Datasets:
mteb
/

Modalities:
Text
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
Dataset Viewer
Auto-converted to Parquet
query-id
stringlengths
5
8
corpus-id
stringlengths
4
9
score
int64
1
1
test0
doc0
1
test0
doc1
1
test5
doc50
1
test7
doc67
1
test9
doc91
1
test17
doc449
1
test17
doc450
1
test18
doc514
1
test19
doc565
1
test19
doc579
1
test20
doc618
1
test21
doc635
1
test23
doc653
1
test25
doc698
1
test25
doc703
1
test27
doc763
1
test28
doc787
1
test28
doc789
1
test30
doc820
1
test30
doc824
1
test31
doc897
1
test35
doc972
1
test36
doc1010
1
test40
doc1070
1
test40
doc1071
1
test43
doc1154
1
test44
doc1164
1
test45
doc1187
1
test46
doc1193
1
test48
doc1229
1
test48
doc1239
1
test49
doc1260
1
test52
doc1432
1
test55
doc1486
1
test61
doc1679
1
test61
doc1684
1
test65
doc1771
1
test65
doc1774
1
test65
doc1782
1
test67
doc1927
1
test68
doc2000
1
test69
doc2030
1
test72
doc2134
1
test73
doc2151
1
test76
doc2274
1
test81
doc2479
1
test88
doc2834
1
test91
doc2994
1
test94
doc3057
1
test95
doc3068
1
test98
doc3123
1
test114
doc4118
1
test119
doc4433
1
test119
doc4445
1
test120
doc4449
1
test120
doc4523
1
test121
doc4560
1
test123
doc4611
1
test124
doc4632
1
test125
doc4644
1
test135
doc5152
1
test141
doc5217
1
test141
doc5218
1
test143
doc5288
1
test144
doc5295
1
test145
doc5395
1
test146
doc5402
1
test148
doc5423
1
test155
doc5726
1
test160
doc5847
1
test160
doc5861
1
test165
doc6016
1
test165
doc6026
1
test170
doc6220
1
test170
doc6235
1
test182
doc6649
1
test183
doc6669
1
test183
doc6672
1
test195
doc7125
1
test196
doc7150
1
test199
doc7180
1
test201
doc7251
1
test201
doc7351
1
test203
doc7384
1
test204
doc7389
1
test209
doc7549
1
test215
doc7753
1
test218
doc7901
1
test218
doc7906
1
test226
doc8127
1
test228
doc8162
1
test230
doc8272
1
test230
doc8277
1
test236
doc8531
1
test236
doc8602
1
test242
doc8900
1
test242
doc8909
1
test247
doc9174
1
test252
doc9455
1
test253
doc9463
1
End of preview. Expand in Data Studio

NQHardNegatives

An MTEB dataset
Massive Text Embedding Benchmark

NFCorpus: A Full-Text Learning to Rank Dataset for Medical Information Retrieval. The hard negative version has been created by pooling the 250 top documents per query from BM25, e5-multilingual-large and e5-mistral-instruct.

Task category t2t
Domains None
Reference https://ai.google.com/research/NaturalQuestions/

How to evaluate on this task

You can evaluate an embedding model on this dataset using the following code:

import mteb

task = mteb.get_tasks(["NQHardNegatives"])
evaluator = mteb.MTEB(task)

model = mteb.get_model(YOUR_MODEL)
evaluator.run(model)

To learn more about how to run models on mteb task check out the GitHub repitory.

Citation

If you use this dataset, please cite the dataset as well as mteb, as this dataset likely includes additional processing as a part of the MMTEB Contribution.


@article{47761,
  author = {Tom Kwiatkowski and Jennimaria Palomaki and Olivia Redfield and Michael Collins and Ankur Parikh
and Chris Alberti and Danielle Epstein and Illia Polosukhin and Matthew Kelcey and Jacob Devlin and Kenton Lee
and Kristina N. Toutanova and Llion Jones and Ming-Wei Chang and Andrew Dai and Jakob Uszkoreit and Quoc Le
and Slav Petrov},
  journal = {Transactions of the Association of Computational
Linguistics},
  title = {Natural Questions: a Benchmark for Question Answering Research},
  year = {2019},
}


@article{enevoldsen2025mmtebmassivemultilingualtext,
  title={MMTEB: Massive Multilingual Text Embedding Benchmark},
  author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2502.13595},
  year={2025},
  url={https://arxiv.org/abs/2502.13595},
  doi = {10.48550/arXiv.2502.13595},
}

@article{muennighoff2022mteb,
  author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
  title = {MTEB: Massive Text Embedding Benchmark},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2210.07316},
  year = {2022}
  url = {https://arxiv.org/abs/2210.07316},
  doi = {10.48550/ARXIV.2210.07316},
}

Dataset Statistics

Dataset Statistics

The following code contains the descriptive statistics from the task. These can also be obtained using:

import mteb

task = mteb.get_task("NQHardNegatives")

desc_stats = task.metadata.descriptive_stats
{
    "test": {
        "num_samples": 199779,
        "number_of_characters": 120068721,
        "num_documents": 198779,
        "min_document_length": 5,
        "average_document_length": 603.7903551179953,
        "max_document_length": 17008,
        "unique_documents": 198779,
        "num_queries": 1000,
        "min_query_length": 29,
        "average_query_length": 47.878,
        "max_query_length": 94,
        "unique_queries": 1000,
        "none_queries": 0,
        "num_relevant_docs": 1213,
        "min_relevant_docs_per_query": 1,
        "average_relevant_docs_per_query": 1.213,
        "max_relevant_docs_per_query": 4,
        "unique_relevant_docs": 1213,
        "num_instructions": null,
        "min_instruction_length": null,
        "average_instruction_length": null,
        "max_instruction_length": null,
        "unique_instructions": null,
        "num_top_ranked": null,
        "min_top_ranked_per_query": null,
        "average_top_ranked_per_query": null,
        "max_top_ranked_per_query": null
    }
}

This dataset card was automatically generated using MTEB

Downloads last month
60