Dataset Viewer
The dataset viewer is not available because its heuristics could not detect any supported data files. You can try uploading some data files, or configuring the data files location manually.
Dataset Card for DLC Speed Benchmarking ZIP
This supports the dlc-live benchmarking zip formally hosted on our Harvard Rowland server. All information can be found in our publication:
Real-time, low-latency closed-loop feedback using markerless posture tracking Gary A Kane, Gonçalo Lopes, Jonny L Saunders, Alexander Mathis, Mackenzie W Mathis https://elifesciences.org/articles/61909
Direct Use
"""
DeepLabCut Toolbox (deeplabcut.org)
© A. & M. Mathis Labs
Licensed under GNU Lesser General Public License v3.0
"""
# Script for running the official benchmark from Kane et al, 2020.
# Please share your results at https://github.com/DeepLabCut/DLC-inferencespeed-benchmark
import os, pathlib
import glob
from dlclive import benchmark_videos, download_benchmarking_data
datafolder = os.path.join(
pathlib.Path(__file__).parent.absolute(), "Data-DLC-live-benchmark"
)
if not os.path.isdir(datafolder): # only download if data doesn't exist!
# Downloading data.... this takes a while (see terminal)
download_benchmarking_data(datafolder)
n_frames = 10000 # change to 10000 for testing on a GPU!
pixels = [2500, 10000, 40000, 160000, 320000, 640000]
dog_models = glob.glob(datafolder + "/dog/*[!avi]")
dog_video = glob.glob(datafolder + "/dog/*.avi")[0]
mouse_models = glob.glob(datafolder + "/mouse_lick/*[!avi]")
mouse_video = glob.glob(datafolder + "/mouse_lick/*.avi")[0]
this_dir = os.path.dirname(os.path.realpath(__file__))
# storing results in /benchmarking/results: (for your PR)
out_dir = os.path.normpath(this_dir + "/results")
if not os.path.isdir(out_dir):
os.mkdir(out_dir)
for m in dog_models:
benchmark_videos(m, dog_video, output=out_dir, n_frames=n_frames, pixels=pixels)
for m in mouse_models:
benchmark_videos(m, mouse_video, output=out_dir, n_frames=n_frames, pixels=pixels)
- Downloads last month
- 62