Datasets:
mteb
/

Modalities:
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
pandas
License:
Dataset Viewer
Auto-converted to Parquet
query-id
string
corpus-id
string
score
int64
dev_query0
apositive_dev_query0_00000
1
dev_query0
apositive_dev_query0_00001
1
dev_query0
apositive_dev_query0_00002
1
dev_query0
apositive_dev_query0_00003
1
dev_query0
apositive_dev_query0_00004
1
dev_query0
negative_dev_query0_00000
0
dev_query0
negative_dev_query0_00001
0
dev_query0
negative_dev_query0_00002
0
dev_query0
negative_dev_query0_00003
0
dev_query0
negative_dev_query0_00004
0
dev_query0
negative_dev_query0_00005
0
dev_query0
negative_dev_query0_00006
0
dev_query0
negative_dev_query0_00007
0
dev_query1
apositive_dev_query1_00000
1
dev_query1
apositive_dev_query1_00001
1
dev_query1
apositive_dev_query1_00002
1
dev_query1
apositive_dev_query1_00003
1
dev_query1
apositive_dev_query1_00004
1
dev_query1
apositive_dev_query1_00005
1
dev_query1
apositive_dev_query1_00006
1
dev_query1
apositive_dev_query1_00007
1
dev_query1
negative_dev_query1_00000
0
dev_query1
negative_dev_query1_00001
0
dev_query1
negative_dev_query1_00002
0
dev_query1
negative_dev_query1_00003
0
dev_query2
apositive_dev_query2_00000
1
dev_query2
apositive_dev_query2_00001
1
dev_query2
apositive_dev_query2_00002
1
dev_query2
apositive_dev_query2_00003
1
dev_query2
apositive_dev_query2_00004
1
dev_query2
apositive_dev_query2_00005
1
dev_query2
apositive_dev_query2_00006
1
dev_query2
apositive_dev_query2_00007
1
dev_query2
apositive_dev_query2_00008
1
dev_query2
negative_dev_query2_00000
0
dev_query2
negative_dev_query2_00001
0
dev_query2
negative_dev_query2_00002
0
dev_query2
negative_dev_query2_00003
0
dev_query2
negative_dev_query2_00004
0
dev_query2
negative_dev_query2_00005
0
dev_query3
apositive_dev_query3_00000
1
dev_query3
apositive_dev_query3_00001
1
dev_query3
apositive_dev_query3_00002
1
dev_query3
apositive_dev_query3_00003
1
dev_query3
apositive_dev_query3_00004
1
dev_query3
apositive_dev_query3_00005
1
dev_query3
apositive_dev_query3_00006
1
dev_query3
apositive_dev_query3_00007
1
dev_query3
apositive_dev_query3_00008
1
dev_query3
apositive_dev_query3_00009
1
dev_query3
apositive_dev_query3_00010
1
dev_query3
apositive_dev_query3_00011
1
dev_query3
negative_dev_query3_00000
0
dev_query3
negative_dev_query3_00001
0
dev_query3
negative_dev_query3_00002
0
dev_query3
negative_dev_query3_00003
0
dev_query3
negative_dev_query3_00004
0
dev_query3
negative_dev_query3_00005
0
dev_query3
negative_dev_query3_00006
0
dev_query4
apositive_dev_query4_00000
1
dev_query4
apositive_dev_query4_00001
1
dev_query4
apositive_dev_query4_00002
1
dev_query4
apositive_dev_query4_00003
1
dev_query4
apositive_dev_query4_00004
1
dev_query4
apositive_dev_query4_00005
1
dev_query4
apositive_dev_query4_00006
1
dev_query4
apositive_dev_query4_00007
1
dev_query4
apositive_dev_query4_00008
1
dev_query4
apositive_dev_query4_00009
1
dev_query4
apositive_dev_query4_00010
1
dev_query4
apositive_dev_query4_00011
1
dev_query4
apositive_dev_query4_00012
1
dev_query4
apositive_dev_query4_00013
1
dev_query4
apositive_dev_query4_00014
1
dev_query4
apositive_dev_query4_00015
1
dev_query4
apositive_dev_query4_00016
1
dev_query4
apositive_dev_query4_00017
1
dev_query4
apositive_dev_query4_00018
1
dev_query4
apositive_dev_query4_00019
1
dev_query4
negative_dev_query4_00000
0
dev_query4
negative_dev_query4_00001
0
dev_query4
negative_dev_query4_00002
0
dev_query4
negative_dev_query4_00003
0
dev_query5
apositive_dev_query5_00000
1
dev_query5
apositive_dev_query5_00001
1
dev_query5
apositive_dev_query5_00002
1
dev_query5
apositive_dev_query5_00003
1
dev_query5
apositive_dev_query5_00004
1
dev_query5
apositive_dev_query5_00005
1
dev_query5
negative_dev_query5_00000
0
dev_query5
negative_dev_query5_00001
0
dev_query5
negative_dev_query5_00002
0
dev_query5
negative_dev_query5_00003
0
dev_query5
negative_dev_query5_00004
0
dev_query5
negative_dev_query5_00005
0
dev_query5
negative_dev_query5_00006
0
dev_query5
negative_dev_query5_00007
0
dev_query5
negative_dev_query5_00008
0
dev_query5
negative_dev_query5_00009
0
dev_query5
negative_dev_query5_00010
0
End of preview. Expand in Data Studio

