Datasets:
mteb
/

Modalities:
Text
Formats:
parquet
Languages:
Polish
ArXiv:
Libraries:
Datasets
pandas
License:
Dataset Viewer
Auto-converted to Parquet
query-id
stringclasses
43 values
corpus-id
stringlengths
3
7
score
int64
0
3
19335
1017759
0
19335
1082489
0
19335
109063
0
19335
1160863
0
19335
1160871
0
19335
1189088
0
19335
1203500
0
19335
1231806
0
19335
1231807
0
19335
1274615
0
19335
1274620
0
19335
1324075
0
19335
1509459
0
19335
1555317
0
19335
1568085
0
19335
161603
0
19335
1705525
0
19335
1720387
0
19335
1720388
0
19335
1720389
1
19335
1720393
0
19335
1720395
1
19335
1722
0
19335
1725697
0
19335
1726
0
19335
1729
2
19335
1730
0
19335
1796642
0
19335
1796647
0
19335
1825416
0
19335
1825418
0
19335
1837110
0
19335
1871222
0
19335
1908804
0
19335
1956669
0
19335
1958100
0
19335
1958102
0
19335
1958103
0
19335
1959553
0
19335
2004186
0
19335
2046505
1
19335
2071723
0
19335
2130187
0
19335
2186129
0
19335
2304004
0
19335
2304005
0
19335
2324839
0
19335
2325143
0
19335
2382766
0
19335
2394677
0
19335
256744
0
19335
256746
0
19335
256750
0
19335
2594897
0
19335
2604487
0
19335
2725017
0
19335
2874503
0
19335
2943092
0
19335
2978577
0
19335
3045565
1
19335
3045567
1
19335
3137952
0
19335
3175481
3
19335
3175483
0
19335
3175484
3
19335
3175485
0
19335
3212083
0
19335
3260688
0
19335
3358752
0
19335
342431
0
19335
342432
0
19335
3424644
0
19335
3445057
0
19335
3489287
0
19335
3497213
0
19335
3539483
0
19335
3559596
0
19335
3637071
0
19335
3683653
0
19335
3833966
0
19335
3959463
0
19335
4050974
0
19335
429846
0
19335
429849
0
19335
429852
0
19335
4379804
0
19335
4480942
0
19335
4510384
0
19335
4540809
0
19335
4686524
0
19335
4692187
0
19335
492088
0
19335
4974433
0
19335
5078863
0
19335
5078867
0
19335
5231750
0
19335
527689
0
19335
527690
1
19335
527692
1
19335
527695
0
End of preview. Expand in Data Studio

MSMARCO-PLHardNegatives

An MTEB dataset
Massive Text Embedding Benchmark

MS MARCO is a collection of datasets focused on deep learning in search. The hard negative version has been created by pooling the 250 top documents per query from BM25, e5-multilingual-large and e5-mistral-instruct.

Task category t2t
Domains Web, Written
Reference https://microsoft.github.io/msmarco/

How to evaluate on this task

You can evaluate an embedding model on this dataset using the following code:

import mteb

task = mteb.get_tasks(["MSMARCO-PLHardNegatives"])
evaluator = mteb.MTEB(task)

model = mteb.get_model(YOUR_MODEL)
evaluator.run(model)

To learn more about how to run models on mteb task check out the GitHub repitory.

Citation

If you use this dataset, please cite the dataset as well as mteb, as this dataset likely includes additional processing as a part of the MMTEB Contribution.


@misc{wojtasik2024beirpl,
  archiveprefix = {arXiv},
  author = {Konrad Wojtasik and Vadim Shishkin and Kacper Wołowiec and Arkadiusz Janz and Maciej Piasecki},
  eprint = {2305.19840},
  primaryclass = {cs.IR},
  title = {BEIR-PL: Zero Shot Information Retrieval Benchmark for the Polish Language},
  year = {2024},
}


@article{enevoldsen2025mmtebmassivemultilingualtext,
  title={MMTEB: Massive Multilingual Text Embedding Benchmark},
  author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2502.13595},
  year={2025},
  url={https://arxiv.org/abs/2502.13595},
  doi = {10.48550/arXiv.2502.13595},
}

@article{muennighoff2022mteb,
  author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
  title = {MTEB: Massive Text Embedding Benchmark},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2210.07316},
  year = {2022}
  url = {https://arxiv.org/abs/2210.07316},
  doi = {10.48550/ARXIV.2210.07316},
}

Dataset Statistics

Dataset Statistics

The following code contains the descriptive statistics from the task. These can also be obtained using:

import mteb

task = mteb.get_task("MSMARCO-PLHardNegatives")

desc_stats = task.metadata.descriptive_stats
{
    "test": {
        "num_samples": 9524,
        "number_of_characters": 3635939,
        "num_documents": 9481,
        "min_document_length": 10,
        "average_document_length": 383.3476426537285,
        "max_document_length": 1619,
        "unique_documents": 9481,
        "num_queries": 43,
        "min_query_length": 16,
        "average_query_length": 33.02325581395349,
        "max_query_length": 55,
        "unique_queries": 43,
        "none_queries": 0,
        "num_relevant_docs": 9260,
        "min_relevant_docs_per_query": 132,
        "average_relevant_docs_per_query": 95.3953488372093,
        "max_relevant_docs_per_query": 582,
        "unique_relevant_docs": 9139,
        "num_instructions": null,
        "min_instruction_length": null,
        "average_instruction_length": null,
        "max_instruction_length": null,
        "unique_instructions": null,
        "num_top_ranked": null,
        "min_top_ranked_per_query": null,
        "average_top_ranked_per_query": null,
        "max_top_ranked_per_query": null
    }
}

This dataset card was automatically generated using MTEB

Downloads last month
38