Datasets:
metadata
language:
- deu
- eng
- spa
multilinguality: multilingual
source_datasets:
- jinaai/xmarket_ml
task_categories:
- text-retrieval
task_ids: []
dataset_info:
- config_name: de-corpus
features:
- name: id
dtype: string
- name: text
dtype: string
- name: title
dtype: string
splits:
- name: test
num_bytes: 14888688
num_examples: 70526
download_size: 7641870
dataset_size: 14888688
- config_name: de-qrels
features:
- name: query-id
dtype: string
- name: corpus-id
dtype: string
- name: score
dtype: int64
splits:
- name: test
num_bytes: 6592003
num_examples: 219420
download_size: 2081629
dataset_size: 6592003
- config_name: de-queries
features:
- name: id
dtype: string
- name: text
dtype: string
splits:
- name: test
num_bytes: 116403
num_examples: 4037
download_size: 79734
dataset_size: 116403
- config_name: en-corpus
features:
- name: id
dtype: string
- name: text
dtype: string
- name: title
dtype: string
splits:
- name: test
num_bytes: 104011321
num_examples: 218777
download_size: 45496212
dataset_size: 104011321
- config_name: en-qrels
features:
- name: query-id
dtype: string
- name: corpus-id
dtype: string
- name: score
dtype: int64
splits:
- name: test
num_bytes: 23750266
num_examples: 777393
download_size: 7459915
dataset_size: 23750266
- config_name: en-queries
features:
- name: id
dtype: string
- name: text
dtype: string
splits:
- name: test
num_bytes: 261701
num_examples: 9099
download_size: 172928
dataset_size: 261701
- config_name: es-corpus
features:
- name: id
dtype: string
- name: text
dtype: string
- name: title
dtype: string
splits:
- name: test
num_bytes: 12074042
num_examples: 39675
download_size: 5854196
dataset_size: 12074042
- config_name: es-qrels
features:
- name: query-id
dtype: string
- name: corpus-id
dtype: string
- name: score
dtype: int64
splits:
- name: test
num_bytes: 3862146
num_examples: 128736
download_size: 1234748
dataset_size: 3862146
- config_name: es-queries
features:
- name: id
dtype: string
- name: text
dtype: string
splits:
- name: test
num_bytes: 117987
num_examples: 3575
download_size: 75463
dataset_size: 117987
configs:
- config_name: de-corpus
data_files:
- split: test
path: de-corpus/test-*
- config_name: de-qrels
data_files:
- split: test
path: de-qrels/test-*
- config_name: de-queries
data_files:
- split: test
path: de-queries/test-*
- config_name: en-corpus
data_files:
- split: test
path: en-corpus/test-*
- config_name: en-qrels
data_files:
- split: test
path: en-qrels/test-*
- config_name: en-queries
data_files:
- split: test
path: en-queries/test-*
- config_name: es-corpus
data_files:
- split: test
path: es-corpus/test-*
- config_name: es-qrels
data_files:
- split: test
path: es-qrels/test-*
- config_name: es-queries
data_files:
- split: test
path: es-queries/test-*
tags:
- mteb
- text
XMarket
| Task category | t2t |
| Domains | None |
| Reference |
Source datasets:
How to evaluate on this task
You can evaluate an embedding model on this dataset using the following code:
import mteb
task = mteb.get_task("XMarket")
evaluator = mteb.MTEB([task])
model = mteb.get_model(YOUR_MODEL)
evaluator.run(model)
To learn more about how to run models on mteb task check out the GitHub repository.
Citation
If you use this dataset, please cite the dataset as well as mteb, as this dataset likely includes additional processing as a part of the MMTEB Contribution.