T2Reranking

An MTEB dataset
Massive Text Embedding Benchmark

T2Ranking: A large-scale Chinese Benchmark for Passage Ranking

Task category t2t
Domains None
Reference https://arxiv.org/abs/2304.03679

How to evaluate on this task

You can evaluate an embedding model on this dataset using the following code:

import mteb

task = mteb.get_tasks(["T2Reranking"])
evaluator = mteb.MTEB(task)

model = mteb.get_model(YOUR_MODEL)
evaluator.run(model)

To learn more about how to run models on mteb task check out the GitHub repitory.

Citation

If you use this dataset, please cite the dataset as well as mteb, as this dataset likely includes additional processing as a part of the MMTEB Contribution.


@misc{xie2023t2ranking,
  archiveprefix = {arXiv},
  author = {Xiaohui Xie and Qian Dong and Bingning Wang and Feiyang Lv and Ting Yao and Weinan Gan and Zhijing Wu and Xiangsheng Li and Haitao Li and Yiqun Liu and Jin Ma},
  eprint = {2304.03679},
  primaryclass = {cs.IR},
  title = {T2Ranking: A large-scale Chinese Benchmark for Passage Ranking},
  year = {2023},
}


@article{enevoldsen2025mmtebmassivemultilingualtext,
  title={MMTEB: Massive Multilingual Text Embedding Benchmark},
  author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2502.13595},
  year={2025},
  url={https://arxiv.org/abs/2502.13595},
  doi = {10.48550/arXiv.2502.13595},
}

@article{muennighoff2022mteb,
  author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
  title = {MTEB: Massive Text Embedding Benchmark},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2210.07316},
  year = {2022}
  url = {https://arxiv.org/abs/2210.07316},
  doi = {10.48550/ARXIV.2210.07316},
}

Dataset Statistics

Dataset Statistics

The following code contains the descriptive statistics from the task. These can also be obtained using:

import mteb

task = mteb.get_task("T2Reranking")

desc_stats = task.metadata.descriptive_stats
{
    "dev": {
        "num_samples": 103330,
        "number_of_characters": 81980036,
        "num_documents": 97422,
        "min_document_length": 1,
        "average_document_length": 840.8301307712837,
        "max_document_length": 120026,
        "unique_documents": 97422,
        "num_queries": 5908,
        "min_query_length": 4,
        "average_query_length": 10.948375084631008,
        "max_query_length": 29,
        "unique_queries": 5908,
        "none_queries": 0,
        "num_relevant_docs": 97422,
        "min_relevant_docs_per_query": 2,
        "average_relevant_docs_per_query": 7.522681110358835,
        "max_relevant_docs_per_query": 335,
        "unique_relevant_docs": 97422,
        "num_instructions": null,
        "min_instruction_length": null,
        "average_instruction_length": null,
        "max_instruction_length": null,
        "unique_instructions": null,
        "num_top_ranked": 5908,
        "min_top_ranked_per_query": 2,
        "average_top_ranked_per_query": 16.489844278943806,
        "max_top_ranked_per_query": 335
    }
}

This dataset card was automatically generated using MTEB

Downloads last month
21