Datasets:
mteb
/

Modalities:
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
pandas
XMarket / README.md
Samoed's picture
Upload dataset
07df2fe verified
|
raw
history blame
13.4 kB
metadata
language:
  - deu
  - eng
  - spa
multilinguality: multilingual
source_datasets:
  - jinaai/xmarket_ml
task_categories:
  - text-retrieval
task_ids: []
dataset_info:
  - config_name: de-corpus
    features:
      - name: id
        dtype: string
      - name: text
        dtype: string
      - name: title
        dtype: string
    splits:
      - name: test
        num_bytes: 14888688
        num_examples: 70526
    download_size: 7641870
    dataset_size: 14888688
  - config_name: de-qrels
    features:
      - name: query-id
        dtype: string
      - name: corpus-id
        dtype: string
      - name: score
        dtype: int64
    splits:
      - name: test
        num_bytes: 6592003
        num_examples: 219420
    download_size: 2081629
    dataset_size: 6592003
  - config_name: de-queries
    features:
      - name: id
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: test
        num_bytes: 116403
        num_examples: 4037
    download_size: 79734
    dataset_size: 116403
  - config_name: en-corpus
    features:
      - name: id
        dtype: string
      - name: text
        dtype: string
      - name: title
        dtype: string
    splits:
      - name: test
        num_bytes: 104011321
        num_examples: 218777
    download_size: 45496212
    dataset_size: 104011321
  - config_name: en-qrels
    features:
      - name: query-id
        dtype: string
      - name: corpus-id
        dtype: string
      - name: score
        dtype: int64
    splits:
      - name: test
        num_bytes: 23750266
        num_examples: 777393
    download_size: 7459915
    dataset_size: 23750266
  - config_name: en-queries
    features:
      - name: id
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: test
        num_bytes: 261701
        num_examples: 9099
    download_size: 172928
    dataset_size: 261701
  - config_name: es-corpus
    features:
      - name: id
        dtype: string
      - name: text
        dtype: string
      - name: title
        dtype: string
    splits:
      - name: test
        num_bytes: 12074042
        num_examples: 39675
    download_size: 5854196
    dataset_size: 12074042
  - config_name: es-qrels
    features:
      - name: query-id
        dtype: string
      - name: corpus-id
        dtype: string
      - name: score
        dtype: int64
    splits:
      - name: test
        num_bytes: 3862146
        num_examples: 128736
    download_size: 1234748
    dataset_size: 3862146
  - config_name: es-queries
    features:
      - name: id
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: test
        num_bytes: 117987
        num_examples: 3575
    download_size: 75463
    dataset_size: 117987
configs:
  - config_name: de-corpus
    data_files:
      - split: test
        path: de-corpus/test-*
  - config_name: de-qrels
    data_files:
      - split: test
        path: de-qrels/test-*
  - config_name: de-queries
    data_files:
      - split: test
        path: de-queries/test-*
  - config_name: en-corpus
    data_files:
      - split: test
        path: en-corpus/test-*
  - config_name: en-qrels
    data_files:
      - split: test
        path: en-qrels/test-*
  - config_name: en-queries
    data_files:
      - split: test
        path: en-queries/test-*
  - config_name: es-corpus
    data_files:
      - split: test
        path: es-corpus/test-*
  - config_name: es-qrels
    data_files:
      - split: test
        path: es-qrels/test-*
  - config_name: es-queries
    data_files:
      - split: test
        path: es-queries/test-*
tags:
  - mteb
  - text

XMarket

An MTEB dataset
Massive Text Embedding Benchmark

XMarket

Task category t2t
Domains None
Reference

Source datasets:

How to evaluate on this task

You can evaluate an embedding model on this dataset using the following code:

import mteb

task = mteb.get_task("XMarket")
evaluator = mteb.MTEB([task])

model = mteb.get_model(YOUR_MODEL)
evaluator.run(model)

To learn more about how to run models on mteb task check out the GitHub repository.

Citation

If you use this dataset, please cite the dataset as well as mteb, as this dataset likely includes additional processing as a part of the MMTEB Contribution.


@inproceedings{Bonab_2021,
  author = {Bonab, Hamed and Aliannejadi, Mohammad and Vardasbi, Ali and Kanoulas, Evangelos and Allan, James},
  booktitle = {Proceedings of the 30th ACM International Conference on Information & Knowledge Management},
  collection = {CIKM ’21},
  doi = {10.1145/3459637.3482493},
  month = oct,
  publisher = {ACM},
  series = {CIKM ’21},
  title = {Cross-Market Product Recommendation},
  url = {http://dx.doi.org/10.1145/3459637.3482493},
  year = {2021},
}


@article{enevoldsen2025mmtebmassivemultilingualtext,
  title={MMTEB: Massive Multilingual Text Embedding Benchmark},
  author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2502.13595},
  year={2025},
  url={https://arxiv.org/abs/2502.13595},
  doi = {10.48550/arXiv.2502.13595},
}

