The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
Error code: JobManagerCrashedError
Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
image
image | label
class label |
---|---|
0aachen
|
|
0aachen
|
|
0aachen
|
|
0aachen
|
|
0aachen
|
|
0aachen
|
|
0aachen
|
|
0aachen
|
|
0aachen
|
|
0aachen
|
|
0aachen
|
|
0aachen
|
|
0aachen
|
|
0aachen
|
|
0aachen
|
|
0aachen
|
|
0aachen
|
|
0aachen
|
|
0aachen
|
|
0aachen
|
|
0aachen
|
|
0aachen
|
|
0aachen
|
|
0aachen
|
|
0aachen
|
|
0aachen
|
|
0aachen
|
|
0aachen
|
|
0aachen
|
|
0aachen
|
|
0aachen
|
|
0aachen
|
|
0aachen
|
|
0aachen
|
|
0aachen
|
|
0aachen
|
|
0aachen
|
|
0aachen
|
|
0aachen
|
|
0aachen
|
|
0aachen
|
|
0aachen
|
|
0aachen
|
|
0aachen
|
|
0aachen
|
|
0aachen
|
|
0aachen
|
|
0aachen
|
|
0aachen
|
|
0aachen
|
|
0aachen
|
|
0aachen
|
|
0aachen
|
|
0aachen
|
|
0aachen
|
|
0aachen
|
|
0aachen
|
|
0aachen
|
|
0aachen
|
|
0aachen
|
|
0aachen
|
|
0aachen
|
|
0aachen
|
|
0aachen
|
|
0aachen
|
|
0aachen
|
|
0aachen
|
|
0aachen
|
|
0aachen
|
|
0aachen
|
|
0aachen
|
|
0aachen
|
|
0aachen
|
|
0aachen
|
|
0aachen
|
|
0aachen
|
|
0aachen
|
|
0aachen
|
|
0aachen
|
|
0aachen
|
|
0aachen
|
|
0aachen
|
|
0aachen
|
|
0aachen
|
|
0aachen
|
|
0aachen
|
|
0aachen
|
|
0aachen
|
|
0aachen
|
|
0aachen
|
|
0aachen
|
|
0aachen
|
|
0aachen
|
|
0aachen
|
|
0aachen
|
|
0aachen
|
|
0aachen
|
|
0aachen
|
|
0aachen
|
|
0aachen
|
Cityscape‑Adverse
A benchmark for evaluating semantic segmentation robustness under realistic adverse conditions.
Overview
Cityscape‑Adverse extends the original Cityscapes dataset by applying eight realistic environmental modifications—rainy, foggy, spring, autumn, snowy, sunny, night, and dawn—using diffusion‑based image editing. All transformations preserve the original 2048×1024 semantic labels, enabling direct evaluation of model robustness in out‑of‑distribution scenarios.
Paper & Citation
Cityscape‑Adverse: Benchmarking Robustness of Semantic Segmentation with Realistic Scene Modifications via Diffusion‑Based Image Editing
N. Suryanto, A. A. Adiputra, A. Y. Kadiptya, T. T.-H. Le, D. Pratama, Y. Kim, and H. Kim, IEEE Access, 2025.
DOI: 10.1109/ACCESS.2025.3537981
@ARTICLE{10870179,
author={Suryanto, Naufal and Adiputra, Andro Aprila and Kadiptya, Ahmada Yusril and Le, Thi-Thu-Huong and Pratama, Derry and Kim, Yongsu and Kim, Howon},
journal={IEEE Access},
title={Cityscape-Adverse: Benchmarking Robustness of Semantic Segmentation with Realistic Scene Modifications via Diffusion-Based Image Editing},
year={2025},
doi={10.1109/ACCESS.2025.3537981}
}
ArXiv: arxiv.org/abs/2411.00425
Dataset Summary
- Base dataset: Cityscapes (finely annotated images; 2975 train / 500 val publicly available)
- Modifications:
- Weathers: rainy, foggy
- Seasons: spring, autumn, snowy
- Lightings: sunny, night, dawn
- Generation:
- Diffusion‑based instruction editing with CosXLEdit
- Prompts e.g.
"change the weather to foggy, photo-realistic"
, guidance scales 5–7, 20 diffusion steps.
- Resolution: 2048 × 1024 (same as Cityscapes)
- Labels: original Cityscapes semantic masks, preserved for all splits
Data Splits
Split | Source images | Modifications | Total images | Validation filters (accepted) | Acceptance rate |
---|---|---|---|---|---|
Train | 2975 (Cityscapes train) | all 8 mods | 2975 × 8 = 23 800 | unfiltered | n/a |
Validation | 500 (Cityscapes val) | all 8 mods | 4000 | see below | 93–100 % |
Validation acceptance (after human filtering for credibility & semantic consistency):
- Rainy: 495 (99.0 %)
- Foggy: 478 (95.6 %)
- Spring: 493 (98.6 %)
- Autumn: 466 (93.2 %)
- Snowy: 488 (97.6 %)
- Sunny: 500 (100 %)
- Night: 500 (100 %)
- Dawn: 500 (100 %)
Total accepted: 3920 images.
Supported Tasks
- Semantic segmentation: evaluation of model robustness via mIoU, performance drop, and cross‑dataset generalization.
Licensing
- Images & labels: governed by the original Cityscapes license.
- Synthetic modifications: CC-BY-4.0
- Code & scripts: Apache 2.0
Acknowledgments
Supported by the MSIT, Korea, under the Convergence Security Core Talent Training Business (RS‑2022‑II221201), supervised by the IITP.
For questions or contributions, please open an issue or pull request on the GitHub repository.
- Downloads last month
- 139