Datasets:
mteb
/

Modalities:
Text
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
Dataset Viewer
Auto-converted to Parquet
query-id
stringlengths
3
6
corpus-id
stringlengths
3
6
score
int64
1
1
359
360
1
607
32637
1
727
726
1
727
144798
1
727
144797
1
727
350197
1
1080
201941
1
1504
98860
1
1504
58999
1
1504
96627
1
1504
63589
1
1504
113000
1
1504
25256
1
1504
54038
1
1504
58998
1
1504
25255
1
1504
256947
1
1504
201402
1
1504
308128
1
1504
138802
1
1504
98251
1
1504
67488
1
1504
98252
1
1504
138801
1
1504
54037
1
1658
357937
1
2267
26822
1
2267
11766
1
2267
57304
1
2267
85864
1
2267
57305
1
2267
156385
1
2267
2266
1
2267
61985
1
2267
11767
1
2267
7188
1
2267
166512
1
2309
2308
1
3390
3389
1
3766
3765
1
3766
126120
1
4034
45985
1
4034
4033
1
4050
4049
1
4135
4136
1
4293
4292
1
4433
3114
1
4433
84082
1
4433
117497
1
4433
121746
1
4433
11055
1
4433
11056
1
4433
3113
1
4641
4642
1
5097
8207
1
5097
5096
1
5339
231454
1
5339
231455
1
5373
5374
1
5710
4118
1
5710
5709
1
5710
4117
1
7422
7421
1
7422
149805
1
7571
7570
1
7571
102492
1
7571
6492
1
7571
6493
1
7571
48806
1
7571
106430
1
7571
48805
1
7571
424412
1
7571
282310
1
7676
34131
1
7676
34130
1
7676
50851
1
7676
102601
1
8342
6221
1
8342
8343
1
8342
6222
1
8342
357840
1
8356
8357
1
9109
9108
1
9382
9381
1
9555
9556
1
10387
10388
1
11171
252967
1
11171
11172
1
11993
193678
1
11993
127030
1
11993
127031
1
12488
12489
1
13023
147677
1
13023
279975
1
13023
147676
1
13918
13917
1
13984
13983
1
14092
14093
1
14360
14359
1
14360
415030
1
End of preview. Expand in Data Studio

QuoraRetrievalHardNegatives

An MTEB dataset
Massive Text Embedding Benchmark

QuoraRetrieval is based on questions that are marked as duplicates on the Quora platform. Given a question, find other (duplicate) questions. The hard negative version has been created by pooling the 250 top documents per query from BM25, e5-multilingual-large and e5-mistral-instruct.

How to evaluate on this task

You can evaluate an embedding model on this dataset using the following code:

import mteb

task = mteb.get_tasks(["QuoraRetrievalHardNegatives"])
evaluator = mteb.MTEB(task)

model = mteb.get_model(YOUR_MODEL)
evaluator.run(model)

To learn more about how to run models on mteb task check out the GitHub repitory.

Citation

If you use this dataset, please cite the dataset as well as mteb, as this dataset likely includes additional processing as a part of the MMTEB Contribution.


@misc{quora-question-pairs,
  author = {DataCanary, hilfialkaff, Lili Jiang, Meg Risdal, Nikhil Dandekar, tomtung},
  publisher = {Kaggle},
  title = {Quora Question Pairs},
  url = {https://kaggle.com/competitions/quora-question-pairs},
  year = {2017},
}


@article{enevoldsen2025mmtebmassivemultilingualtext,
  title={MMTEB: Massive Multilingual Text Embedding Benchmark},
  author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2502.13595},
  year={2025},
  url={https://arxiv.org/abs/2502.13595},
  doi = {10.48550/arXiv.2502.13595},
}

@article{muennighoff2022mteb,
  author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
  title = {MTEB: Massive Text Embedding Benchmark},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2210.07316},
  year = {2022}
  url = {https://arxiv.org/abs/2210.07316},
  doi = {10.48550/ARXIV.2210.07316},
}

Dataset Statistics

Dataset Statistics

The following code contains the descriptive statistics from the task. These can also be obtained using:

import mteb

task = mteb.get_task("QuoraRetrievalHardNegatives")

desc_stats = task.metadata.descriptive_stats
{
    "test": {
        "num_samples": 178163,
        "number_of_characters": 10675629,
        "num_documents": 177163,
        "min_document_length": 2,
        "average_document_length": 59.96963812985781,
        "max_document_length": 582,
        "unique_documents": 177163,
        "num_queries": 1000,
        "min_query_length": 2,
        "average_query_length": 51.228,
        "max_query_length": 180,
        "unique_queries": 1000,
        "none_queries": 0,
        "num_relevant_docs": 1641,
        "min_relevant_docs_per_query": 1,
        "average_relevant_docs_per_query": 1.641,
        "max_relevant_docs_per_query": 34,
        "unique_relevant_docs": 1641,
        "num_instructions": null,
        "min_instruction_length": null,
        "average_instruction_length": null,
        "max_instruction_length": null,
        "unique_instructions": null,
        "num_top_ranked": null,
        "min_top_ranked_per_query": null,
        "average_top_ranked_per_query": null,
        "max_top_ranked_per_query": null
    }
}

This dataset card was automatically generated using MTEB

Downloads last month
88