Datasets:
mteb
/

Modalities:
Text
Formats:
parquet
Languages:
Russian
ArXiv:
Libraries:
Datasets
pandas
License:
Dataset Viewer
Auto-converted to Parquet
query-id
stringlengths
1
4
corpus-id
stringlengths
4
6
score
int64
1
1
4
256787
1
7
107473
1
12
33326
1
19
27824
1
32
356778
1
37
107175
1
49
396922
1
51
578856
1
63
83667
1
70
382554
1
80
665822
1
81
179451
1
82
560086
1
85
484714
1
89
584004
1
94
33659
1
105
414850
1
109
277746
1
110
146413
1
116
449245
1
143
279786
1
147
307757
1
148
455884
1
169
628038
1
170
339902
1
190
173148
1
192
553306
1
198
326858
1
212
616886
1
227
249565
1
235
604201
1
245
371507
1
260
562336
1
276
97793
1
281
504740
1
286
397382
1
292
443555
1
313
532496
1
324
607040
1
343
704318
1
361
72132
1
363
387477
1
364
298830
1
377
108618
1
383
162998
1
388
359536
1
389
213487
1
405
274680
1
411
10139
1
418
610805
1
428
220281
1
448
166931
1
453
233238
1
457
320015
1
469
672642
1
471
419093
1
473
347235
1
477
187241
1
503
73372
1
509
130679
1
516
421947
1
517
310016
1
526
596750
1
527
315568
1
544
496171
1
547
88914
1
557
235552
1
572
518392
1
574
255836
1
585
584482
1
615
81247
1
632
346954
1
640
612451
1
661
352457
1
666
133827
1
668
560069
1
673
695205
1
676
673971
1
678
142291
1
680
190556
1
682
272793
1
687
342722
1
704
32537
1
709
159784
1
724
171720
1
735
620859
1
758
379781
1
760
482071
1
766
283201
1
768
564315
1
797
289688
1
802
89771
1
806
582144
1
809
677278
1
813
97573
1
816
424045
1
835
126516
1
847
625780
1
855
316950
1
860
47726
1
End of preview. Expand in Data Studio

RiaNewsRetrievalHardNegatives

An MTEB dataset
Massive Text Embedding Benchmark

News article retrieval by headline. Based on Rossiya Segodnya dataset. The hard negative version has been created by pooling the 250 top documents per query from BM25, e5-multilingual-large and e5-mistral-instruct.

Task category t2t
Domains News, Written
Reference https://arxiv.org/abs/1901.07786

How to evaluate on this task

You can evaluate an embedding model on this dataset using the following code:

import mteb

task = mteb.get_tasks(["RiaNewsRetrievalHardNegatives"])
evaluator = mteb.MTEB(task)

model = mteb.get_model(YOUR_MODEL)
evaluator.run(model)

To learn more about how to run models on mteb task check out the GitHub repitory.

Citation

If you use this dataset, please cite the dataset as well as mteb, as this dataset likely includes additional processing as a part of the MMTEB Contribution.


@inproceedings{gavrilov2018self,
  author = {Gavrilov, Daniil and  Kalaidin, Pavel and  Malykh, Valentin},
  booktitle = {Proceedings of the 41st European Conference on Information Retrieval},
  title = {Self-Attentive Model for Headline Generation},
  year = {2019},
}


@article{enevoldsen2025mmtebmassivemultilingualtext,
  title={MMTEB: Massive Multilingual Text Embedding Benchmark},
  author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2502.13595},
  year={2025},
  url={https://arxiv.org/abs/2502.13595},
  doi = {10.48550/arXiv.2502.13595},
}

@article{muennighoff2022mteb,
  author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
  title = {MTEB: Massive Text Embedding Benchmark},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2210.07316},
  year = {2022}
  url = {https://arxiv.org/abs/2210.07316},
  doi = {10.48550/ARXIV.2210.07316},
}

Dataset Statistics

Dataset Statistics

The following code contains the descriptive statistics from the task. These can also be obtained using:

import mteb

task = mteb.get_task("RiaNewsRetrievalHardNegatives")

desc_stats = task.metadata.descriptive_stats
{
    "test": {
        "num_samples": 192237,
        "number_of_characters": 234657607,
        "num_documents": 191237,
        "min_document_length": 1,
        "average_document_length": 1226.7253146619116,
        "max_document_length": 2001,
        "unique_documents": 191237,
        "num_queries": 1000,
        "min_query_length": 4,
        "average_query_length": 62.338,
        "max_query_length": 85,
        "unique_queries": 1000,
        "none_queries": 0,
        "num_relevant_docs": 1000,
        "min_relevant_docs_per_query": 1,
        "average_relevant_docs_per_query": 1.0,
        "max_relevant_docs_per_query": 1,
        "unique_relevant_docs": 1000,
        "num_instructions": null,
        "min_instruction_length": null,
        "average_instruction_length": null,
        "max_instruction_length": null,
        "unique_instructions": null,
        "num_top_ranked": null,
        "min_top_ranked_per_query": null,
        "average_top_ranked_per_query": null,
        "max_top_ranked_per_query": null
    }
}

This dataset card was automatically generated using MTEB

Downloads last month
62