Datasets:
mteb
/

Modalities:
Text
Formats:
parquet
Languages:
Polish
ArXiv:
Libraries:
Datasets
pandas
Dataset Viewer
Auto-converted to Parquet
query-id
stringlengths
1
4
corpus-id
stringlengths
5
9
score
int64
1
1
1
31715818
1
3
14717500
1
5
13734012
1
13
1606628
1
36
5152028
1
36
11705328
1
42
18174210
1
48
13734012
1
49
5953485
1
50
12580014
1
51
45638119
1
53
45638119
1
54
49556906
1
56
4709641
1
57
4709641
1
70
5956380
1
70
4414547
1
72
6076903
1
75
4387784
1
94
1215116
1
99
18810195
1
100
4381486
1
113
6157837
1
115
33872649
1
118
6372244
1
124
4883040
1
127
21598000
1
128
8290953
1
129
27768226
1
130
27768226
1
132
7975937
1
133
38485364
1
133
6969753
1
133
17934082
1
133
16280642
1
133
12640810
1
137
26016929
1
141
6955746
1
141
14437255
1
142
10582939
1
143
10582939
1
146
10582939
1
148
1084345
1
163
18872233
1
171
12670680
1
179
16322674
1
179
27123743
1
179
23557241
1
179
17450673
1
180
16966326
1
183
12827098
1
185
18340282
1
198
2177022
1
208
13519661
1
212
22038539
1
213
13625993
1
216
21366394
1
217
21366394
1
218
21366394
1
219
21366394
1
230
3067015
1
232
10536636
1
233
4388470
1
236
4388470
1
237
4942718
1
238
2251426
1
239
14079881
1
248
1568684
1
249
1568684
1
261
1122279
1
261
10697096
1
268
970012
1
269
970012
1
274
11614737
1
275
4961038
1
275
14241418
1
275
14819804
1
279
14376683
1
294
10874408
1
295
20310709
1
298
39381118
1
300
3553087
1
303
4388470
1
312
6173523
1
314
4347374
1
324
2014909
1
327
17997584
1
338
23349986
1
343
7873737
1
343
5884524
1
350
16927286
1
354
8774475
1
362
38587347
1
380
19005293
1
384
13770184
1
385
9955779
1
385
9767444
1
386
16495649
1
388
1148122
1
399
791050
1
End of preview. Expand in Data Studio

SciFact-PL

An MTEB dataset
Massive Text Embedding Benchmark

SciFact verifies scientific claims using evidence from the research literature containing scientific paper abstracts.

Task category t2t
Domains Academic, Medical, Written
Reference https://github.com/allenai/scifact

How to evaluate on this task

You can evaluate an embedding model on this dataset using the following code:

import mteb

task = mteb.get_tasks(["SciFact-PL"])
evaluator = mteb.MTEB(task)

model = mteb.get_model(YOUR_MODEL)
evaluator.run(model)

To learn more about how to run models on mteb task check out the GitHub repitory.

Citation

If you use this dataset, please cite the dataset as well as mteb, as this dataset likely includes additional processing as a part of the MMTEB Contribution.


@misc{wojtasik2024beirpl,
  archiveprefix = {arXiv},
  author = {Konrad Wojtasik and Vadim Shishkin and Kacper Wołowiec and Arkadiusz Janz and Maciej Piasecki},
  eprint = {2305.19840},
  primaryclass = {cs.IR},
  title = {BEIR-PL: Zero Shot Information Retrieval Benchmark for the Polish Language},
  year = {2024},
}


@article{enevoldsen2025mmtebmassivemultilingualtext,
  title={MMTEB: Massive Multilingual Text Embedding Benchmark},
  author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2502.13595},
  year={2025},
  url={https://arxiv.org/abs/2502.13595},
  doi = {10.48550/arXiv.2502.13595},
}

@article{muennighoff2022mteb,
  author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
  title = {MTEB: Massive Text Embedding Benchmark},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2210.07316},
  year = {2022}
  url = {https://arxiv.org/abs/2210.07316},
  doi = {10.48550/ARXIV.2210.07316},
}

Dataset Statistics

Dataset Statistics

The following code contains the descriptive statistics from the task. These can also be obtained using:

import mteb

task = mteb.get_task("SciFact-PL")

desc_stats = task.metadata.descriptive_stats
{
    "test": {
        "num_samples": 5483,
        "number_of_characters": 8085698,
        "num_documents": 5183,
        "min_document_length": 233,
        "average_document_length": 1554.5178468068686,
        "max_document_length": 10870,
        "unique_documents": 5183,
        "num_queries": 300,
        "min_query_length": 27,
        "average_query_length": 95.44,
        "max_query_length": 227,
        "unique_queries": 300,
        "none_queries": 0,
        "num_relevant_docs": 339,
        "min_relevant_docs_per_query": 1,
        "average_relevant_docs_per_query": 1.13,
        "max_relevant_docs_per_query": 5,
        "unique_relevant_docs": 283,
        "num_instructions": null,
        "min_instruction_length": null,
        "average_instruction_length": null,
        "max_instruction_length": null,
        "unique_instructions": null,
        "num_top_ranked": null,
        "min_top_ranked_per_query": null,
        "average_top_ranked_per_query": null,
        "max_top_ranked_per_query": null
    }
}

This dataset card was automatically generated using MTEB

Downloads last month
11