Dataset Viewer
Auto-converted to Parquet
text
stringlengths
41
89.8k
type
stringclasses
1 value
start
int64
79
258k
end
int64
342
260k
depth
int64
0
0
filepath
stringlengths
81
164
parent_class
null
class_index
int64
0
1.38k
class FrozenDict(OrderedDict): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) for key, value in self.items(): setattr(self, key, value) self.__frozen = True def __delitem__(self, *args, **kwargs): raise Exception(f"You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.") def setdefault(self, *args, **kwargs): raise Exception(f"You cannot use ``setdefault`` on a {self.__class__.__name__} instance.") def pop(self, *args, **kwargs): raise Exception(f"You cannot use ``pop`` on a {self.__class__.__name__} instance.") def update(self, *args, **kwargs): raise Exception(f"You cannot use ``update`` on a {self.__class__.__name__} instance.") def __setattr__(self, name, value): if hasattr(self, "__frozen") and self.__frozen: raise Exception(f"You cannot use ``__setattr__`` on a {self.__class__.__name__} instance.") super().__setattr__(name, value) def __setitem__(self, name, value): if hasattr(self, "__frozen") and self.__frozen: raise Exception(f"You cannot use ``__setattr__`` on a {self.__class__.__name__} instance.") super().__setitem__(name, value)
class_definition
1,471
2,729
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/configuration_utils.py
null
0
class ConfigMixin: r""" Base class for all configuration classes. All configuration parameters are stored under `self.config`. Also provides the [`~ConfigMixin.from_config`] and [`~ConfigMixin.save_config`] methods for loading, downloading, and saving classes that inherit from [`ConfigMixin`]. Class attributes: - **config_name** (`str`) -- A filename under which the config should stored when calling [`~ConfigMixin.save_config`] (should be overridden by parent class). - **ignore_for_config** (`List[str]`) -- A list of attributes that should not be saved in the config (should be overridden by subclass). - **has_compatibles** (`bool`) -- Whether the class has compatible classes (should be overridden by subclass). - **_deprecated_kwargs** (`List[str]`) -- Keyword arguments that are deprecated. Note that the `init` function should only have a `kwargs` argument if at least one argument is deprecated (should be overridden by subclass). """ config_name = None ignore_for_config = [] has_compatibles = False _deprecated_kwargs = [] def register_to_config(self, **kwargs): if self.config_name is None: raise NotImplementedError(f"Make sure that {self.__class__} has defined a class name `config_name`") # Special case for `kwargs` used in deprecation warning added to schedulers # TODO: remove this when we remove the deprecation warning, and the `kwargs` argument, # or solve in a more general way. kwargs.pop("kwargs", None) if not hasattr(self, "_internal_dict"): internal_dict = kwargs else: previous_dict = dict(self._internal_dict) internal_dict = {**self._internal_dict, **kwargs} logger.debug(f"Updating config from {previous_dict} to {internal_dict}") self._internal_dict = FrozenDict(internal_dict) def __getattr__(self, name: str) -> Any: """The only reason we overwrite `getattr` here is to gracefully deprecate accessing config attributes directly. See https://github.com/huggingface/diffusers/pull/3129 This function is mostly copied from PyTorch's __getattr__ overwrite: https://pytorch.org/docs/stable/_modules/torch/nn/modules/module.html#Module """ is_in_config = "_internal_dict" in self.__dict__ and hasattr(self.__dict__["_internal_dict"], name) is_attribute = name in self.__dict__ if is_in_config and not is_attribute: deprecation_message = f"Accessing config attribute `{name}` directly via '{type(self).__name__}' object attribute is deprecated. Please access '{name}' over '{type(self).__name__}'s config object instead, e.g. 'scheduler.config.{name}'." deprecate("direct config name access", "1.0.0", deprecation_message, standard_warn=False) return self._internal_dict[name] raise AttributeError(f"'{type(self).__name__}' object has no attribute '{name}'") def save_config(self, save_directory: Union[str, os.PathLike], push_to_hub: bool = False, **kwargs): """ Save a configuration object to the directory specified in `save_directory` so that it can be reloaded using the [`~ConfigMixin.from_config`] class method. Args: save_directory (`str` or `os.PathLike`): Directory where the configuration JSON file is saved (will be created if it does not exist). push_to_hub (`bool`, *optional*, defaults to `False`): Whether or not to push your model to the Hugging Face Hub after saving it. You can specify the repository you want to push to with `repo_id` (will default to the name of `save_directory` in your namespace). kwargs (`Dict[str, Any]`, *optional*): Additional keyword arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method. """ if os.path.isfile(save_directory): raise AssertionError(f"Provided path ({save_directory}) should be a directory, not a file") os.makedirs(save_directory, exist_ok=True) # If we save using the predefined names, we can load using `from_config` output_config_file = os.path.join(save_directory, self.config_name) self.to_json_file(output_config_file) logger.info(f"Configuration saved in {output_config_file}") if push_to_hub: commit_message = kwargs.pop("commit_message", None) private = kwargs.pop("private", None) create_pr = kwargs.pop("create_pr", False) token = kwargs.pop("token", None) repo_id = kwargs.pop("repo_id", save_directory.split(os.path.sep)[-1]) repo_id = create_repo(repo_id, exist_ok=True, private=private, token=token).repo_id self._upload_folder( save_directory, repo_id, token=token, commit_message=commit_message, create_pr=create_pr, ) @classmethod def from_config(cls, config: Union[FrozenDict, Dict[str, Any]] = None, return_unused_kwargs=False, **kwargs): r""" Instantiate a Python class from a config dictionary. Parameters: config (`Dict[str, Any]`): A config dictionary from which the Python class is instantiated. Make sure to only load configuration files of compatible classes. return_unused_kwargs (`bool`, *optional*, defaults to `False`): Whether kwargs that are not consumed by the Python class should be returned or not. kwargs (remaining dictionary of keyword arguments, *optional*): Can be used to update the configuration object (after it is loaded) and initiate the Python class. `**kwargs` are passed directly to the underlying scheduler/model's `__init__` method and eventually overwrite the same named arguments in `config`. Returns: [`ModelMixin`] or [`SchedulerMixin`]: A model or scheduler object instantiated from a config dictionary. Examples: ```python >>> from diffusers import DDPMScheduler, DDIMScheduler, PNDMScheduler >>> # Download scheduler from huggingface.co and cache. >>> scheduler = DDPMScheduler.from_pretrained("google/ddpm-cifar10-32") >>> # Instantiate DDIM scheduler class with same config as DDPM >>> scheduler = DDIMScheduler.from_config(scheduler.config) >>> # Instantiate PNDM scheduler class with same config as DDPM >>> scheduler = PNDMScheduler.from_config(scheduler.config) ``` """ # <===== TO BE REMOVED WITH DEPRECATION # TODO(Patrick) - make sure to remove the following lines when config=="model_path" is deprecated if "pretrained_model_name_or_path" in kwargs: config = kwargs.pop("pretrained_model_name_or_path") if config is None: raise ValueError("Please make sure to provide a config as the first positional argument.") # ======> if not isinstance(config, dict): deprecation_message = "It is deprecated to pass a pretrained model name or path to `from_config`." if "Scheduler" in cls.__name__: deprecation_message += ( f"If you were trying to load a scheduler, please use {cls}.from_pretrained(...) instead." " Otherwise, please make sure to pass a configuration dictionary instead. This functionality will" " be removed in v1.0.0." ) elif "Model" in cls.__name__: deprecation_message += ( f"If you were trying to load a model, please use {cls}.load_config(...) followed by" f" {cls}.from_config(...) instead. Otherwise, please make sure to pass a configuration dictionary" " instead. This functionality will be removed in v1.0.0." ) deprecate("config-passed-as-path", "1.0.0", deprecation_message, standard_warn=False) config, kwargs = cls.load_config(pretrained_model_name_or_path=config, return_unused_kwargs=True, **kwargs) init_dict, unused_kwargs, hidden_dict = cls.extract_init_dict(config, **kwargs) # Allow dtype to be specified on initialization if "dtype" in unused_kwargs: init_dict["dtype"] = unused_kwargs.pop("dtype") # add possible deprecated kwargs for deprecated_kwarg in cls._deprecated_kwargs: if deprecated_kwarg in unused_kwargs: init_dict[deprecated_kwarg] = unused_kwargs.pop(deprecated_kwarg) # Return model and optionally state and/or unused_kwargs model = cls(**init_dict) # make sure to also save config parameters that might be used for compatible classes # update _class_name if "_class_name" in hidden_dict: hidden_dict["_class_name"] = cls.__name__ model.register_to_config(**hidden_dict) # add hidden kwargs of compatible classes to unused_kwargs unused_kwargs = {**unused_kwargs, **hidden_dict} if return_unused_kwargs: return (model, unused_kwargs) else: return model @classmethod def get_config_dict(cls, *args, **kwargs): deprecation_message = ( f" The function get_config_dict is deprecated. Please use {cls}.load_config instead. This function will be" " removed in version v1.0.0" ) deprecate("get_config_dict", "1.0.0", deprecation_message, standard_warn=False) return cls.load_config(*args, **kwargs) @classmethod @validate_hf_hub_args def load_config( cls, pretrained_model_name_or_path: Union[str, os.PathLike], return_unused_kwargs=False, return_commit_hash=False, **kwargs, ) -> Tuple[Dict[str, Any], Dict[str, Any]]: r""" Load a model or scheduler configuration. Parameters: pretrained_model_name_or_path (`str` or `os.PathLike`, *optional*): Can be either: - A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on the Hub. - A path to a *directory* (for example `./my_model_directory`) containing model weights saved with [`~ConfigMixin.save_config`]. cache_dir (`Union[str, os.PathLike]`, *optional*): Path to a directory where a downloaded pretrained model configuration is cached if the standard cache is not used. force_download (`bool`, *optional*, defaults to `False`): Whether or not to force the (re-)download of the model weights and configuration files, overriding the cached versions if they exist. proxies (`Dict[str, str]`, *optional*): A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. output_loading_info(`bool`, *optional*, defaults to `False`): Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages. local_files_only (`bool`, *optional*, defaults to `False`): Whether to only load local model weights and configuration files or not. If set to `True`, the model won't be downloaded from the Hub. token (`str` or *bool*, *optional*): The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from `diffusers-cli login` (stored in `~/.huggingface`) is used. revision (`str`, *optional*, defaults to `"main"`): The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier allowed by Git. subfolder (`str`, *optional*, defaults to `""`): The subfolder location of a model file within a larger model repository on the Hub or locally. return_unused_kwargs (`bool`, *optional*, defaults to `False): Whether unused keyword arguments of the config are returned. return_commit_hash (`bool`, *optional*, defaults to `False): Whether the `commit_hash` of the loaded configuration are returned. Returns: `dict`: A dictionary of all the parameters stored in a JSON configuration file. """ cache_dir = kwargs.pop("cache_dir", None) local_dir = kwargs.pop("local_dir", None) local_dir_use_symlinks = kwargs.pop("local_dir_use_symlinks", "auto") force_download = kwargs.pop("force_download", False) proxies = kwargs.pop("proxies", None) token = kwargs.pop("token", None) local_files_only = kwargs.pop("local_files_only", False) revision = kwargs.pop("revision", None) _ = kwargs.pop("mirror", None) subfolder = kwargs.pop("subfolder", None) user_agent = kwargs.pop("user_agent", {}) dduf_entries: Optional[Dict[str, DDUFEntry]] = kwargs.pop("dduf_entries", None) user_agent = {**user_agent, "file_type": "config"} user_agent = http_user_agent(user_agent) pretrained_model_name_or_path = str(pretrained_model_name_or_path) if cls.config_name is None: raise ValueError( "`self.config_name` is not defined. Note that one should not load a config from " "`ConfigMixin`. Please make sure to define `config_name` in a class inheriting from `ConfigMixin`" ) # Custom path for now if dduf_entries: if subfolder is not None: raise ValueError( "DDUF file only allow for 1 level of directory (e.g transformer/model1/model.safetentors is not allowed). " "Please check the DDUF structure" ) config_file = cls._get_config_file_from_dduf(pretrained_model_name_or_path, dduf_entries) elif os.path.isfile(pretrained_model_name_or_path): config_file = pretrained_model_name_or_path elif os.path.isdir(pretrained_model_name_or_path): if subfolder is not None and os.path.isfile( os.path.join(pretrained_model_name_or_path, subfolder, cls.config_name) ): config_file = os.path.join(pretrained_model_name_or_path, subfolder, cls.config_name) elif os.path.isfile(os.path.join(pretrained_model_name_or_path, cls.config_name)): # Load from a PyTorch checkpoint config_file = os.path.join(pretrained_model_name_or_path, cls.config_name) else: raise EnvironmentError( f"Error no file named {cls.config_name} found in directory {pretrained_model_name_or_path}." ) else: try: # Load from URL or cache if already cached config_file = hf_hub_download( pretrained_model_name_or_path, filename=cls.config_name, cache_dir=cache_dir, force_download=force_download, proxies=proxies, local_files_only=local_files_only, token=token, user_agent=user_agent, subfolder=subfolder, revision=revision, local_dir=local_dir, local_dir_use_symlinks=local_dir_use_symlinks, ) except RepositoryNotFoundError: raise EnvironmentError( f"{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier" " listed on 'https://huggingface.co/models'\nIf this is a private repository, make sure to pass a" " token having permission to this repo with `token` or log in with `huggingface-cli login`." ) except RevisionNotFoundError: raise EnvironmentError( f"{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for" " this model name. Check the model page at" f" 'https://huggingface.co/{pretrained_model_name_or_path}' for available revisions." ) except EntryNotFoundError: raise EnvironmentError( f"{pretrained_model_name_or_path} does not appear to have a file named {cls.config_name}." ) except HTTPError as err: raise EnvironmentError( "There was a specific connection error when trying to load" f" {pretrained_model_name_or_path}:\n{err}" ) except ValueError: raise EnvironmentError( f"We couldn't connect to '{HUGGINGFACE_CO_RESOLVE_ENDPOINT}' to load this model, couldn't find it" f" in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a" f" directory containing a {cls.config_name} file.\nCheckout your internet connection or see how to" " run the library in offline mode at" " 'https://huggingface.co/docs/diffusers/installation#offline-mode'." ) except EnvironmentError: raise EnvironmentError( f"Can't load config for '{pretrained_model_name_or_path}'. If you were trying to load it from " "'https://huggingface.co/models', make sure you don't have a local directory with the same name. " f"Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a directory " f"containing a {cls.config_name} file" ) try: config_dict = cls._dict_from_json_file(config_file, dduf_entries=dduf_entries) commit_hash = extract_commit_hash(config_file) except (json.JSONDecodeError, UnicodeDecodeError): raise EnvironmentError(f"It looks like the config file at '{config_file}' is not a valid JSON file.") if not (return_unused_kwargs or return_commit_hash): return config_dict outputs = (config_dict,) if return_unused_kwargs: outputs += (kwargs,) if return_commit_hash: outputs += (commit_hash,) return outputs @staticmethod def _get_init_keys(input_class): return set(dict(inspect.signature(input_class.__init__).parameters).keys()) @classmethod def extract_init_dict(cls, config_dict, **kwargs): # Skip keys that were not present in the original config, so default __init__ values were used used_defaults = config_dict.get("_use_default_values", []) config_dict = {k: v for k, v in config_dict.items() if k not in used_defaults and k != "_use_default_values"} # 0. Copy origin config dict original_dict = dict(config_dict.items()) # 1. Retrieve expected config attributes from __init__ signature expected_keys = cls._get_init_keys(cls) expected_keys.remove("self") # remove general kwargs if present in dict if "kwargs" in expected_keys: expected_keys.remove("kwargs") # remove flax internal keys if hasattr(cls, "_flax_internal_args"): for arg in cls._flax_internal_args: expected_keys.remove(arg) # 2. Remove attributes that cannot be expected from expected config attributes # remove keys to be ignored if len(cls.ignore_for_config) > 0: expected_keys = expected_keys - set(cls.ignore_for_config) # load diffusers library to import compatible and original scheduler diffusers_library = importlib.import_module(__name__.split(".")[0]) if cls.has_compatibles: compatible_classes = [c for c in cls._get_compatibles() if not isinstance(c, DummyObject)] else: compatible_classes = [] expected_keys_comp_cls = set() for c in compatible_classes: expected_keys_c = cls._get_init_keys(c) expected_keys_comp_cls = expected_keys_comp_cls.union(expected_keys_c) expected_keys_comp_cls = expected_keys_comp_cls - cls._get_init_keys(cls) config_dict = {k: v for k, v in config_dict.items() if k not in expected_keys_comp_cls} # remove attributes from orig class that cannot be expected orig_cls_name = config_dict.pop("_class_name", cls.__name__) if ( isinstance(orig_cls_name, str) and orig_cls_name != cls.