@article{muennighoff2022mteb,
  author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Loïc and Reimers, Nils},
  title = {MTEB: Massive Text Embedding Benchmark},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2210.07316},
  year = {2022}
  url = {https://arxiv.org/abs/2210.07316},
  doi = {10.48550/ARXIV.2210.07316},
}

Dataset Statistics

Dataset Statistics

The following code contains the descriptive statistics from the task. These can also be obtained using:

import mteb

task = mteb.get_task("XMarket")

desc_stats = task.metadata.descriptive_stats
{
    "test": {
        "num_samples": 345688,
        "number_of_characters": 123653121,
        "num_documents": 328978,
        "min_document_length": 1,
        "average_document_length": 375.0213296937789,
        "max_document_length": 152114,
        "unique_documents": 328978,
        "num_queries": 16710,
        "min_query_length": 1,
        "average_query_length": 16.717773788150808,
        "max_query_length": 88,
        "unique_queries": 16711,
        "none_queries": 1,
        "num_relevant_docs": 1125549,
        "min_relevant_docs_per_query": 1,
        "average_relevant_docs_per_query": 67.35377894799832,
        "max_relevant_docs_per_query": 81770,
        "unique_relevant_docs": 313563,
        "num_instructions": null,
        "min_instruction_length": null,
        "average_instruction_length": null,
        "max_instruction_length": null,
        "unique_instructions": null,
        "num_top_ranked": null,
        "min_top_ranked_per_query": null,
        "average_top_ranked_per_query": null,
        "max_top_ranked_per_query": null,
        "hf_subset_descriptive_stats": {
            "de": {
                "num_samples": 74563,
                "number_of_characters": 13280456,
                "num_documents": 70526,
                "min_document_length": 1,
                "average_document_length": 187.4061197288943,
                "max_document_length": 152114,
                "unique_documents": 70526,
                "num_queries": 4037,
                "min_query_length": 2,
                "average_query_length": 15.717612088184294,
                "max_query_length": 51,
                "unique_queries": 4037,
                "none_queries": 0,
                "num_relevant_docs": 219420,
                "min_relevant_docs_per_query": 1,
                "average_relevant_docs_per_query": 54.3522417636859,
                "max_relevant_docs_per_query": 41933,
                "unique_relevant_docs": 67368,
                "num_instructions": null,
                "min_instruction_length": null,
                "average_instruction_length": null,
                "max_instruction_length": null,
                "unique_instructions": null,
                "num_top_ranked": null,
                "min_top_ranked_per_query": null,
                "average_top_ranked_per_query": null,
                "max_top_ranked_per_query": null
            },
            "en": {
                "num_samples": 227875,
                "number_of_characters": 99205002,
                "num_documents": 218777,
                "min_document_length": 1,
                "average_document_length": 452.792089662076,
                "max_document_length": 35870,
                "unique_documents": 218777,
                "num_queries": 9098,
                "min_query_length": 1,
                "average_query_length": 15.883380962848978,
                "max_query_length": 66,
                "unique_queries": 9099,
                "none_queries": 1,
                "num_relevant_docs": 777393,
                "min_relevant_docs_per_query": 1,
                "average_relevant_docs_per_query": 85.43719090009891,
                "max_relevant_docs_per_query": 81770,
                "unique_relevant_docs": 207995,
                "num_instructions": null,
                "min_instruction_length": null,
                "average_instruction_length": null,
                "max_instruction_length": null,
                "unique_instructions": null,
                "num_top_ranked": null,
                "min_top_ranked_per_query": null,
                "average_top_ranked_per_query": null,
                "max_top_ranked_per_query": null
            },
            "es": {
                "num_samples": 43250,
                "number_of_characters": 11167663,
                "num_documents": 39675,
                "min_document_length": 1,
                "average_document_length": 279.67909262759923,
                "max_document_length": 29187,
                "unique_documents": 39675,
                "num_queries": 3575,
                "min_query_length": 2,
                "average_query_length": 19.97062937062937,
                "max_query_length": 88,
                "unique_queries": 3575,
                "none_queries": 0,
                "num_relevant_docs": 128736,
                "min_relevant_docs_per_query": 1,
                "average_relevant_docs_per_query": 36.01006993006993,
                "max_relevant_docs_per_query": 17788,
                "unique_relevant_docs": 38200,
                "num_instructions": null,
                "min_instruction_length": null,
                "average_instruction_length": null,
                "max_instruction_length": null,
                "unique_instructions": null,
                "num_top_ranked": null,
                "min_top_ranked_per_query": null,
                "average_top_ranked_per_query": null,
                "max_top_ranked_per_query": null
            }
        }
    }
}

This dataset card was automatically generated using MTEB