
negative_dev_query0_00026
0
dev_query0
negative_dev_query0_00027
0
dev_query0
negative_dev_query0_00028
0
dev_query0
negative_dev_query0_00029
0
dev_query0
negative_dev_query0_00030
0
dev_query0
negative_dev_query0_00031
0
dev_query0
negative_dev_query0_00032
0
dev_query0
negative_dev_query0_00033
0
dev_query0
negative_dev_query0_00034
0
dev_query0
negative_dev_query0_00035
0
dev_query0
negative_dev_query0_00036
0
dev_query0
negative_dev_query0_00037
0
dev_query0
negative_dev_query0_00038
0
dev_query0
negative_dev_query0_00039
0
dev_query0
negative_dev_query0_00040
0
dev_query0
negative_dev_query0_00041
0
dev_query0
negative_dev_query0_00042
0
dev_query0
negative_dev_query0_00043
0
dev_query0
negative_dev_query0_00044
0
dev_query0
negative_dev_query0_00045
0
dev_query0
negative_dev_query0_00046
0
dev_query0
negative_dev_query0_00047
0
dev_query0
negative_dev_query0_00048
0
dev_query0
negative_dev_query0_00049
0
dev_query0
negative_dev_query0_00050
0
dev_query0
negative_dev_query0_00051
0
dev_query0
negative_dev_query0_00052
0
dev_query0
negative_dev_query0_00053
0
dev_query0
negative_dev_query0_00054
0
dev_query0
negative_dev_query0_00055
0
dev_query0
negative_dev_query0_00056
0
dev_query0
negative_dev_query0_00057
0
dev_query0
negative_dev_query0_00058
0
dev_query0
negative_dev_query0_00059
0
dev_query0
negative_dev_query0_00060
0
dev_query0
negative_dev_query0_00061
0
dev_query0
negative_dev_query0_00062
0
dev_query0
negative_dev_query0_00063
0
dev_query0
negative_dev_query0_00064
0
dev_query0
negative_dev_query0_00065
0
dev_query0
negative_dev_query0_00066
0
dev_query0
negative_dev_query0_00067
0
dev_query0
negative_dev_query0_00068
0
dev_query0
negative_dev_query0_00069
0
dev_query0
negative_dev_query0_00070
0
dev_query0
negative_dev_query0_00071
0
dev_query0
negative_dev_query0_00072
0
dev_query0
negative_dev_query0_00073
0
dev_query0
negative_dev_query0_00074
0
dev_query0
negative_dev_query0_00075
0
dev_query0
negative_dev_query0_00076
0
dev_query0
negative_dev_query0_00077
0
dev_query0
negative_dev_query0_00078
0
dev_query0
negative_dev_query0_00079
0
dev_query0
negative_dev_query0_00080
0
dev_query0
negative_dev_query0_00081
0
dev_query0
negative_dev_query0_00082
0
dev_query0
negative_dev_query0_00083
0
dev_query0
negative_dev_query0_00084
0
dev_query0
negative_dev_query0_00085
0
dev_query0
negative_dev_query0_00086
0
dev_query0
negative_dev_query0_00087
0
dev_query0
negative_dev_query0_00088
0
dev_query0
negative_dev_query0_00089
0
dev_query0
negative_dev_query0_00090
0
dev_query0
negative_dev_query0_00091
0
dev_query0
negative_dev_query0_00092
0
dev_query0
negative_dev_query0_00093
0
dev_query0
negative_dev_query0_00094
0
dev_query0
negative_dev_query0_00095
0
dev_query0
negative_dev_query0_00096
0
dev_query0
negative_dev_query0_00097
0
dev_query0
negative_dev_query0_00098
0
End of preview. Expand in Data Studio

MMarcoReranking

An MTEB dataset
Massive Text Embedding Benchmark

mMARCO is a multilingual version of the MS MARCO passage ranking dataset

Task category t2t
Domains None
Reference https://github.com/unicamp-dl/mMARCO

How to evaluate on this task

You can evaluate an embedding model on this dataset using the following code:

import mteb

task = mteb.get_tasks(["MMarcoReranking"])
evaluator = mteb.MTEB(task)

model = mteb.get_model(YOUR_MODEL)
evaluator.run(model)

To learn more about how to run models on mteb task check out the GitHub repitory.

Citation

If you use this dataset, please cite the dataset as well as mteb, as this dataset likely includes additional processing as a part of the MMTEB Contribution.


@misc{bonifacio2021mmarco,
  archiveprefix = {arXiv},
  author = {Luiz Henrique Bonifacio and Vitor Jeronymo and Hugo Queiroz Abonizio and Israel Campiotti and Marzieh Fadaee and  and Roberto Lotufo and Rodrigo Nogueira},
  eprint = {2108.13897},
  primaryclass = {cs.CL},
  title = {mMARCO: A Multilingual Version of MS MARCO Passage Ranking Dataset},
  year = {2021},
}


@article{enevoldsen2025mmtebmassivemultilingualtext,
  title={MMTEB: Massive Multilingual Text Embedding Benchmark},
  author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2502.13595},
  year={2025},
  url={https://arxiv.org/abs/2502.13595},
  doi = {10.48550/arXiv.2502.13595},
}

@article{muennighoff2022mteb,
  author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
  title = {MTEB: Massive Text Embedding Benchmark},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2210.07316},
  year = {2022}
  url = {https://arxiv.org/abs/2210.07316},
  doi = {10.48550/ARXIV.2210.07316},
}

Dataset Statistics

Dataset Statistics

The following code contains the descriptive statistics from the task. These can also be obtained using:

import mteb

task = mteb.get_task("MMarcoReranking")

desc_stats = task.metadata.descriptive_stats
{
    "dev": {
        "num_samples": 100126,
        "number_of_characters": 12381331,
        "num_documents": 100026,
        "min_document_length": 13,
        "average_document_length": 123.76968988063103,
        "max_document_length": 803,
        "unique_documents": 100026,
        "num_queries": 100,
        "min_query_length": 4,
        "average_query_length": 11.44,
        "max_query_length": 61,
        "unique_queries": 100,
        "none_queries": 0,
        "num_relevant_docs": 100026,
        "min_relevant_docs_per_query": 1000,
        "average_relevant_docs_per_query": 1.07,
        "max_relevant_docs_per_query": 1002,
        "unique_relevant_docs": 100026,
        "num_instructions": null,
        "min_instruction_length": null,
        "average_instruction_length": null,
        "max_instruction_length": null,
        "unique_instructions": null,
        "num_top_ranked": 100,
        "min_top_ranked_per_query": 1000,
        "average_top_ranked_per_query": 1000.26,
        "max_top_ranked_per_query": 1002
    }
}

This dataset card was automatically generated using MTEB

Downloads last month
14