__name__ and hasattr(diffusers_library, orig_cls_name) ): orig_cls = getattr(diffusers_library, orig_cls_name) unexpected_keys_from_orig = cls._get_init_keys(orig_cls) - expected_keys config_dict = {k: v for k, v in config_dict.items() if k not in unexpected_keys_from_orig} elif not isinstance(orig_cls_name, str) and not isinstance(orig_cls_name, (list, tuple)): raise ValueError( "Make sure that the `_class_name` is of type string or list of string (for custom pipelines)." ) # remove private attributes config_dict = {k: v for k, v in config_dict.items() if not k.startswith("_")} # remove quantization_config config_dict = {k: v for k, v in config_dict.items() if k != "quantization_config"} # 3. Create keyword arguments that will be passed to __init__ from expected keyword arguments init_dict = {} for key in expected_keys: # if config param is passed to kwarg and is present in config dict # it should overwrite existing config dict key if key in kwargs and key in config_dict: config_dict[key] = kwargs.pop(key) if key in kwargs: # overwrite key init_dict[key] = kwargs.pop(key) elif key in config_dict: # use value from config dict init_dict[key] = config_dict.pop(key) # 4. Give nice warning if unexpected values have been passed if len(config_dict) > 0: logger.warning( f"The config attributes {config_dict} were passed to {cls.__name__}, " "but are not expected and will be ignored. Please verify your " f"{cls.config_name} configuration file." ) # 5. Give nice info if config attributes are initialized to default because they have not been passed passed_keys = set(init_dict.keys()) if len(expected_keys - passed_keys) > 0: logger.info( f"{expected_keys - passed_keys} was not found in config. Values will be initialized to default values." ) # 6. Define unused keyword arguments unused_kwargs = {**config_dict, **kwargs} # 7. Define "hidden" config parameters that were saved for compatible classes hidden_config_dict = {k: v for k, v in original_dict.items() if k not in init_dict} return init_dict, unused_kwargs, hidden_config_dict @classmethod def _dict_from_json_file( cls, json_file: Union[str, os.PathLike], dduf_entries: Optional[Dict[str, DDUFEntry]] = None ): if dduf_entries: text = dduf_entries[json_file].read_text() else: with open(json_file, "r", encoding="utf-8") as reader: text = reader.read() return json.loads(text) def __repr__(self): return f"{self.__class__.__name__} {self.to_json_string()}" @property def config(self) -> Dict[str, Any]: """ Returns the config of the class as a frozen dictionary Returns: `Dict[str, Any]`: Config of the class. """ return self._internal_dict def to_json_string(self) -> str: """ Serializes the configuration instance to a JSON string. Returns: `str`: String containing all the attributes that make up the configuration instance in JSON format. """ config_dict = self._internal_dict if hasattr(self, "_internal_dict") else {} config_dict["_class_name"] = self.__class__.__name__ config_dict["_diffusers_version"] = __version__ def to_json_saveable(value): if isinstance(value, np.ndarray): value = value.tolist() elif isinstance(value, Path): value = value.as_posix() return value if "quantization_config" in config_dict: config_dict["quantization_config"] = ( config_dict.quantization_config.to_dict() if not isinstance(config_dict.quantization_config, dict) else config_dict.quantization_config ) config_dict = {k: to_json_saveable(v) for k, v in config_dict.items()} # Don't save "_ignore_files" or "_use_default_values" config_dict.pop("_ignore_files", None) config_dict.pop("_use_default_values", None) # pop the `_pre_quantization_dtype` as torch.dtypes are not serializable. _ = config_dict.pop("_pre_quantization_dtype", None) return json.dumps(config_dict, indent=2, sort_keys=True) + "\n" def to_json_file(self, json_file_path: Union[str, os.PathLike]): """ Save the configuration instance's parameters to a JSON file. Args: json_file_path (`str` or `os.PathLike`): Path to the JSON file to save a configuration instance's parameters. """ with open(json_file_path, "w", encoding="utf-8") as writer: writer.write(self.to_json_string()) @classmethod def _get_config_file_from_dduf(cls, pretrained_model_name_or_path: str, dduf_entries: Dict[str, DDUFEntry]): # paths inside a DDUF file must always be "/" config_file = ( cls.config_name if pretrained_model_name_or_path == "" else "/".join([pretrained_model_name_or_path, cls.config_name]) ) if config_file not in dduf_entries: raise ValueError( f"We did not manage to find the file {config_file} in the dduf file. We only have the following files {dduf_entries.keys()}" ) return config_file
class_definition
2,732
29,807
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/configuration_utils.py
null
1
class LegacyConfigMixin(ConfigMixin): r""" A subclass of `ConfigMixin` to resolve class mapping from legacy classes (like `Transformer2DModel`) to more pipeline-specific classes (like `DiTTransformer2DModel`). """ @classmethod def from_config(cls, config: Union[FrozenDict, Dict[str, Any]] = None, return_unused_kwargs=False, **kwargs): # To prevent dependency import problem. from .models.model_loading_utils import _fetch_remapped_cls_from_config # resolve remapping remapped_class = _fetch_remapped_cls_from_config(config, cls) return remapped_class.from_config(config, return_unused_kwargs, **kwargs)
class_definition
33,715
34,386
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/configuration_utils.py
null
2
class VaeImageProcessor(ConfigMixin): """ Image processor for VAE. Args: do_resize (`bool`, *optional*, defaults to `True`): Whether to downscale the image's (height, width) dimensions to multiples of `vae_scale_factor`. Can accept `height` and `width` arguments from [`image_processor.VaeImageProcessor.preprocess`] method. vae_scale_factor (`int`, *optional*, defaults to `8`): VAE scale factor. If `do_resize` is `True`, the image is automatically resized to multiples of this factor. resample (`str`, *optional*, defaults to `lanczos`): Resampling filter to use when resizing the image. do_normalize (`bool`, *optional*, defaults to `True`): Whether to normalize the image to [-1,1]. do_binarize (`bool`, *optional*, defaults to `False`): Whether to binarize the image to 0/1. do_convert_rgb (`bool`, *optional*, defaults to be `False`): Whether to convert the images to RGB format. do_convert_grayscale (`bool`, *optional*, defaults to be `False`): Whether to convert the images to grayscale format. """ config_name = CONFIG_NAME @register_to_config def __init__( self, do_resize: bool = True, vae_scale_factor: int = 8, vae_latent_channels: int = 4, resample: str = "lanczos", do_normalize: bool = True, do_binarize: bool = False, do_convert_rgb: bool = False, do_convert_grayscale: bool = False, ): super().__init__() if do_convert_rgb and do_convert_grayscale: raise ValueError( "`do_convert_rgb` and `do_convert_grayscale` can not both be set to `True`," " if you intended to convert the image into RGB format, please set `do_convert_grayscale = False`.", " if you intended to convert the image into grayscale format, please set `do_convert_rgb = False`", ) @staticmethod def numpy_to_pil(images: np.ndarray) -> List[PIL.Image.Image]: r""" Convert a numpy image or a batch of images to a PIL image. Args: images (`np.ndarray`): The image array to convert to PIL format. Returns: `List[PIL.Image.Image]`: A list of PIL images. """ if images.ndim == 3: images = images[None, ...] images = (images * 255).round().astype("uint8") if images.shape[-1] == 1: # special case for grayscale (single channel) images pil_images = [Image.fromarray(image.squeeze(), mode="L") for image in images] else: pil_images = [Image.fromarray(image) for image in images] return pil_images @staticmethod def pil_to_numpy(images: Union[List[PIL.Image.Image], PIL.Image.Image]) -> np.ndarray: r""" Convert a PIL image or a list of PIL images to NumPy arrays. Args: images (`PIL.Image.Image` or `List[PIL.Image.Image]`): The PIL image or list of images to convert to NumPy format. Returns: `np.ndarray`: A NumPy array representation of the images. """ if not isinstance(images, list): images = [images] images = [np.array(image).astype(np.float32) / 255.0 for image in images] images = np.stack(images, axis=0) return images @staticmethod def numpy_to_pt(images: np.ndarray) -> torch.Tensor: r""" Convert a NumPy image to a PyTorch tensor. Args: images (`np.ndarray`): The NumPy image array to convert to PyTorch format. Returns: `torch.Tensor`: A PyTorch tensor representation of the images. """ if images.ndim == 3: images = images[..., None] images = torch.from_numpy(images.transpose(0, 3, 1, 2)) return images @staticmethod def pt_to_numpy(images: torch.Tensor) -> np.ndarray: r""" Convert a PyTorch tensor to a NumPy image. Args: images (`torch.Tensor`): The PyTorch tensor to convert to NumPy format. Returns: `np.ndarray`: A NumPy array representation of the images. """ images = images.cpu().permute(0, 2, 3, 1).float().numpy() return images @staticmethod def normalize(images: Union[np.ndarray, torch.Tensor]) -> Union[np.ndarray, torch.Tensor]: r""" Normalize an image array to [-1,1]. Args: images (`np.ndarray` or `torch.Tensor`): The image array to normalize. Returns: `np.ndarray` or `torch.Tensor`: The normalized image array. """ return 2.0 * images - 1.0 @staticmethod def denormalize(images: Union[np.ndarray, torch.Tensor]) -> Union[np.ndarray, torch.Tensor]: r""" Denormalize an image array to [0,1]. Args: images (`np.ndarray` or `torch.Tensor`): The image array to denormalize. Returns: `np.ndarray` or `torch.Tensor`: The denormalized image array. """ return (images * 0.5 + 0.5).clamp(0, 1) @staticmethod def convert_to_rgb(image: PIL.Image.Image) -> PIL.Image.Image: r""" Converts a PIL image to RGB format. Args: image (`PIL.Image.Image`): The PIL image to convert to RGB. Returns: `PIL.Image.Image`: The RGB-converted PIL image. """ image = image.convert("RGB") return image @staticmethod def convert_to_grayscale(image: PIL.Image.Image) -> PIL.Image.Image: r""" Converts a given PIL image to grayscale. Args: image (`PIL.Image.Image`): The input image to convert. Returns: `PIL.Image.Image`: The image converted to grayscale. """ image = image.convert("L") return image @staticmethod def blur(image: PIL.Image.Image, blur_factor: int = 4) -> PIL.Image.Image: r""" Applies Gaussian blur to an image. Args: image (`PIL.Image.Image`): The PIL image to convert to grayscale. Returns: `PIL.Image.Image`: The grayscale-converted PIL image. """ image = image.filter(ImageFilter.GaussianBlur(blur_factor)) return image @staticmethod def get_crop_region(mask_image: PIL.Image.Image, width: int, height: int, pad=0): r""" Finds a rectangular region that contains all masked ares in an image, and expands region to match the aspect ratio of the original image; for example, if user drew mask in a 128x32 region, and the dimensions for processing are 512x512, the region will be expanded to 128x128. Args: mask_image (PIL.Image.Image): Mask image. width (int): Width of the image to be processed. height (int): Height of the image to be processed. pad (int, optional): Padding to be added to the crop region. Defaults to 0. Returns: tuple: (x1, y1, x2, y2) represent a rectangular region that contains all masked ares in an image and matches the original aspect ratio. """ mask_image = mask_image.convert("L") mask = np.array(mask_image) # 1. find a rectangular region that contains all masked ares in an image h, w = mask.shape crop_left = 0 for i in range(w): if not (mask[:, i] == 0).all(): break crop_left += 1 crop_right = 0 for i in reversed(range(w)): if not (mask[:, i] == 0).all(): break crop_right += 1 crop_top = 0 for i in range(h): if not (mask[i] == 0).all(): break crop_top += 1 crop_bottom = 0 for i in reversed(range(h)): if not (mask[i] == 0).all(): break crop_bottom += 1 # 2. add padding to the crop region x1, y1, x2, y2 = ( int(max(crop_left - pad, 0)), int(max(crop_top - pad, 0)), int(min(w - crop_right + pad, w)), int(min(h - crop_bottom + pad, h)), ) # 3. expands crop region to match the aspect ratio of the image to be processed ratio_crop_region = (x2 - x1) / (y2 - y1) ratio_processing = width / height if ratio_crop_region > ratio_processing: desired_height = (x2 - x1) / ratio_processing desired_height_diff = int(desired_height - (y2 - y1)) y1 -= desired_height_diff // 2 y2 += desired_height_diff - desired_height_diff // 2 if y2 >= mask_image.height: diff = y2 - mask_image.height y2 -= diff y1 -= diff if y1 < 0: y2 -= y1 y1 -= y1 if y2 >= mask_image.height: y2 = mask_image.height else: desired_width = (y2 - y1) * ratio_processing desired_width_diff = int(desired_width - (x2 - x1)) x1 -= desired_width_diff // 2 x2 += desired_width_diff - desired_width_diff // 2 if x2 >= mask_image.width: diff = x2 - mask_image.width x2 -= diff x1 -= diff if x1 < 0: x2 -= x1 x1 -= x1 if x2 >= mask_image.width: x2 = mask_image.width return x1, y1, x2, y2 def _resize_and_fill( self, image: PIL.Image.Image, width: int, height: int, ) -> PIL.Image.Image: r""" Resize the image to fit within the specified width and height, maintaining the aspect ratio, and then center the image within the dimensions, filling empty with data from image. Args: image (`PIL.Image.Image`): The image to resize and fill. width (`int`): The width to resize the image to. height (`int`): The height to resize the image to. Returns: `PIL.Image.Image`: The resized and filled image. """ ratio = width / height src_ratio = image.width / image.height src_w = width if ratio < src_ratio else image.width * height // image.height src_h = height if ratio >= src_ratio else image.height * width // image.width resized = image.resize((src_w, src_h), resample=PIL_INTERPOLATION["lanczos"]) res = Image.new("RGB", (width, height)) res.paste(resized, box=(width // 2 - src_w // 2, height // 2 - src_h // 2)) if ratio < src_ratio: fill_height = height // 2 - src_h // 2 if fill_height > 0: res.paste(resized.resize((width, fill_height), box=(0, 0, width, 0)), box=(0, 0)) res.paste( resized.resize((width, fill_height), box=(0, resized.height, width, resized.height)), box=(0, fill_height + src_h), ) elif ratio > src_ratio: fill_width = width // 2 - src_w // 2 if fill_width > 0: res.paste(resized.resize((fill_width, height), box=(0, 0, 0, height)), box=(0, 0)) res.paste( resized.resize((fill_width, height), box=(resized.width, 0, resized.width, height)), box=(fill_width + src_w, 0), ) return res def _resize_and_crop( self, image: PIL.Image.Image, width: int, height: int, ) -> PIL.Image.Image: r""" Resize the image to fit within the specified width and height, maintaining the aspect ratio, and then center the image within the dimensions, cropping the excess. Args: image (`PIL.Image.Image`): The image to resize and crop. width (`int`): The width to resize the image to. height (`int`): The height to resize the image to. Returns: `PIL.Image.Image`: The resized and cropped image. """ ratio = width / height src_ratio = image.width / image.height src_w = width if ratio > src_ratio else image.width * height // image.height src_h = height if ratio <= src_ratio else image.height * width // image.width resized = image.resize((src_w, src_h), resample=PIL_INTERPOLATION["lanczos"]) res = Image.new("RGB", (width, height)) res.paste(resized, box=(width // 2 - src_w // 2, height // 2 - src_h // 2)) return res def resize( self, image: Union[PIL.Image.Image, np.ndarray, torch.Tensor], height: int, width: int, resize_mode: str = "default", # "default", "fill", "crop" ) -> Union[PIL.Image.Image, np.ndarray, torch.Tensor]: """ Resize image. Args: image (`PIL.Image.Image`, `np.ndarray` or `torch.Tensor`): The image input, can be a PIL image, numpy array or pytorch tensor. height (`int`): The height to resize to. width (`int`): The width to resize to. resize_mode (`str`, *optional*, defaults to `default`): The resize mode to use, can be one of `default` or `fill`. If `default`, will resize the image to fit within the specified width and height, and it may not maintaining the original aspect ratio. If `fill`, will resize the image to fit within the specified width and height, maintaining the aspect ratio, and then center the image within the dimensions, filling empty with data from image. If `crop`, will resize the image to fit within the specified width and height, maintaining the aspect ratio, and then center the image within the dimensions, cropping the excess. Note that resize_mode `fill` and `crop` are only supported for PIL image input. Returns: `PIL.Image.Image`, `np.ndarray` or `torch.Tensor`: The resized image. """ if resize_mode != "default" and not isinstance(image, PIL.Image.Image): raise ValueError(f"Only PIL image input is supported for resize_mode {resize_mode}") if isinstance(image, PIL.Image.Image): if resize_mode == "default": image = image.resize((width, height), resample=PIL_INTERPOLATION[self.config.resample]) elif resize_mode == "fill": image = self._resize_and_fill(image, width, height) elif resize_mode == "crop": image = self._resize_and_crop(image, width, height) else: raise ValueError(f"resize_mode {resize_mode} is not supported") elif isinstance(image, torch.Tensor): image = torch.nn.functional.interpolate( image, size=(height, width), ) elif isinstance(image, np.ndarray): image = self.numpy_to_pt(image) image = torch.nn.functional.interpolate( image, size=(height, width), ) image = self.pt_to_numpy(image) return image def binarize(self, image: PIL.Image.Image) -> PIL.Image.Image: """ Create a mask. Args: image (`PIL.Image.Image`): The image input, should be a PIL image. Returns: `PIL.Image.Image`: The binarized image. Values less than 0.5 are set to 0, values greater than 0.5 are set to 1. """ image[image < 0.5] = 0 image[image >= 0.5] = 1 return image def _denormalize_conditionally( self, images: torch.Tensor, do_denormalize: Optional[List[bool]] = None ) -> torch.Tensor: r""" Denormalize a batch of images based on a condition list. Args: images (`torch.Tensor`): The input image tensor. do_denormalize (`Optional[List[bool]`, *optional*, defaults to `None`): A list of booleans indicating whether to denormalize each image in the batch. If `None`, will use the value of `do_normalize` in the `VaeImageProcessor` config. """ if do_denormalize is None: return self.denormalize(images) if self.config.do_normalize else images return torch.stack( [self.denormalize(images[i]) if do_denormalize[i] else images[i] for i in range(images.shape[0])] ) def get_default_height_width( self, image: Union[PIL.Image.Image, np.ndarray, torch.Tensor], height: Optional[int] = None, width: Optional[int] = None, ) -> Tuple[int, int]: r""" Returns the height and width of the image, downscaled to the next integer multiple of `vae_scale_factor`. Args: image (`Union[PIL.Image.Image, np.ndarray, torch.Tensor]`): The image