@inproceedings{Bonab_2021,
author = {Bonab, Hamed and Aliannejadi, Mohammad and Vardasbi, Ali and Kanoulas, Evangelos and Allan, James},
booktitle = {Proceedings of the 30th ACM International Conference on Information & Knowledge Management},
collection = {CIKM ’21},
doi = {10.1145/3459637.3482493},
month = oct,
publisher = {ACM},
series = {CIKM ’21},
title = {Cross-Market Product Recommendation},
url = {http://dx.doi.org/10.1145/3459637.3482493},
year = {2021},
}
@article{enevoldsen2025mmtebmassivemultilingualtext,
title={MMTEB: Massive Multilingual Text Embedding Benchmark},
author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
publisher = {arXiv},
journal={arXiv preprint arXiv:2502.13595},
year={2025},
url={https://arxiv.org/abs/2502.13595},
doi = {10.48550/arXiv.2502.13595},
}
@article{muennighoff2022mteb,
author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Loïc and Reimers, Nils},
title = {MTEB: Massive Text Embedding Benchmark},
publisher = {arXiv},
journal={arXiv preprint arXiv:2210.07316},
year = {2022}
url = {https://arxiv.org/abs/2210.07316},
doi = {10.48550/ARXIV.2210.07316},
}
Dataset Statistics
Dataset Statistics
The following code contains the descriptive statistics from the task. These can also be obtained using:
import mteb
task = mteb.get_task("XMarket")
desc_stats = task.metadata.descriptive_stats
{
"test": {
"num_samples": 345688,
"number_of_characters": 123653121,
"num_documents": 328978,
"min_document_length": 1,
"average_document_length": 375.0213296937789,
"max_document_length": 152114,
"unique_documents": 328978,
"num_queries": 16710,
"min_query_length": 1,
"average_query_length": 16.717773788150808,
"max_query_length": 88,
"unique_queries": 16711,
"none_queries": 1,
"num_relevant_docs": 1125549,
"min_relevant_docs_per_query": 1,
"average_relevant_docs_per_query": 67.35377894799832,
"max_relevant_docs_per_query": 81770,
"unique_relevant_docs": 313563,
"num_instructions": null,
"min_instruction_length": null,
"average_instruction_length": null,
"max_instruction_length": null,
"unique_instructions": null,
"num_top_ranked": null,
"min_top_ranked_per_query": null,
"average_top_ranked_per_query": null,
"max_top_ranked_per_query": null,
"hf_subset_descriptive_stats": {
"de": {
"num_samples": 74563,
"number_of_characters": 13280456,
"num_documents": 70526,
"min_document_length": 1,
"average_document_length": 187.4061197288943,
"max_document_length": 152114,
"unique_documents": 70526,
"num_queries": 4037,
"min_query_length": 2,
"average_query_length": 15.717612088184294,
"max_query_length": 51,
"unique_queries": 4037,
"none_queries": 0,
"num_relevant_docs": 219420,
"min_relevant_docs_per_query": 1,
"average_relevant_docs_per_query": 54.3522417636859,
"max_relevant_docs_per_query": 41933,
"unique_relevant_docs": 67368,
"num_instructions": null,
"min_instruction_length": null,
"average_instruction_length": null,
"max_instruction_length": null,
"unique_instructions": null,
"num_top_ranked": null,
"min_top_ranked_per_query": null,
"average_top_ranked_per_query": null,
"max_top_ranked_per_query": null
},
"en": {
"num_samples": 227875,
"number_of_characters": 99205002,
"num_documents": 218777,
"min_document_length": 1,
"average_document_length": 452.792089662076,
"max_document_length": 35870,
"unique_documents": 218777,
"num_queries": 9098,
"min_query_length": 1,
"average_query_length": 15.883380962848978,
"max_query_length": 66,
"unique_queries": 9099,
"none_queries": 1,
"num_relevant_docs": 777393,
"min_relevant_docs_per_query": 1,
"average_relevant_docs_per_query": 85.43719090009891,
"max_relevant_docs_per_query": 81770,
"unique_relevant_docs": 207995,
"num_instructions": null,
"min_instruction_length": null,
"average_instruction_length": null,
"max_instruction_length": null,
"unique_instructions": null,
"num_top_ranked": null,
"min_top_ranked_per_query": null,
"average_top_ranked_per_query": null,
"max_top_ranked_per_query": null
},
"es": {
"num_samples": 43250,
"number_of_characters": 11167663,
"num_documents": 39675,
"min_document_length": 1,
"average_document_length": 279.67909262759923,
"max_document_length": 29187,
"unique_documents": 39675,
"num_queries": 3575,
"min_query_length": 2,
"average_query_length": 19.97062937062937,
"max_query_length": 88,
"unique_queries": 3575,
"none_queries": 0,
"num_relevant_docs": 128736,
"min_relevant_docs_per_query": 1,
"average_relevant_docs_per_query": 36.01006993006993,
"max_relevant_docs_per_query": 17788,
"unique_relevant_docs": 38200,
"num_instructions": null,
"min_instruction_length": null,
"average_instruction_length": null,
"max_instruction_length": null,
"unique_instructions": null,
"num_top_ranked": null,
"min_top_ranked_per_query": null,
"average_top_ranked_per_query": null,
"max_top_ranked_per_query": null
}
}
}
}
This dataset card was automatically generated using MTEB