input, which can be a PIL image, NumPy array, or PyTorch tensor. If it is a NumPy array, it should have shape `[batch, height, width]` or `[batch, height, width, channels]`. If it is a PyTorch tensor, it should have shape `[batch, channels, height, width]`. height (`Optional[int]`, *optional*, defaults to `None`): The height of the preprocessed image. If `None`, the height of the `image` input will be used. width (`Optional[int]`, *optional*, defaults to `None`): The width of the preprocessed image. If `None`, the width of the `image` input will be used. Returns: `Tuple[int, int]`: A tuple containing the height and width, both resized to the nearest integer multiple of `vae_scale_factor`. """ if height is None: if isinstance(image, PIL.Image.Image): height = image.height elif isinstance(image, torch.Tensor): height = image.shape[2] else: height = image.shape[1] if width is None: if isinstance(image, PIL.Image.Image): width = image.width elif isinstance(image, torch.Tensor): width = image.shape[3] else: width = image.shape[2] width, height = ( x - x % self.config.vae_scale_factor for x in (width, height) ) # resize to integer multiple of vae_scale_factor return height, width def preprocess( self, image: PipelineImageInput, height: Optional[int] = None, width: Optional[int] = None, resize_mode: str = "default", # "default", "fill", "crop" crops_coords: Optional[Tuple[int, int, int, int]] = None, ) -> torch.Tensor: """ Preprocess the image input. Args: image (`PipelineImageInput`): The image input, accepted formats are PIL images, NumPy arrays, PyTorch tensors; Also accept list of supported formats. height (`int`, *optional*): The height in preprocessed image. If `None`, will use the `get_default_height_width()` to get default height. width (`int`, *optional*): The width in preprocessed. If `None`, will use get_default_height_width()` to get the default width. resize_mode (`str`, *optional*, defaults to `default`): The resize mode, can be one of `default` or `fill`. If `default`, will resize the image to fit within the specified width and height, and it may not maintaining the original aspect ratio. If `fill`, will resize the image to fit within the specified width and height, maintaining the aspect ratio, and then center the image within the dimensions, filling empty with data from image. If `crop`, will resize the image to fit within the specified width and height, maintaining the aspect ratio, and then center the image within the dimensions, cropping the excess. Note that resize_mode `fill` and `crop` are only supported for PIL image input. crops_coords (`List[Tuple[int, int, int, int]]`, *optional*, defaults to `None`): The crop coordinates for each image in the batch. If `None`, will not crop the image. Returns: `torch.Tensor`: The preprocessed image. """ supported_formats = (PIL.Image.Image, np.ndarray, torch.Tensor) # Expand the missing dimension for 3-dimensional pytorch tensor or numpy array that represents grayscale image if self.config.do_convert_grayscale and isinstance(image, (torch.Tensor, np.ndarray)) and image.ndim == 3: if isinstance(image, torch.Tensor): # if image is a pytorch tensor could have 2 possible shapes: # 1. batch x height x width: we should insert the channel dimension at position 1 # 2. channel x height x width: we should insert batch dimension at position 0, # however, since both channel and batch dimension has same size 1, it is same to insert at position 1 # for simplicity, we insert a dimension of size 1 at position 1 for both cases image = image.unsqueeze(1) else: # if it is a numpy array, it could have 2 possible shapes: # 1. batch x height x width: insert channel dimension on last position # 2. height x width x channel: insert batch dimension on first position if image.shape[-1] == 1: image = np.expand_dims(image, axis=0) else: image = np.expand_dims(image, axis=-1) if isinstance(image, list) and isinstance(image[0], np.ndarray) and image[0].ndim == 4: warnings.warn( "Passing `image` as a list of 4d np.ndarray is deprecated." "Please concatenate the list along the batch dimension and pass it as a single 4d np.ndarray", FutureWarning, ) image = np.concatenate(image, axis=0) if isinstance(image, list) and isinstance(image[0], torch.Tensor) and image[0].ndim == 4: warnings.warn( "Passing `image` as a list of 4d torch.Tensor is deprecated." "Please concatenate the list along the batch dimension and pass it as a single 4d torch.Tensor", FutureWarning, ) image = torch.cat(image, axis=0) if not is_valid_image_imagelist(image): raise ValueError( f"Input is in incorrect format. Currently, we only support {', '.join(str(x) for x in supported_formats)}" ) if not isinstance(image, list): image = [image] if isinstance(image[0], PIL.Image.Image): if crops_coords is not None: image = [i.crop(crops_coords) for i in image] if self.config.do_resize: height, width = self.get_default_height_width(image[0], height, width) image = [self.resize(i, height, width, resize_mode=resize_mode) for i in image] if self.config.do_convert_rgb: image = [self.convert_to_rgb(i) for i in image] elif self.config.do_convert_grayscale: image = [self.convert_to_grayscale(i) for i in image] image = self.pil_to_numpy(image) # to np image = self.numpy_to_pt(image) # to pt elif isinstance(image[0], np.ndarray): image = np.concatenate(image, axis=0) if image[0].ndim == 4 else np.stack(image, axis=0) image = self.numpy_to_pt(image) height, width = self.get_default_height_width(image, height, width) if self.config.do_resize: image = self.resize(image, height, width) elif isinstance(image[0], torch.Tensor): image = torch.cat(image, axis=0) if image[0].ndim == 4 else torch.stack(image, axis=0) if self.config.do_convert_grayscale and image.ndim == 3: image = image.unsqueeze(1) channel = image.shape[1] # don't need any preprocess if the image is latents if channel == self.config.vae_latent_channels: return image height, width = self.get_default_height_width(image, height, width) if self.config.do_resize: image = self.resize(image, height, width) # expected range [0,1], normalize to [-1,1] do_normalize = self.config.do_normalize if do_normalize and image.min() < 0: warnings.warn( "Passing `image` as torch tensor with value range in [-1,1] is deprecated. The expected value range for image tensor is [0,1] " f"when passing as pytorch tensor or numpy Array. You passed `image` with value range [{image.min()},{image.max()}]", FutureWarning, ) do_normalize = False if do_normalize: image = self.normalize(image) if self.config.do_binarize: image = self.binarize(image) return image def postprocess( self, image: torch.Tensor, output_type: str = "pil", do_denormalize: Optional[List[bool]] = None, ) -> Union[PIL.Image.Image, np.ndarray, torch.Tensor]: """ Postprocess the image output from tensor to `output_type`. Args: image (`torch.Tensor`): The image input, should be a pytorch tensor with shape `B x C x H x W`. output_type (`str`, *optional*, defaults to `pil`): The output type of the image, can be one of `pil`, `np`, `pt`, `latent`. do_denormalize (`List[bool]`, *optional*, defaults to `None`): Whether to denormalize the image to [0,1]. If `None`, will use the value of `do_normalize` in the `VaeImageProcessor` config. Returns: `PIL.Image.Image`, `np.ndarray` or `torch.Tensor`: The postprocessed image. """ if not isinstance(image, torch.Tensor): raise ValueError( f"Input for postprocessing is in incorrect format: {type(image)}. We only support pytorch tensor" ) if output_type not in ["latent", "pt", "np", "pil"]: deprecation_message = ( f"the output_type {output_type} is outdated and has been set to `np`. Please make sure to set it to one of these instead: " "`pil`, `np`, `pt`, `latent`" ) deprecate("Unsupported output_type", "1.0.0", deprecation_message, standard_warn=False) output_type = "np" if output_type == "latent": return image image = self._denormalize_conditionally(image, do_denormalize) if output_type == "pt": return image image = self.pt_to_numpy(image) if output_type == "np": return image if output_type == "pil": return self.numpy_to_pil(image) def apply_overlay( self, mask: PIL.Image.Image, init_image: PIL.Image.Image, image: PIL.Image.Image, crop_coords: Optional[Tuple[int, int, int, int]] = None, ) -> PIL.Image.Image: r""" Applies an overlay of the mask and the inpainted image on the original image. Args: mask (`PIL.Image.Image`): The mask image that highlights regions to overlay. init_image (`PIL.Image.Image`): The original image to which the overlay is applied. image (`PIL.Image.Image`): The image to overlay onto the original. crop_coords (`Tuple[int, int, int, int]`, *optional*): Coordinates to crop the image. If provided, the image will be cropped accordingly. Returns: `PIL.Image.Image`: The final image with the overlay applied. """ width, height = init_image.width, init_image.height init_image_masked = PIL.Image.new("RGBa", (width, height)) init_image_masked.paste(init_image.convert("RGBA").convert("RGBa"), mask=ImageOps.invert(mask.convert("L"))) init_image_masked = init_image_masked.convert("RGBA") if crop_coords is not None: x, y, x2, y2 = crop_coords w = x2 - x h = y2 - y base_image = PIL.Image.new("RGBA", (width, height)) image = self.resize(image, height=h, width=w, resize_mode="crop") base_image.paste(image, (x, y)) image = base_image.convert("RGB") image = image.convert("RGBA") image.alpha_composite(init_image_masked) image = image.convert("RGB") return image
class_definition
2,722
32,473
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/image_processor.py
null
3
class VaeImageProcessorLDM3D(VaeImageProcessor): """ Image processor for VAE LDM3D. Args: do_resize (`bool`, *optional*, defaults to `True`): Whether to downscale the image's (height, width) dimensions to multiples of `vae_scale_factor`. vae_scale_factor (`int`, *optional*, defaults to `8`): VAE scale factor. If `do_resize` is `True`, the image is automatically resized to multiples of this factor. resample (`str`, *optional*, defaults to `lanczos`): Resampling filter to use when resizing the image. do_normalize (`bool`, *optional*, defaults to `True`): Whether to normalize the image to [-1,1]. """ config_name = CONFIG_NAME @register_to_config def __init__( self, do_resize: bool = True, vae_scale_factor: int = 8, resample: str = "lanczos", do_normalize: bool = True, ): super().__init__() @staticmethod def numpy_to_pil(images: np.ndarray) -> List[PIL.Image.Image]: r""" Convert a NumPy image or a batch of images to a list of PIL images. Args: images (`np.ndarray`): The input NumPy array of images, which can be a single image or a batch. Returns: `List[PIL.Image.Image]`: A list of PIL images converted from the input NumPy array. """ if images.ndim == 3: images = images[None, ...] images = (images * 255).round().astype("uint8") if images.shape[-1] == 1: # special case for grayscale (single channel) images pil_images = [Image.fromarray(image.squeeze(), mode="L") for image in images] else: pil_images = [Image.fromarray(image[:, :, :3]) for image in images] return pil_images @staticmethod def depth_pil_to_numpy(images: Union[List[PIL.Image.Image], PIL.Image.Image]) -> np.ndarray: r""" Convert a PIL image or a list of PIL images to NumPy arrays. Args: images (`Union[List[PIL.Image.Image], PIL.Image.Image]`): The input image or list of images to be converted. Returns: `np.ndarray`: A NumPy array of the converted images. """ if not isinstance(images, list): images = [images] images = [np.array(image).astype(np.float32) / (2**16 - 1) for image in images] images = np.stack(images, axis=0) return images @staticmethod def rgblike_to_depthmap(image: Union[np.ndarray, torch.Tensor]) -> Union[np.ndarray, torch.Tensor]: r""" Convert an RGB-like depth image to a depth map. Args: image (`Union[np.ndarray, torch.Tensor]`): The RGB-like depth image to convert. Returns: `Union[np.ndarray, torch.Tensor]`: The corresponding depth map. """ return image[:, :, 1] * 2**8 + image[:, :, 2] def numpy_to_depth(self, images: np.ndarray) -> List[PIL.Image.Image]: r""" Convert a NumPy depth image or a batch of images to a list of PIL images. Args: images (`np.ndarray`): The input NumPy array of depth images, which can be a single image or a batch. Returns: `List[PIL.Image.Image]`: A list of PIL images converted from the input NumPy depth images. """ if images.ndim == 3: images = images[None, ...] images_depth = images[:, :, :, 3:] if images.shape[-1] == 6: images_depth = (images_depth * 255).round().astype("uint8") pil_images = [ Image.fromarray(self.rgblike_to_depthmap(image_depth), mode="I;16") for image_depth in images_depth ] elif images.shape[-1] == 4: images_depth = (images_depth * 65535.0).astype(np.uint16) pil_images = [Image.fromarray(image_depth, mode="I;16") for image_depth in images_depth] else: raise Exception("Not supported") return pil_images def postprocess( self, image: torch.Tensor, output_type: str = "pil", do_denormalize: Optional[List[bool]] = None, ) -> Union[PIL.Image.Image, np.ndarray, torch.Tensor]: """ Postprocess the image output from tensor to `output_type`. Args: image (`torch.Tensor`): The image input, should be a pytorch tensor with shape `B x C x H x W`. output_type (`str`, *optional*, defaults to `pil`): The output type of the image, can be one of `pil`, `np`, `pt`, `latent`. do_denormalize (`List[bool]`, *optional*, defaults to `None`): Whether to denormalize the image to [0,1]. If `None`, will use the value of `do_normalize` in the `VaeImageProcessor` config. Returns: `PIL.Image.Image`, `np.ndarray` or `torch.Tensor`: The postprocessed image. """ if not isinstance(image, torch.Tensor): raise ValueError( f"Input for postprocessing is in incorrect format: {type(image)}. We only support pytorch tensor" ) if output_type not in ["latent", "pt", "np", "pil"]: deprecation_message = ( f"the output_type {output_type} is outdated and has been set to `np`. Please make sure to set it to one of these instead: " "`pil`, `np`, `pt`, `latent`" ) deprecate("Unsupported output_type", "1.0.0", deprecation_message, standard_warn=False) output_type = "np" image = self._denormalize_conditionally(image, do_denormalize) image = self.pt_to_numpy(image) if output_type == "np": if image.shape[-1] == 6: image_depth = np.stack([self.rgblike_to_depthmap(im[:, :, 3:]) for im in image], axis=0) else: image_depth = image[:, :, :, 3:] return image[:, :, :, :3], image_depth if output_type == "pil": return self.numpy_to_pil(image), self.numpy_to_depth(image) else: raise Exception(f"This type {output_type} is not supported") def preprocess( self, rgb: Union[torch.Tensor, PIL.Image.Image, np.ndarray], depth: Union[torch.Tensor, PIL.Image.Image, np.ndarray], height: Optional[int] = None, width: Optional[int] = None, target_res: Optional[int] = None, ) -> torch.Tensor: r""" Preprocess the image input. Accepted formats are PIL images, NumPy arrays, or PyTorch tensors. Args: rgb (`Union[torch.Tensor, PIL.Image.Image, np.ndarray]`): The RGB input image, which can be a single image or a batch. depth (`Union[torch.Tensor, PIL.Image.Image, np.ndarray]`): The depth input image, which can be a single image or a batch. height (`Optional[int]`, *optional*, defaults to `None`): The desired height of the processed image. If `None`, defaults to the height of the input image. width (`Optional[int]`, *optional*, defaults to `None`): The desired width of the processed image. If `None`, defaults to the width of the input image. target_res (`Optional[int]`, *optional*, defaults to `None`): Target resolution for resizing the images. If specified, overrides height and width. Returns: `Tuple[torch.Tensor, torch.Tensor]`: A tuple containing the processed RGB and depth images as PyTorch tensors. """ supported_formats = (PIL.Image.Image, np.ndarray, torch.Tensor) # Expand the missing dimension for 3-dimensional pytorch tensor or numpy array that represents grayscale image if self.config.do_convert_grayscale and isinstance(rgb, (torch.Tensor, np.ndarray)) and rgb.ndim == 3: raise Exception("This is not yet supported") if isinstance(rgb, supported_formats): rgb = [rgb] depth = [depth] elif not (isinstance(rgb, list) and all(isinstance(i, supported_formats) for i in rgb)): raise ValueError( f"Input is in incorrect format: {[type(i) for i in rgb]}. Currently, we only support {', '.join(supported_formats)}" ) if isinstance(rgb[0], PIL.Image.Image): if self.config.do_convert_rgb: raise Exception("This is not yet supported") # rgb = [self.convert_to_rgb(i) for i in rgb] # depth = [self.convert_to_depth(i) for i in depth] #TODO define convert_to_depth if self.config.do_resize or target_res: height, width = self.get_default_height_width(rgb[0], height, width) if not target_res else target_res rgb = [self.resize(i, height, width) for i in rgb] depth = [self.resize(i, height, width) for i in depth] rgb = self.pil_to_numpy(rgb) # to np rgb = self.numpy_to_pt(rgb) # to pt depth = self.depth_pil_to_numpy(depth) # to np depth = self.numpy_to_pt(depth) # to pt elif isinstance(rgb[0], np.ndarray): rgb = np.concatenate(rgb, axis=0) if rgb[0].ndim == 4 else np.stack(rgb, axis=0) rgb = self.numpy_to_pt(rgb) height, width = self.get_default_height_width(rgb, height, width) if self.config.do_resize: rgb = self.resize(rgb, height, width) depth = np.concatenate(depth, axis=0) if rgb[0].ndim == 4 else np.stack(depth, axis=0) depth = self.numpy_to_pt(depth) height, width = self.get_default_height_width(depth, height, width) if self.config.do_resize: depth = self.resize(depth, height, width) elif isinstance(rgb[0], torch.Tensor): raise Exception("This is not yet supported") # rgb = torch.cat(rgb, axis=0) if rgb[0].ndim == 4 else torch.stack(rgb, axis=0) # if self.config.do_convert_grayscale and rgb.ndim == 3: # rgb = rgb.unsqueeze(1) # channel = rgb.shape[1] # height, width = self.get_default_height_width(rgb, height, width) # if self.config.do_resize: # rgb = self.resize(rgb, height, width) # depth = torch.cat(depth, axis=0) if depth[0].ndim == 4 else torch.stack(depth, axis=0) # if self.config.do_convert_grayscale and depth.ndim == 3: # depth = depth.unsqueeze(1) # channel = depth.shape[1] # # don't need any preprocess if the image is latents # if depth == 4: # return rgb, depth # height, width = self.get_default_height_width(depth, height, width) # if self.config.do_resize: # depth = self.resize(depth, height, width) # expected range [0,1], normalize to [-1,1] do_normalize = self.config.do_normalize if rgb.min() < 0 and do_normalize: warnings.warn( "Passing `image` as torch tensor with value range in [-1,1] is deprecated. The expected value range for image tensor is [0,1] " f"when passing as pytorch tensor or numpy Array. You passed `image` with value range [{rgb.min()},{rgb.max()}]", FutureWarning, ) do_normalize = False if do_normalize: rgb = self.normalize(rgb) depth = self.normalize(depth) if self.config.do_binarize: rgb = self.binarize(rgb) depth = self.binarize(depth) return rgb, depth
class_definition
32,476
44,360
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/image_processor.py
null
4
class IPAdapterMaskProcessor(VaeImageProcessor): """ Image processor for IP Adapter image masks. Args: do_resize (`bool`, *optional*, defaults to `True`): Whether to downscale the image's (height, width) dimensions to multiples of `vae_scale_factor`. vae_scale_factor (`int`, *optional*, defaults to `8`): VAE scale factor. If `do_resize` is `True`, the image is automatically resized to multiples of this factor. resample (`str`, *optional*, defaults to `lanczos`): Resampling filter to use when resizing the image. do_normalize (`bool`, *optional*, defaults to `False`): Whether to normalize the image to [-1,1]. do_binarize (`bool`, *optional*, defaults to `True`): Whether to binarize the image to 0/1. do_convert_grayscale (`bool`, *optional*, defaults to be `True`): Whether to convert the images to grayscale format. """ config_name = CONFIG_NAME @register_to_config def __init__( self, do_resize: bool = True, vae_scale_factor: int = 8, resample: str = "lanczos", do_normalize: bool = False, do_binarize: bool = True, do_convert_grayscale: bool = True, ): super().__init__( do_resize=do_resize, vae_scale_factor=vae_scale_factor, resample=resample, do_normalize=do_normalize, do_binarize=do_binarize, do_convert_grayscale=do_convert_grayscale, ) @staticmethod def downsample(mask: torch.Tensor, batch_size: int, num_queries: int, value_embed_dim: int): """ Downsamples the provided mask tensor to match the expected dimensions for scaled dot-product attention. If the aspect ratio of the mask does not match the aspect ratio of the output image, a warning is issued. Args: mask (`torch.Tensor`): The input mask tensor generated with `IPAdapterMaskProcessor.preprocess()`. batch_size (`int`): The batch size. num_queries (`int`): The number of queries. value_embed_dim (`int`): The dimensionality of the value embeddings. Returns: `torch.Tensor`: The downsampled mask tensor. """ o_h = mask.shape[1] o_w = mask.shape[2] ratio = o_w / o_h mask_h = int(math.sqrt(num_queries / ratio)) mask_h = int(mask_h) + int((num_queries % int(mask_h)) != 0) mask_w = num_queries // mask_h mask_downsample = F.interpolate(mask.unsqueeze(0), size=(mask_h, mask_w), mode="bicubic").squeeze(0) # Repeat batch_size times if mask_downsample.shape[0] < batch_size: mask_downsample = mask_downsample.repeat(batch_size, 1, 1) mask_downsample = mask_downsample.view(mask_downsample.shape[0], -1) downsampled_area = mask_h * mask_w # If the output image and the mask do not have the same aspect ratio, tensor shapes will not match # Pad tensor if downsampled_mask.shape[1] is smaller than num_queries if downsampled_area < num_queries: warnings.warn( "The aspect ratio of the mask does not match the aspect ratio of the output image. " "Please update your masks or adjust the output size for optimal performance.", UserWarning, ) mask_downsample = F.pad(mask_downsample, (0, num_queries - mask_downsample.shape[1]), value=0.0) # Discard last embeddings if downsampled_mask.shape[1] is bigger than num_queries if downsampled_area > num_queries: warnings.warn( "The aspect ratio of the mask does not match the aspect ratio of the output image. " "Please update your masks or adjust the output size for optimal performance.", UserWarning, ) mask_downsample = mask_downsample[:, :num_queries] # Repeat last dimension to match SDPA output shape mask_downsample = mask_downsample.view(mask_downsample.shape[0], mask_downsample.shape[1], 1).repeat( 1, 1, value_embed_dim ) return mask_downsample
class_definition
44,363
48,691
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/image_processor.py
null
5
class PixArtImageProcessor(VaeImageProcessor): """ Image processor for PixArt image resize and crop. Args: do_resize (`bool`, *optional*, defaults to `True`): Whether to downscale the image's (height, width) dimensions to multiples of `vae_scale_factor`. Can accept `height` and `width` arguments from [`image_processor.VaeImageProcessor.preprocess`] method. vae_scale_factor (`int`, *optional*, defaults to `8`): VAE scale factor. If `do_resize` is `True`, the image is automatically resized to multiples of this factor. resample (`str`, *optional*, defaults to `lanczos`): Resampling filter to use when resizing the image. do_normalize (`bool`, *optional*, defaults to `True`): Whether to normalize the image to [-1,1]. do_binarize (`bool`, *optional*, defaults to `False`): Whether to binarize the image to 0/1. do_convert_rgb (`bool`, *optional*, defaults to be `False`): Whether to convert the images to RGB format. do_convert_grayscale (`bool`, *optional*, defaults to be `False`): Whether to convert the images to grayscale format. """ @register_to_config def __init__( self, do_resize: bool = True, vae_scale_factor: int = 8, resample: str = "lanczos", do_normalize: bool = True, do_binarize: bool = False, do_convert_grayscale: bool = False, ): super().__init__( do_resize=do_resize, vae_scale_factor=vae_scale_factor, resample=resample, do_normalize=do_normalize, do_binarize=do_binarize, do_convert_grayscale=do_convert_grayscale, ) @staticmethod def classify_height_width_bin(height: int, width: int, ratios: dict) -> Tuple[int, int]: r""" Returns the binned height and width based on the aspect ratio. Args: height (`int`): The height of the image. width (`int`): The width of the image. ratios (`dict`): A dictionary where keys are aspect ratios and values are tuples of (height, width). Returns: `Tuple[int, int]`: The closest binned height and width. """ ar = float(height / width) closest_ratio = min(ratios.keys(), key=lambda ratio: abs(float(ratio) - ar)) default_hw = ratios[closest_ratio] return int(default_hw[0]), int(default_hw[1]) @staticmethod def resize_and_crop_tensor(samples: torch.Tensor, new_width: int, new_height: int) -> torch.Tensor: r""" Resizes and crops a tensor of images to the specified dimensions. Args: samples (`torch.Tensor`): A tensor of shape (N, C, H, W) where N is the batch size, C is the number of channels, H is the height, and W is the width. new_width (`int`): The desired width of the output images. new_height (`int`): The desired height of the output images. Returns: `torch.Tensor`: A tensor containing the resized and cropped images. """ orig_height, orig_width = samples.shape[2], samples.shape[3] # Check if resizing is needed if orig_height != new_height or orig_width != new_width: ratio = max(new_height / orig_height, new_width / orig_width) resized_width = int(orig_width * ratio) resized_height = int(orig_height * ratio) # Resize samples = F.interpolate( samples, size=(resized_height, resized_width), mode="bilinear", align_corners=False ) # Center Crop start_x = (resized_width - new_width) // 2 end_x = start_x + new_width start_y = (resized_height - new_height) // 2 end_y = start_y + new_height samples = samples[:, :, start_y:end_y, start_x:end_x] return samples
class_definition
48,694
52,715
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/image_processor.py
null
6
class VideoProcessor(VaeImageProcessor): r"""Simple video processor.""" def preprocess_video(self, video, height: Optional[int] = None, width: Optional[int] = None) -> torch.Tensor: r""" Preprocesses input video(s). Args: video (`List[PIL.Image]`, `List[List[PIL.Image]]`, `torch.Tensor`, `np.array`, `List[torch.Tensor]`, `List[np.array]`): The input video. It can be one of the following: * List of the PIL images. * List of list of PIL images. * 4D Torch tensors (expected shape for each tensor `(num_frames, num_channels, height, width)`). * 4D NumPy arrays (expected shape for each array `(num_frames, height, width, num_channels)`). * List of 4D Torch tensors (expected shape for each tensor `(num_frames, num_channels, height, width)`). * List of 4D NumPy arrays (expected shape for each array `(num_frames, height, width, num_channels)`). * 5D NumPy arrays: expected shape for each array `(batch_size, num_frames, height, width, num_channels)`. * 5D Torch tensors: expected shape for each array `(batch_size, num_frames, num_channels, height, width)`. height (`int`, *optional*, defaults to `None`): The height in preprocessed frames of the video. If `None`, will use the `get_default_height_width()` to get default height. width (`int`, *optional*`, defaults to `None`): The width in preprocessed frames of the video. If `None`, will use get_default_height_width()` to get the default width. """ if isinstance(video, list) and isinstance(video[0], np.ndarray) and video[0].ndim == 5: warnings.warn( "Passing `video` as a list of 5d np.ndarray is deprecated." "Please concatenate the list along the batch dimension and pass it as a single 5d np.ndarray", FutureWarning, ) video = np.concatenate(video, axis=0) if isinstance(video, list) and isinstance(video[0], torch.Tensor) and video[0].ndim == 5: warnings.warn( "Passing `video` as a list of 5d torch.Tensor is deprecated." "Please concatenate the list along the batch dimension and pass it as a single 5d torch.Tensor", FutureWarning, ) video = torch.cat(video, axis=0) # ensure the input is a list of videos: # - if it is a batch of videos (5d torch.Tensor or np.ndarray), it is converted to a list of videos (a list of 4d torch.Tensor or np.ndarray) # - if it is is a single video, it is convereted to a list of one video. if isinstance(video, (np.ndarray, torch.Tensor)) and video.ndim == 5: video = list(video) elif isinstance(video, list) and is_valid_image(video[0]) or is_valid_image_imagelist(video): video = [video] elif isinstance(video, list) and is_valid_image_imagelist(video[0]): video = video else: raise ValueError( "Input is in incorrect format. Currently, we only support numpy.ndarray, torch.Tensor, PIL.Image.Image" ) video = torch.stack([self.preprocess(img, height=height, width=width) for img in video], dim=0) # move the number of channels before the number of frames. video = video.permute(0, 2, 1, 3, 4) return video def postprocess_video( self, video: torch.Tensor, output_type: str = "np" ) -> Union[np.ndarray, torch.Tensor, List[PIL.Image.Image]]: r""" Converts a video tensor to a list of frames for export. Args: video (`torch.Tensor`): The video as a tensor. output_type (`str`, defaults to `"np"`): Output type of the postprocessed `video` tensor. """ batch_size = video.shape[0] outputs = [] for batch_idx in range(batch_size): batch_vid = video[batch_idx].permute(1, 0, 2, 3) batch_output = self.postprocess(batch_vid, output_type) outputs.append(batch_output) if output_type == "np": outputs = np.stack(outputs) elif output_type == "pt": outputs = torch.stack(outputs) elif not output_type == "pil": raise ValueError(f"{output_type} does not exist. Please choose one of ['np', 'pt', 'pil']") return outputs
class_definition
800
5,401
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/video_processor.py
null
7
class SchedulerType(Enum): LINEAR = "linear" COSINE = "cosine" COSINE_WITH_RESTARTS = "cosine_with_restarts" POLYNOMIAL = "polynomial" CONSTANT = "constant" CONSTANT_WITH_WARMUP = "constant_with_warmup" PIECEWISE_CONSTANT = "piecewise_constant"
class_definition
875
1,147
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/optimization.py
null
8
class EMAModel: """ Exponential Moving Average of models weights """ def __init__( self, parameters: Iterable[torch.nn.Parameter], decay: float = 0.9999, min_decay: float = 0.0, update_after_step: int = 0, use_ema_warmup: bool = False, inv_gamma: Union[float, int] = 1.0, power: Union[float, int] = 2 / 3, foreach: bool = False, model_cls: Optional[Any] = None, model_config: Dict[str, Any] = None, **kwargs, ): """ Args: parameters (Iterable[torch.nn.Parameter]): The parameters to track. decay (float): The decay factor for the exponential moving average. min_decay (float): The minimum decay factor for the exponential moving average. update_after_step (int): The number of steps to wait before starting to update the EMA weights. use_ema_warmup (bool): Whether to use EMA warmup. inv_gamma (float): Inverse multiplicative factor of EMA warmup. Default: 1. Only used if `use_ema_warmup` is True. power (float): Exponential factor of EMA warmup. Default: 2/3. Only used if `use_ema_warmup` is True. foreach (bool): Use torch._foreach functions for updating shadow parameters. Should be faster. device (Optional[Union[str, torch.device]]): The device to store the EMA weights on. If None, the EMA weights will be stored on CPU. @crowsonkb's notes on EMA Warmup: If gamma=1 and power=1, implements a simple average. gamma=1, power=2/3 are good values for models you plan to train for a million or more steps (reaches decay factor 0.999 at 31.6K steps, 0.9999 at 1M steps), gamma=1, power=3/4 for models you plan to train for less (reaches decay factor 0.999 at 10K steps, 0.9999 at 215.4k steps). """ if isinstance(parameters, torch.nn.Module): deprecation_message = ( "Passing a `torch.nn.Module` to `ExponentialMovingAverage` is deprecated. " "Please pass the parameters of the module instead." ) deprecate( "passing a `torch.nn.Module` to `ExponentialMovingAverage`", "1.0.0", deprecation_message, standard_warn=False, ) parameters = parameters.parameters() # set use_ema_warmup to True if a torch.nn.Module is passed for backwards compatibility use_ema_warmup = True if kwargs.get("max_value", None) is not None: deprecation_message = "The `max_value` argument is deprecated. Please use `decay` instead." deprecate("max_value", "1.0.0", deprecation_message, standard_warn=False) decay = kwargs["max_value"] if kwargs.get("min_value", None) is not None: deprecation_message = "The `min_value` argument is deprecated. Please use `min_decay` instead." deprecate("min_value", "1.0.0", deprecation_message, standard_warn=False) min_decay = kwargs["min_value"] parameters = list(parameters) self.shadow_params = [p.clone().detach() for p in parameters] if kwargs.get("device", None) is not None: deprecation_message = "The `device` argument is deprecated. Please use `to` instead." deprecate("device", "1.0.0", deprecation_message, standard_warn=False) self.to(device=kwargs["device"]) self.temp_stored_params = None self.decay = decay self.min_decay = min_decay self.update_after_step = update_after_step self.use_ema_warmup = use_ema_warmup self.inv_gamma = inv_gamma self.power = power self.optimization_step = 0 self.cur_decay_value = None # set in `step()` self.foreach = foreach self.model_cls = model_cls self.model_config = model_config @classmethod def from_pretrained(cls, path, model_cls, foreach=False) -> "EMAModel": _, ema_kwargs = model_cls.from_config(path, return_unused_kwargs=True) model = model_cls.from_pretrained(path) ema_model = cls(model.parameters(), model_cls=model_cls, model_config=model.config, foreach=foreach) ema_model.load_state_dict(ema_kwargs) return ema_model def save_pretrained(self, path): if self.model_cls is None: raise ValueError("`save_pretrained` can only be used if `model_cls` was defined at __init__.") if self.model_config is None: raise ValueError("`save_pretrained` can only be used if `model_config` was defined at __init__.") model = self.model_cls.from_config(self.model_config) state_dict = self.state_dict() state_dict.pop("shadow_params", None) model.register_to_config(**state_dict) self.copy_to(model.parameters()) model.save_pretrained(path) def get_decay(self, optimization_step: int) -> float: """ Compute the decay factor for the exponential moving average. """ step = max(0, optimization_step - self.update_after_step - 1) if step <= 0: return 0.0 if self.use_ema_warmup: cur_decay_value = 1 - (1 + step / self.inv_gamma) ** -self.power else: cur_decay_value = (1 + step) / (10 + step) cur_decay_value = min(cur_decay_value, self.decay) # make sure decay is not smaller than min_decay cur_decay_value = max(cur_decay_value, self.min_decay) return cur_decay_value @torch.no_grad() def step(self, parameters: Iterable[torch.nn.Parameter]): if isinstance(parameters, torch.nn.Module): deprecation_message = ( "Passing a `torch.nn.Module` to `ExponentialMovingAverage.step` is deprecated. " "Please pass the parameters of the module instead." ) deprecate( "passing a `torch.nn.Module` to `ExponentialMovingAverage.step`", "1.0.0", deprecation_message, standard_warn=False, ) parameters = parameters.parameters() parameters = list(parameters) self.optimization_step += 1 # Compute the decay factor for the exponential moving average. decay = self.get_decay(self.optimization_step) self.cur_decay_value = decay one_minus_decay = 1 - decay context_manager = contextlib.nullcontext() if self.foreach: if is_transformers_available() and transformers.integrations.deepspeed.is_deepspeed_zero3_enabled(): context_manager = deepspeed.zero.GatheredParameters(parameters, modifier_rank=None) with context_manager: params_grad = [param for param in parameters if param.requires_grad] s_params_grad = [ s_param for s_param, param in zip(self.shadow_params, parameters) if param.requires_grad ] if len(params_grad) < len(parameters): torch._foreach_copy_( [s_param for s_param, param in zip(self.shadow_params, parameters) if not param.requires_grad], [param for param in parameters if not param.requires_grad], non_blocking=True, ) torch._foreach_sub_( s_params_grad, torch._foreach_sub(s_params_grad, params_grad), alpha=one_minus_decay ) else: for s_param, param in zip(self.shadow_params, parameters): if is_transformers_available() and transformers.integrations.deepspeed.is_deepspeed_zero3_enabled(): context_manager = deepspeed.zero.GatheredParameters(param, modifier_rank=None) with context_manager: if param.requires_grad: s_param.sub_(one_minus_decay * (s_param - param)) else: s_param.copy_(param) def copy_to(self, parameters: Iterable[torch.nn.Parameter]) -> None: """ Copy current averaged parameters into given collection of parameters. Args: parameters: Iterable of `torch.nn.Parameter`; the parameters to be updated with the stored moving averages. If `None`, the parameters with which this `ExponentialMovingAverage` was initialized will be used. """ parameters = list(parameters) if self.foreach: torch._foreach_copy_( [param.data for param in parameters], [s_param.to(param.device).data for s_param, param in zip(self.shadow_params, parameters)], ) else: for s_param, param in zip(self.shadow_params, parameters): param.data.copy_(s_param.to(param.device).data) def pin_memory(self) -> None: r""" Move internal buffers of the ExponentialMovingAverage to pinned memory. Useful for non-blocking transfers for offloading EMA params to the host. """ self.shadow_params = [p.pin_memory() for p in self.shadow_params] def to(self, device=None, dtype=None, non_blocking=False) -> None: r""" Move internal buffers of the ExponentialMovingAverage to `device`. Args: device: like `device` argument to `torch.Tensor.to` """ # .to() on the tensors handles None correctly self.shadow_params = [ p.to(device=device, dtype=dtype, non_blocking=non_blocking) if p.is_floating_point() else p.to(device=device, non_blocking=non_blocking) for p in self.shadow_params ] def state_dict(self) -> dict: r""" Returns the state of the ExponentialMovingAverage as a dict. This method is used by accelerate during checkpointing to save the ema state dict. """ # Following PyTorch conventions, references to tensors are returned: # "returns a reference to the state and not its copy!" - # https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict return { "decay": self.decay, "min_decay": self.min_decay, "optimization_step": self.optimization_step, "update_after_step": self.update_after_step, "use_ema_warmup": self.use_ema_warmup, "inv_gamma": self.inv_gamma, "power": self.power, "shadow_params": self.shadow_params, } def store(self, parameters: Iterable[torch.nn.Parameter]) -> None: r""" Saves the current parameters for restoring later. Args: parameters: Iterable of `torch.nn.Parameter`. The parameters to be temporarily stored. """ self.temp_stored_params = [param.detach().cpu().clone() for param in parameters] def restore(self, parameters: Iterable[torch.nn.Parameter]) -> None: r""" Restore the parameters stored with the `store` method. Useful to validate the model with EMA parameters without: affecting the original optimization process. Store the parameters before the `copy_to()` method. After validation (or model saving), use this to restore the former parameters. Args: parameters: Iterable of `torch.nn.Parameter`; the parameters to be updated with the stored parameters. If `None`, the parameters with which this `ExponentialMovingAverage` was initialized will be used. """ if self.temp_stored_params is None: raise RuntimeError("This ExponentialMovingAverage has no `store()`ed weights " "to `restore()`") if self.foreach: torch._foreach_copy_( [param.data for param in parameters], [c_param.data for c_param in self.temp_stored_params] ) else: for c_param, param in zip(self.temp_stored_params, parameters): param.data.copy_(c_param.data) # Better memory-wise. self.temp_stored_params = None def load_state_dict(self, state_dict: dict) -> None: r""" Loads the ExponentialMovingAverage state. This method is used by accelerate during checkpointing to save the ema state dict. Args: state_dict (dict): EMA state. Should be an object returned from a call to :meth:`state_dict`. """ # deepcopy, to be consistent with module API state_dict = copy.deepcopy(state_dict) self.decay = state_dict.get("decay", self.decay) if self.decay < 0.0 or self.decay > 1.0: raise ValueError("Decay must be between 0 and 1") self.min_decay = state_dict.get("min_decay", self.min_decay) if not isinstance(self.min_decay, float): raise ValueError("Invalid min_decay") self.optimization_step = state_dict.get("optimization_step", self.optimization_step) if not isinstance(self.optimization_step, int): raise ValueError("Invalid optimization_step") self.update_after_step = state_dict.get("update_after_step", self.update_after_step) if not isinstance(self.update_after_step, int): raise ValueError("Invalid update_after_step") self.use_ema_warmup = state_dict.get("use_ema_warmup", self.use_ema_warmup) if not isinstance(self.use_ema_warmup, bool): raise ValueError("Invalid use_ema_warmup") self.inv_gamma = state_dict.get("inv_gamma", self.inv_gamma) if not isinstance(self.inv_gamma, (float, int)): raise ValueError("Invalid inv_gamma") self.power = state_dict.get("power", self.power) if not isinstance(self.power, (float, int)): raise ValueError("Invalid power") shadow_params = state_dict.get("shadow_params", None) if shadow_params is not None: self.shadow_params = shadow_params if not isinstance(self.shadow_params, list): raise ValueError("shadow_params must be a list") if not all(isinstance(p, torch.Tensor) for p in self.shadow_params): raise ValueError("shadow_params must all be Tensors")
class_definition
11,693
26,213
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/training_utils.py
null
9
class PipelineCallback(ConfigMixin): """ Base class for all the official callbacks used in a pipeline. This class provides a structure for implementing custom callbacks and ensures that all callbacks have a consistent interface. Please implement the following: `tensor_inputs`: This should return a list of tensor inputs specific to your callback. You will only be able to include variables listed in the `._callback_tensor_inputs` attribute of your pipeline class. `callback_fn`: This method defines the core functionality of your callback. """ config_name = CONFIG_NAME @register_to_config def __init__(self, cutoff_step_ratio=1.0, cutoff_step_index=None): super().__init__() if (cutoff_step_ratio is None and cutoff_step_index is None) or ( cutoff_step_ratio is not None and cutoff_step_index is not None ): raise ValueError("Either cutoff_step_ratio or cutoff_step_index should be provided, not both or none.") if cutoff_step_ratio is not None and ( not isinstance(cutoff_step_ratio, float) or not (0.0 <= cutoff_step_ratio <= 1.0) ): raise ValueError("cutoff_step_ratio must be a float between 0.0 and 1.0.") @property def tensor_inputs(self) -> List[str]: raise NotImplementedError(f"You need to set the attribute `tensor_inputs` for {self.__class__}") def callback_fn(self, pipeline, step_index, timesteps, callback_kwargs) -> Dict[str, Any]: raise NotImplementedError(f"You need to implement the method `callback_fn` for {self.__class__}") def __call__(self, pipeline, step_index, timestep, callback_kwargs) -> Dict[str, Any]: return self.callback_fn(pipeline, step_index, timestep, callback_kwargs)
class_definition
134
1,945
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/callbacks.py
null
10
class MultiPipelineCallbacks: """ This class is designed to handle multiple pipeline callbacks. It accepts a list of PipelineCallback objects and provides a unified interface for calling all of them. """ def __init__(self, callbacks: List[PipelineCallback]): self.callbacks = callbacks @property def tensor_inputs(self) -> List[str]: return [input for callback in self.callbacks for input in callback.tensor_inputs] def __call__(self, pipeline, step_index, timestep, callback_kwargs) -> Dict[str, Any]: """ Calls all the callbacks in order with the given arguments and returns the final callback_kwargs. """ for callback in self.callbacks: callback_kwargs = callback(pipeline, step_index, timestep, callback_kwargs) return callback_kwargs
class_definition
1,948
2,790
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/callbacks.py
null
11
class SDCFGCutoffCallback(PipelineCallback): """ Callback function for Stable Diffusion Pipelines. After certain number of steps (set by `cutoff_step_ratio` or `cutoff_step_index`), this callback will disable the CFG. Note: This callback mutates the pipeline by changing the `_guidance_scale` attribute to 0.0 after the cutoff step. """ tensor_inputs = ["prompt_embeds"] def callback_fn(self, pipeline, step_index, timestep, callback_kwargs) -> Dict[str, Any]: cutoff_step_ratio = self.config.cutoff_step_ratio cutoff_step_index = self.config.cutoff_step_index # Use cutoff_step_index if it's not None, otherwise use cutoff_step_ratio cutoff_step = ( cutoff_step_index if cutoff_step_index is not None else int(pipeline.num_timesteps * cutoff_step_ratio) ) if step_index == cutoff_step: prompt_embeds = callback_kwargs[self.tensor_inputs[0]] prompt_embeds = prompt_embeds[-1:] # "-1" denotes the embeddings for conditional text tokens. pipeline._guidance_scale = 0.0 callback_kwargs[self.tensor_inputs[0]] = prompt_embeds return callback_kwargs
class_definition
2,793
3,989
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/callbacks.py
null
12
class SDXLCFGCutoffCallback(PipelineCallback): """ Callback function for the base Stable Diffusion XL Pipelines. After certain number of steps (set by `cutoff_step_ratio` or `cutoff_step_index`), this callback will disable the CFG. Note: This callback mutates the pipeline by changing the `_guidance_scale` attribute to 0.0 after the cutoff step. """ tensor_inputs = [ "prompt_embeds", "add_text_embeds", "add_time_ids", ] def callback_fn(self, pipeline, step_index, timestep, callback_kwargs) -> Dict[str, Any]: cutoff_step_ratio = self.config.cutoff_step_ratio cutoff_step_index = self.config.cutoff_step_index # Use cutoff_step_index if it's not None, otherwise use cutoff_step_ratio cutoff_step = ( cutoff_step_index if cutoff_step_index is not None else int(pipeline.num_timesteps * cutoff_step_ratio) ) if step_index == cutoff_step: prompt_embeds = callback_kwargs[self.tensor_inputs[0]] prompt_embeds = prompt_embeds[-1:] # "-1" denotes the embeddings for conditional text tokens. add_text_embeds = callback_kwargs[self.tensor_inputs[1]] add_text_embeds = add_text_embeds[-1:] # "-1" denotes the embeddings for conditional pooled text tokens add_time_ids = callback_kwargs[self.tensor_inputs[2]] add_time_ids = add_time_ids[-1:] # "-1" denotes the embeddings for conditional added time vector pipeline._guidance_scale = 0.0 callback_kwargs[self.tensor_inputs[0]] = prompt_embeds callback_kwargs[self.tensor_inputs[1]] = add_text_embeds callback_kwargs[self.tensor_inputs[2]] = add_time_ids return callback_kwargs
class_definition
3,992
5,768
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/callbacks.py
null
13
class SDXLControlnetCFGCutoffCallback(PipelineCallback): """ Callback function for the Controlnet Stable Diffusion XL Pipelines. After certain number of steps (set by `cutoff_step_ratio` or `cutoff_step_index`), this callback will disable the CFG. Note: This callback mutates the pipeline by changing the `_guidance_scale` attribute to 0.0 after the cutoff step. """ tensor_inputs = [ "prompt_embeds", "add_text_embeds", "add_time_ids", "image", ] def callback_fn(self, pipeline, step_index, timestep, callback_kwargs) -> Dict[str, Any]: cutoff_step_ratio = self.config.cutoff_step_ratio cutoff_step_index = self.config.cutoff_step_index # Use cutoff_step_index if it's not None, otherwise use cutoff_step_ratio cutoff_step = ( cutoff_step_index if cutoff_step_index is not None else int(pipeline.num_timesteps * cutoff_step_ratio) ) if step_index == cutoff_step: prompt_embeds = callback_kwargs[self.tensor_inputs[0]] prompt_embeds = prompt_embeds[-1:] # "-1" denotes the embeddings for conditional text tokens. add_text_embeds = callback_kwargs[self.tensor_inputs[1]] add_text_embeds = add_text_embeds[-1:] # "-1" denotes the embeddings for conditional pooled text tokens add_time_ids = callback_kwargs[self.tensor_inputs[2]] add_time_ids = add_time_ids[-1:] # "-1" denotes the embeddings for conditional added time vector # For Controlnet image = callback_kwargs[self.tensor_inputs[3]] image = image[-1:] pipeline._guidance_scale = 0.0 callback_kwargs[self.tensor_inputs[0]] = prompt_embeds callback_kwargs[self.tensor_inputs[1]] = add_text_embeds callback_kwargs[self.tensor_inputs[2]] = add_time_ids callback_kwargs[self.tensor_inputs[3]] = image return callback_kwargs
class_definition
5,771
7,759
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/callbacks.py
null
14
class IPAdapterScaleCutoffCallback(PipelineCallback): """ Callback function for any pipeline that inherits `IPAdapterMixin`. After certain number of steps (set by `cutoff_step_ratio` or `cutoff_step_index`), this callback will set the IP Adapter scale to `0.0`. Note: This callback mutates the IP Adapter attention processors by setting the scale to 0.0 after the cutoff step. """ tensor_inputs = [] def callback_fn(self, pipeline, step_index, timestep, callback_kwargs) -> Dict[str, Any]: cutoff_step_ratio = self.config.cutoff_step_ratio cutoff_step_index = self.config.cutoff_step_index # Use cutoff_step_index if it's not None, otherwise use cutoff_step_ratio cutoff_step = ( cutoff_step_index if cutoff_step_index is not None else int(pipeline.num_timesteps * cutoff_step_ratio) ) if step_index == cutoff_step: pipeline.set_ip_adapter_scale(0.0) return callback_kwargs
class_definition
7,762
8,748
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/callbacks.py
null
15
class ValueGuidedRLPipeline(DiffusionPipeline): r""" Pipeline for value-guided sampling from a diffusion model trained to predict sequences of states. This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods implemented for all pipelines (downloading, saving, running on a particular device, etc.). Parameters: value_function ([`UNet1DModel`]): A specialized UNet for fine-tuning trajectories base on reward. unet ([`UNet1DModel`]): UNet architecture to denoise the encoded trajectories. scheduler ([`SchedulerMixin`]): A scheduler to be used in combination with `unet` to denoise the encoded trajectories. Default for this application is [`DDPMScheduler`]. env (): An environment following the OpenAI gym API to act in. For now only Hopper has pretrained models. """ def __init__( self, value_function: UNet1DModel, unet: UNet1DModel, scheduler: DDPMScheduler, env, ): super().__init__() self.register_modules(value_function=value_function, unet=unet, scheduler=scheduler, env=env) self.data = env.get_dataset() self.means = {} for key in self.data.keys(): try: self.means[key] = self.data[key].mean() except: # noqa: E722 pass self.stds = {} for key in self.data.keys(): try: self.stds[key] = self.data[key].std() except: # noqa: E722 pass self.state_dim = env.observation_space.shape[0] self.action_dim = env.action_space.shape[0] def normalize(self, x_in, key): return (x_in - self.means[key]) / self.stds[key] def de_normalize(self, x_in, key): return x_in * self.stds[key] + self.means[key] def to_torch(self, x_in): if isinstance(x_in, dict): return {k: self.to_torch(v) for k, v in x_in.items()} elif torch.is_tensor(x_in): return x_in.to(self.unet.device) return torch.tensor(x_in, device=self.unet.device) def reset_x0(self, x_in, cond, act_dim): for key, val in cond.items(): x_in[:, key, act_dim:] = val.clone() return x_in def run_diffusion(self, x, conditions, n_guide_steps, scale): batch_size = x.shape[0] y = None for i in tqdm.tqdm(self.scheduler.timesteps): # create batch of timesteps to pass into model timesteps = torch.full((batch_size,), i, device=self.unet.device, dtype=torch.long) for _ in range(n_guide_steps): with torch.enable_grad(): x.requires_grad_() # permute to match dimension for pre-trained models y = self.value_function(x.permute(0, 2, 1), timesteps).sample grad = torch.autograd.grad([y.sum()], [x])[0] posterior_variance = self.scheduler._get_variance(i) model_std = torch.exp(0.5 * posterior_variance) grad = model_std * grad grad[timesteps < 2] = 0 x = x.detach() x = x + scale * grad x = self.reset_x0(x, conditions, self.action_dim) prev_x = self.unet(x.permute(0, 2, 1), timesteps).sample.permute(0, 2, 1) # TODO: verify deprecation of this kwarg x = self.scheduler.step(prev_x, i, x)["prev_sample"] # apply conditions to the trajectory (set the initial state) x = self.reset_x0(x, conditions, self.action_dim) x = self.to_torch(x) return x, y def __call__(self, obs, batch_size=64, planning_horizon=32, n_guide_steps=2, scale=0.1): # normalize the observations and create batch dimension obs = self.normalize(obs, "observations") obs = obs[None].repeat(batch_size, axis=0) conditions = {0: self.to_torch(obs)} shape = (batch_size, planning_horizon, self.state_dim + self.action_dim) # generate initial noise and apply our conditions (to make the trajectories start at current state) x1 = randn_tensor(shape, device=self.unet.device) x = self.reset_x0(x1, conditions, self.action_dim) x = self.to_torch(x) # run the diffusion process x, y = self.run_diffusion(x, conditions, n_guide_steps, scale) # sort output trajectories by value sorted_idx = y.argsort(0, descending=True).squeeze() sorted_values = x[sorted_idx] actions = sorted_values[:, :, : self.action_dim] actions = actions.detach().cpu().numpy() denorm_actions = self.de_normalize(actions, key="actions") # select the action with the highest value if y is not None: selected_index = 0 else: # if we didn't run value guiding, select a random action selected_index = np.random.randint(0, batch_size) denorm_actions = denorm_actions[selected_index, 0] return denorm_actions
class_definition
843
6,032
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/experimental/rl/value_guided_sampling.py
null
16
class QuantizationMethod(str, Enum): BITS_AND_BYTES = "bitsandbytes" GGUF = "gguf" TORCHAO = "torchao"
class_definition
1,208
1,322
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/quantizers/quantization_config.py
null
17
class QuantizationConfigMixin: """ Mixin class for quantization config """ quant_method: QuantizationMethod _exclude_attributes_at_init = [] @classmethod def from_dict(cls, config_dict, return_unused_kwargs=False, **kwargs): """ Instantiates a [`QuantizationConfigMixin`] from a Python dictionary of parameters. Args: config_dict (`Dict[str, Any]`): Dictionary that will be used to instantiate the configuration object. return_unused_kwargs (`bool`,*optional*, defaults to `False`): Whether or not to return a list of unused keyword arguments. Used for `from_pretrained` method in `PreTrainedModel`. kwargs (`Dict[str, Any]`): Additional parameters from which to initialize the configuration object. Returns: [`QuantizationConfigMixin`]: The configuration object instantiated from those parameters. """ config = cls(**config_dict) to_remove = [] for key, value in kwargs.items(): if hasattr(config, key): setattr(config, key, value) to_remove.append(key) for key in to_remove: kwargs.pop(key, None) if return_unused_kwargs: return config, kwargs else: return config def to_json_file(self, json_file_path: Union[str, os.PathLike]): """ Save this instance to a JSON file. Args: json_file_path (`str` or `os.PathLike`): Path to the JSON file in which this configuration instance's parameters will be saved. use_diff (`bool`, *optional*, defaults to `True`): If set to `True`, only the difference between the config instance and the default `QuantizationConfig()` is serialized to JSON file. """ with open(json_file_path, "w", encoding="utf-8") as writer: config_dict = self.to_dict() json_string = json.dumps(config_dict, indent=2, sort_keys=True) + "\n" writer.write(json_string) def to_dict(self) -> Dict[str, Any]: """ Serializes this instance to a Python dictionary. Returns: `Dict[str, Any]`: Dictionary of all the attributes that make up this configuration instance. """ return copy.deepcopy(self.__dict__) def __iter__(self): """allows `dict(obj)` for situations where obj may be a dict or QuantizationConfigMixin""" for attr, value in copy.deepcopy(self.__dict__).items(): yield attr, value def __repr__(self): return f"{self.__class__.__name__} {self.to_json_string()}" def to_json_string(self, use_diff: bool = True) -> str: """ Serializes this instance to a JSON string. Args: use_diff (`bool`, *optional*, defaults to `True`): If set to `True`, only the difference between the config instance and the default `PretrainedConfig()` is serialized to JSON string. Returns: `str`: String containing all the attributes that make up this configuration instance in JSON format. """ if use_diff is True: config_dict = self.to_diff_dict() else: config_dict = self.to_dict() return json.dumps(config_dict, indent=2, sort_keys=True) + "\n" def update(self, **kwargs): """ Updates attributes of this class instance with attributes from `kwargs` if they match existing attributes, returning all the unused kwargs. Args: kwargs (`Dict[str, Any]`): Dictionary of attributes to tentatively update this class. Returns: `Dict[str, Any]`: Dictionary containing all the key-value pairs that were not used to update the instance. """ to_remove = [] for key, value in kwargs.items(): if hasattr(self, key): setattr(self, key, value) to_remove.append(key) # Remove all the attributes that were updated, without modifying the input dict unused_kwargs = {key: value for key, value in kwargs.items() if key not in to_remove} return unused_kwargs
class_definition
1,336
5,659
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/quantizers/quantization_config.py
null
18
class BitsAndBytesConfig(QuantizationConfigMixin): """ This is a wrapper class about all possible attributes and features that you can play with a model that has been loaded using `bitsandbytes`. This replaces `load_in_8bit` or `load_in_4bit`therefore both options are mutually exclusive. Currently only supports `LLM.int8()`, `FP4`, and `NF4` quantization. If more methods are added to `bitsandbytes`, then more arguments will be added to this class. Args: load_in_8bit (`bool`, *optional*, defaults to `False`): This flag is used to enable 8-bit quantization with LLM.int8(). load_in_4bit (`bool`, *optional*, defaults to `False`): This flag is used to enable 4-bit quantization by replacing the Linear layers with FP4/NF4 layers from `bitsandbytes`. llm_int8_threshold (`float`, *optional*, defaults to 6.0): This corresponds to the outlier threshold for outlier detection as described in `LLM.int8() : 8-bit Matrix Multiplication for Transformers at Scale` paper: https://arxiv.org/abs/2208.07339 Any hidden states value that is above this threshold will be considered an outlier and the operation on those values will be done in fp16. Values are usually normally distributed, that is, most values are in the range [-3.5, 3.5], but there are some exceptional systematic outliers that are very differently distributed for large models. These outliers are often in the interval [-60, -6] or [6, 60]. Int8 quantization works well for values of magnitude ~5, but beyond that, there is a significant performance penalty. A good default threshold is 6, but a lower threshold might be needed for more unstable models (small models, fine-tuning). llm_int8_skip_modules (`List[str]`, *optional*): An explicit list of the modules that we do not want to convert in 8-bit. This is useful for models such as Jukebox that has several heads in different places and not necessarily at the last position. For example for `CausalLM` models, the last `lm_head` is typically kept in its original `dtype`. llm_int8_enable_fp32_cpu_offload (`bool`, *optional*, defaults to `False`): This flag is used for advanced use cases and users that are aware of this feature. If you want to split your model in different parts and run some parts in int8 on GPU and some parts in fp32 on CPU, you can use this flag. This is useful for offloading large models such as `google/flan-t5-xxl`. Note that the int8 operations will not be run on CPU. llm_int8_has_fp16_weight (`bool`, *optional*, defaults to `False`): This flag runs LLM.int8() with 16-bit main weights. This is useful for fine-tuning as the weights do not have to be converted back and forth for the backward pass. bnb_4bit_compute_dtype (`torch.dtype` or str, *optional*, defaults to `torch.float32`): This sets the computational type which might be different than the input type. For example, inputs might be fp32, but computation can be set to bf16 for speedups. bnb_4bit_quant_type (`str`, *optional*, defaults to `"fp4"`): This sets the quantization data type in the bnb.nn.Linear4Bit layers. Options are FP4 and NF4 data types which are specified by `fp4` or `nf4`. bnb_4bit_use_double_quant (`bool`, *optional*, defaults to `False`): This flag is used for nested quantization where the quantization constants from the first quantization are quantized again. bnb_4bit_quant_storage (`torch.dtype` or str, *optional*, defaults to `torch.uint8`): This sets the storage type to pack the quanitzed 4-bit prarams. kwargs (`Dict[str, Any]`, *optional*): Additional parameters from which to initialize the configuration object. """ _exclude_attributes_at_init = ["_load_in_4bit", "_load_in_8bit", "quant_method"] def __init__( self, load_in_8bit=False, load_in_4bit=False, llm_int8_threshold=6.0, llm_int8_skip_modules=None, llm_int8_enable_fp32_cpu_offload=False, llm_int8_has_fp16_weight=False, bnb_4bit_compute_dtype=None, bnb_4bit_quant_type="fp4", bnb_4bit_use_double_quant=False, bnb_4bit_quant_storage=None, **kwargs, ): self.quant_method = QuantizationMethod.BITS_AND_BYTES if load_in_4bit and load_in_8bit: raise ValueError("load_in_4bit and load_in_8bit are both True, but only one can be used at the same time") self._load_in_8bit = load_in_8bit self._load_in_4bit = load_in_4bit self.llm_int8_threshold = llm_int8_threshold self.llm_int8_skip_modules = llm_int8_skip_modules self.llm_int8_enable_fp32_cpu_offload = llm_int8_enable_fp32_cpu_offload self.llm_int8_has_fp16_weight = llm_int8_has_fp16_weight self.bnb_4bit_quant_type = bnb_4bit_quant_type self.bnb_4bit_use_double_quant = bnb_4bit_use_double_quant if bnb_4bit_compute_dtype is None: self.bnb_4bit_compute_dtype = torch.float32 elif isinstance(bnb_4bit_compute_dtype, str): self.bnb_4bit_compute_dtype = getattr(torch, bnb_4bit_compute_dtype) elif isinstance(bnb_4bit_compute_dtype, torch.dtype): self.bnb_4bit_compute_dtype = bnb_4bit_compute_dtype else: raise ValueError("bnb_4bit_compute_dtype must be a string or a torch.dtype") if bnb_4bit_quant_storage is None: self.bnb_4bit_quant_storage = torch.uint8 elif isinstance(bnb_4bit_quant_storage, str): if bnb_4bit_quant_storage not in ["float16", "float32", "int8", "uint8", "float64", "bfloat16"]: raise ValueError( "`bnb_4bit_quant_storage` must be a valid string (one of 'float16', 'float32', 'int8', 'uint8', 'float64', 'bfloat16') " ) self.bnb_4bit_quant_storage = getattr(torch, bnb_4bit_quant_storage) elif isinstance(bnb_4bit_quant_storage, torch.dtype): self.bnb_4bit_quant_storage = bnb_4bit_quant_storage else: raise ValueError("bnb_4bit_quant_storage must be a string or a torch.dtype") if kwargs and not all(k in self._exclude_attributes_at_init for k in kwargs): logger.warning(f"Unused kwargs: {list(kwargs.keys())}. These kwargs are not used in {self.__class__}.") self.post_init() @property def load_in_4bit(self): return self._load_in_4bit @load_in_4bit.setter def load_in_4bit(self, value: bool): if not isinstance(value, bool): raise TypeError("load_in_4bit must be a boolean") if self.load_in_8bit and value: raise ValueError("load_in_4bit and load_in_8bit are both True, but only one can be used at the same time") self._load_in_4bit = value @property def load_in_8bit(self): return self._load_in_8bit @load_in_8bit.setter def load_in_8bit(self, value: bool): if not isinstance(value, bool): raise TypeError("load_in_8bit must be a boolean") if self.load_in_4bit and value: raise ValueError("load_in_4bit and load_in_8bit are both True, but only one can be used at the same time") self._load_in_8bit = value def post_init(self): r""" Safety checker that arguments are correct - also replaces some NoneType arguments with their default values. """ if not isinstance(self.load_in_4bit, bool): raise TypeError("load_in_4bit must be a boolean") if not isinstance(self.load_in_8bit, bool): raise TypeError("load_in_8bit must be a boolean") if not isinstance(self.llm_int8_threshold, float): raise TypeError("llm_int8_threshold must be a float") if self.llm_int8_skip_modules is not None and not isinstance(self.llm_int8_skip_modules, list): raise TypeError("llm_int8_skip_modules must be a list of strings") if not isinstance(self.llm_int8_enable_fp32_cpu_offload, bool): raise TypeError("llm_int8_enable_fp32_cpu_offload must be a boolean") if not isinstance(self.llm_int8_has_fp16_weight, bool): raise TypeError("llm_int8_has_fp16_weight must be a boolean") if self.bnb_4bit_compute_dtype is not None and not isinstance(self.bnb_4bit_compute_dtype, torch.dtype): raise TypeError("bnb_4bit_compute_dtype must be torch.dtype") if not isinstance(self.bnb_4bit_quant_type, str): raise TypeError("bnb_4bit_quant_type must be a string") if not isinstance(self.bnb_4bit_use_double_quant, bool): raise TypeError("bnb_4bit_use_double_quant must be a boolean") if self.load_in_4bit and not version.parse(importlib.metadata.version("bitsandbytes")) >= version.parse( "0.39.0" ): raise ValueError( "4 bit quantization requires bitsandbytes>=0.39.0 - please upgrade your bitsandbytes version" ) def is_quantizable(self): r""" Returns `True` if the model is quantizable, `False` otherwise. """ return self.load_in_8bit or self.load_in_4bit def quantization_method(self): r""" This method returns the quantization method used for the model. If the model is not quantizable, it returns `None`. """ if self.load_in_8bit: return "llm_int8" elif self.load_in_4bit and self.bnb_4bit_quant_type == "fp4": return "fp4" elif self.load_in_4bit and self.bnb_4bit_quant_type == "nf4": return "nf4" else: return None def to_dict(self) -> Dict[str, Any]: """ Serializes this instance to a Python dictionary. Returns: `Dict[str, Any]`: Dictionary of all the attributes that make up this configuration instance. """ output = copy.deepcopy(self.__dict__) output["bnb_4bit_compute_dtype"] = str(output["bnb_4bit_compute_dtype"]).split(".")[1] output["bnb_4bit_quant_storage"] = str(output["bnb_4bit_quant_storage"]).split(".")[1] output["load_in_4bit"] = self.load_in_4bit output["load_in_8bit"] = self.load_in_8bit return output def __repr__(self): config_dict = self.to_dict() return f"{self.__class__.__name__} {json.dumps(config_dict, indent=2, sort_keys=True)}\n" def to_diff_dict(self) -> Dict[str, Any]: """ Removes all attributes from config which correspond to the default config attributes for better readability and serializes to a Python dictionary. Returns: `Dict[str, Any]`: Dictionary of all the attributes that make up this configuration instance, """ config_dict = self.to_dict() # get the default config dict default_config_dict = BitsAndBytesConfig().to_dict() serializable_config_dict = {} # only serialize values that differ from the default config for key, value in config_dict.items(): if value != default_config_dict[key]: serializable_config_dict[key] = value return serializable_config_dict
class_definition
5,673
17,200
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/quantizers/quantization_config.py
null
19
class GGUFQuantizationConfig(QuantizationConfigMixin): """This is a config class for GGUF Quantization techniques. Args: compute_dtype: (`torch.dtype`, defaults to `torch.float32`): This sets the computational type which might be different than the input type. For example, inputs might be fp32, but computation can be set to bf16 for speedups. """ def __init__(self, compute_dtype: Optional["torch.dtype"] = None): self.quant_method = QuantizationMethod.GGUF self.compute_dtype = compute_dtype self.pre_quantized = True # TODO: (Dhruv) Add this as an init argument when we can support loading unquantized checkpoints. self.modules_to_not_convert = None if self.compute_dtype is None: self.compute_dtype = torch.float32
class_definition
17,214
18,046
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/quantizers/quantization_config.py
null
20
class TorchAoConfig(QuantizationConfigMixin): """This is a config class for torchao quantization/sparsity techniques. Args: quant_type (`str`): The type of quantization we want to use, currently supporting: - **Integer quantization:** - Full function names: `int4_weight_only`, `int8_dynamic_activation_int4_weight`, `int8_weight_only`, `int8_dynamic_activation_int8_weight` - Shorthands: `int4wo`, `int4dq`, `int8wo`, `int8dq` - **Floating point 8-bit quantization:** - Full function names: `float8_weight_only`, `float8_dynamic_activation_float8_weight`, `float8_static_activation_float8_weight` - Shorthands: `float8wo`, `float8wo_e5m2`, `float8wo_e4m3`, `float8dq`, `float8dq_e4m3`, `float8_e4m3_tensor`, `float8_e4m3_row`, - **Floating point X-bit quantization:** - Full function names: `fpx_weight_only` - Shorthands: `fpX_eAwB`, where `X` is the number of bits (between `1` to `7`), `A` is the number of exponent bits and `B` is the number of mantissa bits. The constraint of `X == A + B + 1` must be satisfied for a given shorthand notation. - **Unsigned Integer quantization:** - Full function names: `uintx_weight_only` - Shorthands: `uint1wo`, `uint2wo`, `uint3wo`, `uint4wo`, `uint5wo`, `uint6wo`, `uint7wo` modules_to_not_convert (`List[str]`, *optional*, default to `None`): The list of modules to not quantize, useful for quantizing models that explicitly require to have some modules left in their original precision. kwargs (`Dict[str, Any]`, *optional*): The keyword arguments for the chosen type of quantization, for example, int4_weight_only quantization supports two keyword arguments `group_size` and `inner_k_tiles` currently. More API examples and documentation of arguments can be found in https://github.com/pytorch/ao/tree/main/torchao/quantization#other-available-quantization-techniques Example: ```python from diffusers import FluxTransformer2DModel, TorchAoConfig quantization_config = TorchAoConfig("int8wo") transformer = FluxTransformer2DModel.from_pretrained( "black-forest-labs/Flux.1-Dev", subfolder="transformer", quantization_config=quantization_config, torch_dtype=torch.bfloat16, ) ``` """ def __init__(self, quant_type: str, modules_to_not_convert: Optional[List[str]] = None, **kwargs) -> None: self.quant_method = QuantizationMethod.TORCHAO self.quant_type = quant_type self.modules_to_not_convert = modules_to_not_convert # When we load from serialized config, "quant_type_kwargs" will be the key if "quant_type_kwargs" in kwargs: self.quant_type_kwargs = kwargs["quant_type_kwargs"] else: self.quant_type_kwargs = kwargs TORCHAO_QUANT_TYPE_METHODS = self._get_torchao_quant_type_to_method() if self.quant_type not in TORCHAO_QUANT_TYPE_METHODS.keys(): raise ValueError( f"Requested quantization type: {self.quant_type} is not supported yet or is incorrect. If you think the " f"provided quantization type should be supported, please open an issue at https://github.com/huggingface/diffusers/issues." ) method = TORCHAO_QUANT_TYPE_METHODS[self.quant_type] signature = inspect.signature(method) all_kwargs = { param.name for param in signature.parameters.values() if param.kind in [inspect.Parameter.KEYWORD_ONLY, inspect.Parameter.POSITIONAL_OR_KEYWORD] } unsupported_kwargs = list(self.quant_type_kwargs.keys() - all_kwargs) if len(unsupported_kwargs) > 0: raise ValueError( f'The quantization method "{quant_type}" does not support the following keyword arguments: ' f"{unsupported_kwargs}. The following keywords arguments are supported: {all_kwargs}." ) @classmethod def _get_torchao_quant_type_to_method(cls): r""" Returns supported torchao quantization types with all commonly used notations. """ if is_torchao_available(): # TODO(aryan): Support autoquant and sparsify from torchao.quantization import ( float8_dynamic_activation_float8_weight, float8_static_activation_float8_weight, float8_weight_only, fpx_weight_only, int4_weight_only, int8_dynamic_activation_int4_weight, int8_dynamic_activation_int8_weight, int8_weight_only, uintx_weight_only, ) # TODO(aryan): Add a note on how to use PerAxis and PerGroup observers from torchao.quantization.observer import PerRow, PerTensor def generate_float8dq_types(dtype: torch.dtype): name = "e5m2" if dtype == torch.float8_e5m2 else "e4m3" types = {} for granularity_cls in [PerTensor, PerRow]: # Note: Activation and Weights cannot have different granularities granularity_name = "tensor" if granularity_cls is PerTensor else "row" types[f"float8dq_{name}_{granularity_name}"] = partial( float8_dynamic_activation_float8_weight, activation_dtype=dtype, weight_dtype=dtype, granularity=(granularity_cls(), granularity_cls()), ) return types def generate_fpx_quantization_types(bits: int): types = {} for ebits in range(1, bits): mbits = bits - ebits - 1 types[f"fp{bits}_e{ebits}m{mbits}"] = partial(fpx_weight_only, ebits=ebits, mbits=mbits) non_sign_bits = bits - 1 default_ebits = (non_sign_bits + 1) // 2 default_mbits = non_sign_bits - default_ebits types[f"fp{bits}"] = partial(fpx_weight_only, ebits=default_ebits, mbits=default_mbits) return types INT4_QUANTIZATION_TYPES = { # int4 weight + bfloat16/float16 activation "int4wo": int4_weight_only, "int4_weight_only": int4_weight_only, # int4 weight + int8 activation "int4dq": int8_dynamic_activation_int4_weight, "int8_dynamic_activation_int4_weight": int8_dynamic_activation_int4_weight, } INT8_QUANTIZATION_TYPES = { # int8 weight + bfloat16/float16 activation "int8wo": int8_weight_only, "int8_weight_only": int8_weight_only, # int8 weight + int8 activation "int8dq": int8_dynamic_activation_int8_weight, "int8_dynamic_activation_int8_weight": int8_dynamic_activation_int8_weight, } # TODO(aryan): handle torch 2.2/2.3 FLOATX_QUANTIZATION_TYPES = { # float8_e5m2 weight + bfloat16/float16 activation "float8wo": partial(float8_weight_only, weight_dtype=torch.float8_e5m2), "float8_weight_only": float8_weight_only, "float8wo_e5m2": partial(float8_weight_only, weight_dtype=torch.float8_e5m2), # float8_e4m3 weight + bfloat16/float16 activation "float8wo_e4m3": partial(float8_weight_only, weight_dtype=torch.float8_e4m3fn), # float8_e5m2 weight + float8 activation (dynamic) "float8dq": float8_dynamic_activation_float8_weight, "float8_dynamic_activation_float8_weight": float8_dynamic_activation_float8_weight, # ===== Matrix multiplication is not supported in float8_e5m2 so the following errors out. # However, changing activation_dtype=torch.float8_e4m3 might work here ===== # "float8dq_e5m2": partial( # float8_dynamic_activation_float8_weight, # activation_dtype=torch.float8_e5m2, # weight_dtype=torch.float8_e5m2, # ), # **generate_float8dq_types(torch.float8_e5m2), # ===== ===== # float8_e4m3 weight + float8 activation (dynamic) "float8dq_e4m3": partial( float8_dynamic_activation_float8_weight, activation_dtype=torch.float8_e4m3fn, weight_dtype=torch.float8_e4m3fn, ), **generate_float8dq_types(torch.float8_e4m3fn), # float8 weight + float8 activation (static) "float8_static_activation_float8_weight": float8_static_activation_float8_weight, # For fpx, only x <= 8 is supported by default. Other dtypes can be explored by users directly # fpx weight + bfloat16/float16 activation **generate_fpx_quantization_types(3), **generate_fpx_quantization_types(4), **generate_fpx_quantization_types(5), **generate_fpx_quantization_types(6), **generate_fpx_quantization_types(7), } UINTX_QUANTIZATION_DTYPES = { "uintx_weight_only": uintx_weight_only, "uint1wo": partial(uintx_weight_only, dtype=torch.uint1), "uint2wo": partial(uintx_weight_only, dtype=torch.uint2), "uint3wo": partial(uintx_weight_only, dtype=torch.uint3), "uint4wo": partial(uintx_weight_only, dtype=torch.uint4), "uint5wo": partial(uintx_weight_only, dtype=torch.uint5), "uint6wo": partial(uintx_weight_only, dtype=torch.uint6), "uint7wo": partial(uintx_weight_only, dtype=torch.uint7), # "uint8wo": partial(uintx_weight_only, dtype=torch.uint8), # uint8 quantization is not supported } QUANTIZATION_TYPES = {} QUANTIZATION_TYPES.update(INT4_QUANTIZATION_TYPES) QUANTIZATION_TYPES.update(INT8_QUANTIZATION_TYPES) QUANTIZATION_TYPES.update(UINTX_QUANTIZATION_DTYPES) if cls._is_cuda_capability_atleast_8_9(): QUANTIZATION_TYPES.update(FLOATX_QUANTIZATION_TYPES) return QUANTIZATION_TYPES else: raise ValueError( "TorchAoConfig requires torchao to be installed, please install with `pip install torchao`" ) @staticmethod def _is_cuda_capability_atleast_8_9() -> bool: if not torch.cuda.is_available(): raise RuntimeError("TorchAO requires a CUDA compatible GPU and installation of PyTorch.") major, minor = torch.cuda.get_device_capability() if major == 8: return minor >= 9 return major >= 9 def get_apply_tensor_subclass(self): TORCHAO_QUANT_TYPE_METHODS = self._get_torchao_quant_type_to_method() return TORCHAO_QUANT_TYPE_METHODS[self.quant_type](**self.quant_type_kwargs) def __repr__(self): r""" Example of how this looks for `TorchAoConfig("uint_a16w4", group_size=32)`: ``` TorchAoConfig { "modules_to_not_convert": null, "quant_method": "torchao", "quant_type": "uint_a16w4", "quant_type_kwargs": { "group_size": 32 } } ``` """ config_dict = self.to_dict() return f"{self.__class__.__name__} {json.dumps(config_dict, indent=2, sort_keys=True)}\n"
class_definition
18,060
30,174
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/quantizers/quantization_config.py
null
21
class DiffusersQuantizer(ABC): """ Abstract class of the HuggingFace quantizer. Supports for now quantizing HF diffusers models for inference and/or quantization. This class is used only for diffusers.models.modeling_utils.ModelMixin.from_pretrained and cannot be easily used outside the scope of that method yet. Attributes quantization_config (`diffusers.quantizers.quantization_config.QuantizationConfigMixin`): The quantization config that defines the quantization parameters of your model that you want to quantize. modules_to_not_convert (`List[str]`, *optional*): The list of module names to not convert when quantizing the model. required_packages (`List[str]`, *optional*): The list of required pip packages to install prior to using the quantizer requires_calibration (`bool`): Whether the quantization method requires to calibrate the model before using it. """ requires_calibration = False required_packages = None def __init__(self, quantization_config: QuantizationConfigMixin, **kwargs): self.quantization_config = quantization_config # -- Handle extra kwargs below -- self.modules_to_not_convert = kwargs.pop("modules_to_not_convert", []) self.pre_quantized = kwargs.pop("pre_quantized", True) if not self.pre_quantized and self.requires_calibration: raise ValueError( f"The quantization method {quantization_config.quant_method} does require the model to be pre-quantized." f" You explicitly passed `pre_quantized=False` meaning your model weights are not quantized. Make sure to " f"pass `pre_quantized=True` while knowing what you are doing." ) def update_torch_dtype(self, torch_dtype: "torch.dtype") -> "torch.dtype": """ Some quantization methods require to explicitly set the dtype of the model to a target dtype. You need to override this method in case you want to make sure that behavior is preserved Args: torch_dtype (`torch.dtype`): The input dtype that is passed in `from_pretrained` """ return torch_dtype def update_device_map(self, device_map: Optional[Dict[str, Any]]) -> Optional[Dict[str, Any]]: """ Override this method if you want to pass a override the existing device map with a new one. E.g. for bitsandbytes, since `accelerate` is a hard requirement, if no device_map is passed, the device_map is set to `"auto"`` Args: device_map (`Union[dict, str]`, *optional*): The device_map that is passed through the `from_pretrained` method. """ return device_map def adjust_target_dtype(self, torch_dtype: "torch.dtype") -> "torch.dtype": """ Override this method if you want to adjust the `target_dtype` variable used in `from_pretrained` to compute the device_map in case the device_map is a `str`. E.g. for bitsandbytes we force-set `target_dtype` to `torch.int8` and for 4-bit we pass a custom enum `accelerate.CustomDtype.int4`. Args: torch_dtype (`torch.dtype`, *optional*): The torch_dtype that is used to compute the device_map. """ return torch_dtype def update_missing_keys(self, model, missing_keys: List[str], prefix: str) -> List[str]: """ Override this method if you want to adjust the `missing_keys`. Args: missing_keys (`List[str]`, *optional*): The list of missing keys in the checkpoint compared to the state dict of the model """ return missing_keys def get_special_dtypes_update(self, model, torch_dtype: "torch.dtype") -> Dict[str, "torch.dtype"]: """ returns dtypes for modules that are not quantized - used for the computation of the device_map in case one passes a str as a device_map. The method will use the `modules_to_not_convert` that is modified in `_process_model_before_weight_loading`. `diffusers` models don't have any `modules_to_not_convert` attributes yet but this can change soon in the future. Args: model (`~diffusers.models.modeling_utils.ModelMixin`): The model to quantize torch_dtype (`torch.dtype`): The dtype passed in `from_pretrained` method. """ return { name: torch_dtype for name, _ in model.named_parameters() if any(m in name for m in self.modules_to_not_convert) } def adjust_max_memory(self, max_memory: Dict[str, Union[int, str]]) -> Dict[str, Union[int, str]]: """adjust max_memory argument for infer_auto_device_map() if extra memory is needed for quantization""" return max_memory def check_if_quantized_param( self, model: "ModelMixin", param_value: "torch.Tensor", param_name: str, state_dict: Dict[str, Any], **kwargs, ) -> bool: """ checks if a loaded state_dict component is part of quantized param + some validation; only defined for quantization methods that require to create a new parameters for quantization. """ return False def create_quantized_param(self, *args, **kwargs) -> "torch.nn.Parameter": """ takes needed components from state_dict and creates quantized param. """ return def check_quantized_param_shape(self, *args, **kwargs): """ checks if the quantized param has expected shape. """ return True def validate_environment(self, *args, **kwargs): """ This method is used to potentially check for potential conflicts with arguments that are passed in `from_pretrained`. You need to define it for all future quantizers that are integrated with diffusers. If no explicit check are needed, simply return nothing. """ return def preprocess_model(self, model: "ModelMixin", **kwargs): """ Setting model attributes and/or converting model before weights loading. At this point the model should be initialized on the meta device so you can freely manipulate the skeleton of the model in order to replace modules in-place. Make sure to override the abstract method `_process_model_before_weight_loading`. Args: model (`~diffusers.models.modeling_utils.ModelMixin`): The model to quantize kwargs (`dict`, *optional*): The keyword arguments that are passed along `_process_model_before_weight_loading`. """ model.is_quantized = True model.quantization_method = self.quantization_config.quant_method return self._process_model_before_weight_loading(model, **kwargs) def postprocess_model(self, model: "ModelMixin", **kwargs): """ Post-process the model post weights loading. Make sure to override the abstract method `_process_model_after_weight_loading`. Args: model (`~diffusers.models.modeling_utils.ModelMixin`): The model to quantize kwargs (`dict`, *optional*): The keyword arguments that are passed along `_process_model_after_weight_loading`. """ return self._process_model_after_weight_loading(model, **kwargs) def dequantize(self, model): """ Potentially dequantize the model to retrive the original model, with some loss in accuracy / performance. Note not all quantization schemes support this. """ model = self._dequantize(model) # Delete quantizer and quantization config del model.hf_quantizer return model def _dequantize(self, model): raise NotImplementedError( f"{self.quantization_config.quant_method} has no implementation of `dequantize`, please raise an issue on GitHub." ) @abstractmethod def _process_model_before_weight_loading(self, model, **kwargs): ... @abstractmethod def _process_model_after_weight_loading(self, model, **kwargs): ... @property @abstractmethod def is_serializable(self): ... @property @abstractmethod def is_trainable(self): ...
class_definition
1,076
9,564
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/quantizers/base.py
null
22
class DiffusersAutoQuantizer: """ The auto diffusers quantizer class that takes care of automatically instantiating to the correct `DiffusersQuantizer` given the `QuantizationConfig`. """ @classmethod def from_dict(cls, quantization_config_dict: Dict): quant_method = quantization_config_dict.get("quant_method", None) # We need a special care for bnb models to make sure everything is BC .. if quantization_config_dict.get("load_in_8bit", False) or quantization_config_dict.get("load_in_4bit", False): suffix = "_4bit" if quantization_config_dict.get("load_in_4bit", False) else "_8bit" quant_method = QuantizationMethod.BITS_AND_BYTES + suffix elif quant_method is None: raise ValueError( "The model's quantization config from the arguments has no `quant_method` attribute. Make sure that the model has been correctly quantized" ) if quant_method not in AUTO_QUANTIZATION_CONFIG_MAPPING.keys(): raise ValueError( f"Unknown quantization type, got {quant_method} - supported types are:" f" {list(AUTO_QUANTIZER_MAPPING.keys())}" ) target_cls = AUTO_QUANTIZATION_CONFIG_MAPPING[quant_method] return target_cls.from_dict(quantization_config_dict) @classmethod def from_config(cls, quantization_config: Union[QuantizationConfigMixin, Dict], **kwargs): # Convert it to a QuantizationConfig if the q_config is a dict if isinstance(quantization_config, dict): quantization_config = cls.from_dict(quantization_config) quant_method = quantization_config.quant_method # Again, we need a special care for bnb as we have a single quantization config # class for both 4-bit and 8-bit quantization if quant_method == QuantizationMethod.BITS_AND_BYTES: if quantization_config.load_in_8bit: quant_method += "_8bit" else: quant_method += "_4bit" if quant_method not in AUTO_QUANTIZER_MAPPING.keys(): raise ValueError( f"Unknown quantization type, got {quant_method} - supported types are:" f" {list(AUTO_QUANTIZER_MAPPING.keys())}" ) target_cls = AUTO_QUANTIZER_MAPPING[quant_method] return target_cls(quantization_config, **kwargs) @classmethod def from_pretrained(cls, pretrained_model_name_or_path, **kwargs): model_config = cls.load_config(pretrained_model_name_or_path, **kwargs) if getattr(model_config, "quantization_config", None) is None: raise ValueError( f"Did not found a `quantization_config` in {pretrained_model_name_or_path}. Make sure that the model is correctly quantized." ) quantization_config_dict = model_config.quantization_config quantization_config = cls.from_dict(quantization_config_dict) # Update with potential kwargs that are passed through from_pretrained. quantization_config.update(kwargs) return cls.from_config(quantization_config) @classmethod def merge_quantization_configs( cls, quantization_config: Union[dict, QuantizationConfigMixin], quantization_config_from_args: Optional[QuantizationConfigMixin], ): """ handles situations where both quantization_config from args and quantization_config from model config are present. """ if quantization_config_from_args is not None: warning_msg = ( "You passed `quantization_config` or equivalent parameters to `from_pretrained` but the model you're loading" " already has a `quantization_config` attribute. The `quantization_config` from the model will be used." ) else: warning_msg = "" if isinstance(quantization_config, dict): quantization_config = cls.from_dict(quantization_config) if warning_msg != "": warnings.warn(warning_msg) return quantization_config
class_definition
1,524
5,675
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/quantizers/auto.py
null
23
class GGUFQuantizer(DiffusersQuantizer): use_keep_in_fp32_modules = True def __init__(self, quantization_config, **kwargs): super().__init__(quantization_config, **kwargs) self.compute_dtype = quantization_config.compute_dtype self.pre_quantized = quantization_config.pre_quantized self.modules_to_not_convert = quantization_config.modules_to_not_convert if not isinstance(self.modules_to_not_convert, list): self.modules_to_not_convert = [self.modules_to_not_convert] def validate_environment(self, *args, **kwargs): if not is_accelerate_available() or is_accelerate_version("<", "0.26.0"): raise ImportError( "Loading GGUF Parameters requires `accelerate` installed in your enviroment: `pip install 'accelerate>=0.26.0'`" ) if not is_gguf_available() or is_gguf_version("<", "0.10.0"): raise ImportError( "To load GGUF format files you must have `gguf` installed in your environment: `pip install gguf>=0.10.0`" ) # Copied from diffusers.quantizers.bitsandbytes.bnb_quantizer.BnB4BitDiffusersQuantizer.adjust_max_memory def adjust_max_memory(self, max_memory: Dict[str, Union[int, str]]) -> Dict[str, Union[int, str]]: # need more space for buffers that are created during quantization max_memory = {key: val * 0.90 for key, val in max_memory.items()} return max_memory def adjust_target_dtype(self, target_dtype: "torch.dtype") -> "torch.dtype": if target_dtype != torch.uint8: logger.info(f"target_dtype {target_dtype} is replaced by `torch.uint8` for GGUF quantization") return torch.uint8 def update_torch_dtype(self, torch_dtype: "torch.dtype") -> "torch.dtype": if torch_dtype is None: torch_dtype = self.compute_dtype return torch_dtype def check_quantized_param_shape(self, param_name, current_param, loaded_param): loaded_param_shape = loaded_param.shape current_param_shape = current_param.shape quant_type = loaded_param.quant_type block_size, type_size = GGML_QUANT_SIZES[quant_type] inferred_shape = _quant_shape_from_byte_shape(loaded_param_shape, type_size, block_size) if inferred_shape != current_param_shape: raise ValueError( f"{param_name} has an expected quantized shape of: {inferred_shape}, but receieved shape: {loaded_param_shape}" ) return True def check_if_quantized_param( self, model: "ModelMixin", param_value: Union["GGUFParameter", "torch.Tensor"], param_name: str, state_dict: Dict[str, Any], **kwargs, ) -> bool: if isinstance(param_value, GGUFParameter): return True return False def create_quantized_param( self, model: "ModelMixin", param_value: Union["GGUFParameter", "torch.Tensor"], param_name: str, target_device: "torch.device", state_dict: Optional[Dict[str, Any]] = None, unexpected_keys: Optional[List[str]] = None, ): module, tensor_name = get_module_from_name(model, param_name) if tensor_name not in module._parameters and tensor_name not in module._buffers: raise ValueError(f"{module} does not have a parameter or a buffer named {tensor_name}.") if tensor_name in module._parameters: module._parameters[tensor_name] = param_value.to(target_device) if tensor_name in module._buffers: module._buffers[tensor_name] = param_value.to(target_device) def _process_model_before_weight_loading( self, model: "ModelMixin", device_map, keep_in_fp32_modules: List[str] = [], **kwargs, ): state_dict = kwargs.get("state_dict", None) self.modules_to_not_convert.extend(keep_in_fp32_modules) self.modules_to_not_convert = [module for module in self.modules_to_not_convert if module is not None] _replace_with_gguf_linear( model, self.compute_dtype, state_dict, modules_to_not_convert=self.modules_to_not_convert ) def _process_model_after_weight_loading(self, model: "ModelMixin", **kwargs): return model @property def is_serializable(self): return False @property def is_trainable(self) -> bool: return False def _dequantize(self, model): is_model_on_cpu = model.device.type == "cpu" if is_model_on_cpu: logger.info( "Model was found to be on CPU (could happen as a result of `enable_model_cpu_offload()`). So, moving it to GPU. After dequantization, will move the model back to CPU again to preserve the previous device." ) model.to(torch.cuda.current_device()) model = _dequantize_gguf_and_restore_linear(model, self.modules_to_not_convert) if is_model_on_cpu: model.to("cpu") return model
class_definition
677
5,753
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/quantizers/gguf/gguf_quantizer.py
null
24
class GGUFParameter(torch.nn.Parameter): def __new__(cls, data, requires_grad=False, quant_type=None): data = data if data is not None else torch.empty(0) self = torch.Tensor._make_subclass(cls, data, requires_grad) self.quant_type = quant_type return self def as_tensor(self): return torch.Tensor._make_subclass(torch.Tensor, self, self.requires_grad) @classmethod def __torch_function__(cls, func, types, args=(), kwargs=None): if kwargs is None: kwargs = {} result = super().__torch_function__(func, types, args, kwargs) # When converting from original format checkpoints we often use splits, cats etc on tensors # this method ensures that the returned tensor type from those operations remains GGUFParameter # so that we preserve quant_type information quant_type = None for arg in args: if isinstance(arg, list) and (arg[0], GGUFParameter): quant_type = arg[0].quant_type break if isinstance(arg, GGUFParameter): quant_type = arg.quant_type break if isinstance(result, torch.Tensor): return cls(result, quant_type=quant_type) # Handle tuples and lists elif isinstance(result, (tuple, list)): # Preserve the original type (tuple or list) wrapped = [cls(x, quant_type=quant_type) if isinstance(x, torch.Tensor) else x for x in result] return type(result)(wrapped) else: return result
class_definition
13,739
15,334
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/quantizers/gguf/utils.py
null
25
class GGUFLinear(nn.Linear): def __init__( self, in_features, out_features, bias=False, compute_dtype=None, device=None, ) -> None: super().__init__(in_features, out_features, bias, device) self.compute_dtype = compute_dtype def forward(self, inputs): weight = dequantize_gguf_tensor(self.weight) weight = weight.to(self.compute_dtype) bias = self.bias.to(self.compute_dtype) if self.bias is not None else None output = torch.nn.functional.linear(inputs, weight, bias) return output
class_definition
15,337
15,937
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/quantizers/gguf/utils.py
null
26
class TorchAoHfQuantizer(DiffusersQuantizer): r""" Diffusers Quantizer for TorchAO: https://github.com/pytorch/ao/. """ requires_calibration = False required_packages = ["torchao"] def __init__(self, quantization_config, **kwargs): super().__init__(quantization_config, **kwargs) def validate_environment(self, *args, **kwargs): if not is_torchao_available(): raise ImportError( "Loading a TorchAO quantized model requires the torchao library. Please install with `pip install torchao`" ) torchao_version = version.parse(importlib.metadata.version("torch")) if torchao_version < version.parse("0.7.0"): raise RuntimeError( f"The minimum required version of `torchao` is 0.7.0, but the current version is {torchao_version}. Please upgrade with `pip install -U torchao`." ) self.offload = False device_map = kwargs.get("device_map", None) if isinstance(device_map, dict): if "cpu" in device_map.values() or "disk" in device_map.values(): if self.pre_quantized: raise ValueError( "You are attempting to perform cpu/disk offload with a pre-quantized torchao model " "This is not supported yet. Please remove the CPU or disk device from the `device_map` argument." ) else: self.offload = True if self.pre_quantized: weights_only = kwargs.get("weights_only", None) if weights_only: torch_version = version.parse(importlib.metadata.version("torch")) if torch_version < version.parse("2.5.0"): # TODO(aryan): TorchAO is compatible with Pytorch >= 2.2 for certain quantization types. Try to see if we can support it in future raise RuntimeError( f"In order to use TorchAO pre-quantized model, you need to have torch>=2.5.0. However, the current version is {torch_version}." ) def update_torch_dtype(self, torch_dtype): quant_type = self.quantization_config.quant_type if quant_type.startswith("int") or quant_type.startswith("uint"): if torch_dtype is not None and torch_dtype != torch.bfloat16: logger.warning( f"You are trying to set torch_dtype to {torch_dtype} for int4/int8/uintx quantization, but " f"only bfloat16 is supported right now. Please set `torch_dtype=torch.bfloat16`." ) if torch_dtype is None: # We need to set the torch_dtype, otherwise we have dtype mismatch when performing the quantized linear op logger.warning( "Overriding `torch_dtype` with `torch_dtype=torch.bfloat16` due to requirements of `torchao` " "to enable model loading in different precisions. Pass your own `torch_dtype` to specify the " "dtype of the remaining non-linear layers, or pass torch_dtype=torch.bfloat16, to remove this warning." ) torch_dtype = torch.bfloat16 return torch_dtype def adjust_target_dtype(self, target_dtype: "torch.dtype") -> "torch.dtype": quant_type = self.quantization_config.quant_type if quant_type.startswith("int8") or quant_type.startswith("int4"): # Note that int4 weights are created by packing into torch.int8, but since there is no torch.int4, we use torch.int8 return torch.int8 elif quant_type == "uintx_weight_only": return self.quantization_config.quant_type_kwargs.get("dtype", torch.uint8) elif quant_type.startswith("uint"): return { 1: torch.uint1, 2: torch.uint2, 3: torch.uint3, 4: torch.uint4, 5: torch.uint5, 6: torch.uint6, 7: torch.uint7, }[int(quant_type[4])] elif quant_type.startswith("float") or quant_type.startswith("fp"): return torch.bfloat16 if isinstance(target_dtype, SUPPORTED_TORCH_DTYPES_FOR_QUANTIZATION): return target_dtype # We need one of the supported dtypes to be selected in order for accelerate to determine # the total size of modules/parameters for auto device placement. possible_device_maps = ["auto", "balanced", "balanced_low_0", "sequential"] raise ValueError( f"You have set `device_map` as one of {possible_device_maps} on a TorchAO quantized model but a suitable target dtype " f"could not be inferred. The supported target_dtypes are: {SUPPORTED_TORCH_DTYPES_FOR_QUANTIZATION}. If you think the " f"dtype you are using should be supported, please open an issue at https://github.com/huggingface/diffusers/issues." ) def adjust_max_memory(self, max_memory: Dict[str, Union[int, str]]) -> Dict[str, Union[int, str]]: max_memory = {key: val * 0.9 for key, val in max_memory.items()} return max_memory def check_if_quantized_param( self, model: "ModelMixin", param_value: "torch.Tensor", param_name: str, state_dict: Dict[str, Any], **kwargs, ) -> bool: param_device = kwargs.pop("param_device", None) # Check if the param_name is not in self.modules_to_not_convert if any((key + "." in param_name) or (key == param_name) for key in self.modules_to_not_convert): return False elif param_device == "cpu" and self.offload: # We don't quantize weights that we offload return False else: # We only quantize the weight of nn.Linear module, tensor_name = get_module_from_name(model, param_name) return isinstance(module, torch.nn.Linear) and (tensor_name == "weight") def create_quantized_param( self, model: "ModelMixin", param_value: "torch.Tensor", param_name: str, target_device: "torch.device", state_dict: Dict[str, Any], unexpected_keys: List[str], ): r""" Each nn.Linear layer that needs to be quantized is processsed here. First, we set the value the weight tensor, then we move it to the target device. Finally, we quantize the module. """ module, tensor_name = get_module_from_name(model, param_name) if self.pre_quantized: # If we're loading pre-quantized weights, replace the repr of linear layers for pretty printing info # about AffineQuantizedTensor module._parameters[tensor_name] = torch.nn.Parameter(param_value.to(device=target_device)) if isinstance(module, nn.Linear): module.extra_repr = types.MethodType(_linear_extra_repr, module) else: # As we perform quantization here, the repr of linear layers is that of AQT, so we don't have to do it ourselves module._parameters[tensor_name] = torch.nn.Parameter(param_value).to(device=target_device) quantize_(module, self.quantization_config.get_apply_tensor_subclass()) def _process_model_before_weight_loading( self, model: "ModelMixin", device_map, keep_in_fp32_modules: List[str] = [], **kwargs, ): self.modules_to_not_convert = self.quantization_config.modules_to_not_convert if not isinstance(self.modules_to_not_convert, list): self.modules_to_not_convert = [self.modules_to_not_convert] self.modules_to_not_convert.extend(keep_in_fp32_modules) # Extend `self.modules_to_not_convert` to keys that are supposed to be offloaded to `cpu` or `disk` if isinstance(device_map, dict) and len(device_map.keys()) > 1: keys_on_cpu = [key for key, value in device_map.items() if value in ["disk", "cpu"]] self.modules_to_not_convert.extend(keys_on_cpu) # Purge `None`. # Unlike `transformers`, we don't know if we should always keep certain modules in FP32 # in case of diffusion transformer models. For language models and others alike, `lm_head` # and tied modules are usually kept in FP32. self.modules_to_not_convert = [module for module in self.modules_to_not_convert if module is not None] model.config.quantization_config = self.quantization_config def _process_model_after_weight_loading(self, model: "ModelMixin"): return model def is_serializable(self, safe_serialization=None): # TODO(aryan): needs to be tested if safe_serialization: logger.warning( "torchao quantized model does not support safe serialization, please set `safe_serialization` to False." ) return False _is_torchao_serializable = version.parse(importlib.metadata.version("huggingface_hub")) >= version.parse( "0.25.0" ) if not _is_torchao_serializable: logger.warning("torchao quantized model is only serializable after huggingface_hub >= 0.25.0 ") if self.offload and self.quantization_config.modules_to_not_convert is None: logger.warning( "The model contains offloaded modules and these modules are not quantized. We don't recommend saving the model as we won't be able to reload them." "If you want to specify modules to not quantize, please specify modules_to_not_convert in the quantization_config." ) return False return _is_torchao_serializable @property def is_trainable(self): return self.quantization_config.quant_type.startswith("int8")
class_definition
2,926
12,820
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/quantizers/torchao/torchao_quantizer.py
null
27
class BnB4BitDiffusersQuantizer(DiffusersQuantizer): """ 4-bit quantization from bitsandbytes.py quantization method: before loading: converts transformer layers into Linear4bit during loading: load 16bit weight and pass to the layer object after: quantizes individual weights in Linear4bit into 4bit at the first .cuda() call saving: from state dict, as usual; saves weights and `quant_state` components loading: need to locate `quant_state` components and pass to Param4bit constructor """ use_keep_in_fp32_modules = True requires_calibration = False def __init__(self, quantization_config, **kwargs): super().__init__(quantization_config, **kwargs) if self.quantization_config.llm_int8_skip_modules is not None: self.modules_to_not_convert = self.quantization_config.llm_int8_skip_modules def validate_environment(self, *args, **kwargs): if not torch.cuda.is_available(): raise RuntimeError("No GPU found. A GPU is needed for quantization.") if not is_accelerate_available() or is_accelerate_version("<", "0.26.0"): raise ImportError( "Using `bitsandbytes` 4-bit quantization requires Accelerate: `pip install 'accelerate>=0.26.0'`" ) if not is_bitsandbytes_available() or is_bitsandbytes_version("<", "0.43.3"): raise ImportError( "Using `bitsandbytes` 4-bit quantization requires the latest version of bitsandbytes: `pip install -U bitsandbytes`" ) if kwargs.get("from_flax", False): raise ValueError( "Converting into 4-bit weights from flax weights is currently not supported, please make" " sure the weights are in PyTorch format." ) device_map = kwargs.get("device_map", None) if ( device_map is not None and isinstance(device_map, dict) and not self.quantization_config.llm_int8_enable_fp32_cpu_offload ): device_map_without_no_convert = { key: device_map[key] for key in device_map.keys() if key not in self.modules_to_not_convert } if "cpu" in device_map_without_no_convert.values() or "disk" in device_map_without_no_convert.values(): raise ValueError( "Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit the " "quantized model. If you want to dispatch the model on the CPU or the disk while keeping these modules " "in 32-bit, you need to set `load_in_8bit_fp32_cpu_offload=True` and pass a custom `device_map` to " "`from_pretrained`. Check " "https://huggingface.co/docs/transformers/main/en/main_classes/quantization#offload-between-cpu-and-gpu " "for more details. " ) def adjust_target_dtype(self, target_dtype: "torch.dtype") -> "torch.dtype": if target_dtype != torch.int8: from accelerate.utils import CustomDtype logger.info("target_dtype {target_dtype} is replaced by `CustomDtype.INT4` for 4-bit BnB quantization") return CustomDtype.INT4 else: raise ValueError(f"Wrong `target_dtype` ({target_dtype}) provided.") def check_if_quantized_param( self, model: "ModelMixin", param_value: "torch.Tensor", param_name: str, state_dict: Dict[str, Any], **kwargs, ) -> bool: import bitsandbytes as bnb module, tensor_name = get_module_from_name(model, param_name) if isinstance(module._parameters.get(tensor_name, None), bnb.nn.Params4bit): # Add here check for loaded components' dtypes once serialization is implemented return True elif isinstance(module, bnb.nn.Linear4bit) and tensor_name == "bias": # bias could be loaded by regular set_module_tensor_to_device() from accelerate, # but it would wrongly use uninitialized weight there. return True else: return False def create_quantized_param( self, model: "ModelMixin", param_value: "torch.Tensor", param_name: str, target_device: "torch.device", state_dict: Dict[str, Any], unexpected_keys: Optional[List[str]] = None, ): import bitsandbytes as bnb module, tensor_name = get_module_from_name(model, param_name) if tensor_name not in module._parameters: raise ValueError(f"{module} does not have a parameter or a buffer named {tensor_name}.") old_value = getattr(module, tensor_name) if tensor_name == "bias": if param_value is None: new_value = old_value.to(target_device) else: new_value = param_value.to(target_device) new_value = torch.nn.Parameter(new_value, requires_grad=old_value.requires_grad) module._parameters[tensor_name] = new_value return if not isinstance(module._parameters[tensor_name], bnb.nn.Params4bit): raise ValueError("this function only loads `Linear4bit components`") if ( old_value.device == torch.device("meta") and target_device not in ["meta", torch.device("meta")] and param_value is None ): raise ValueError(f"{tensor_name} is on the meta device, we need a `value` to put in on {target_device}.") # construct `new_value` for the module._parameters[tensor_name]: if self.pre_quantized: # 4bit loading. Collecting components for restoring quantized weight # This can be expanded to make a universal call for any quantized weight loading if not self.is_serializable: raise ValueError( "Detected int4 weights but the version of bitsandbytes is not compatible with int4 serialization. " "Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`." ) if (param_name + ".quant_state.bitsandbytes__fp4" not in state_dict) and ( param_name + ".quant_state.bitsandbytes__nf4" not in state_dict ): raise ValueError( f"Supplied state dict for {param_name} does not contain `bitsandbytes__*` and possibly other `quantized_stats` components." ) quantized_stats = {} for k, v in state_dict.items(): # `startswith` to counter for edge cases where `param_name` # substring can be present in multiple places in the `state_dict` if param_name + "." in k and k.startswith(param_name): quantized_stats[k] = v if unexpected_keys is not None and k in unexpected_keys: unexpected_keys.remove(k) new_value = bnb.nn.Params4bit.from_prequantized( data=param_value, quantized_stats=quantized_stats, requires_grad=False, device=target_device, ) else: new_value = param_value.to("cpu") kwargs = old_value.__dict__ new_value = bnb.nn.Params4bit(new_value, requires_grad=False, **kwargs).to(target_device) module._parameters[tensor_name] = new_value def check_quantized_param_shape(self, param_name, current_param, loaded_param): current_param_shape = current_param.shape loaded_param_shape = loaded_param.shape n = current_param_shape.numel() inferred_shape = (n,) if "bias" in param_name else ((n + 1) // 2, 1) if loaded_param_shape != inferred_shape: raise ValueError( f"Expected the flattened shape of the current param ({param_name}) to be {loaded_param_shape} but is {inferred_shape}." ) else: return True def adjust_max_memory(self, max_memory: Dict[str, Union[int, str]]) -> Dict[str, Union[int, str]]: # need more space for buffers that are created during quantization max_memory = {key: val * 0.90 for key, val in max_memory.items()} return max_memory def update_torch_dtype(self, torch_dtype: "torch.dtype") -> "torch.dtype": if torch_dtype is None: # We force the `dtype` to be float16, this is a requirement from `bitsandbytes` logger.info( "Overriding torch_dtype=%s with `torch_dtype=torch.float16` due to " "requirements of `bitsandbytes` to enable model loading in 8-bit or 4-bit. " "Pass your own torch_dtype to specify the dtype of the remaining non-linear layers or pass" " torch_dtype=torch.float16 to remove this warning.", torch_dtype, ) torch_dtype = torch.float16 return torch_dtype # (sayakpaul): I think it could be better to disable custom `device_map`s # for the first phase of the integration in the interest of simplicity. # Commenting this for discussions on the PR. # def update_device_map(self, device_map): # if device_map is None: # device_map = {"": torch.cuda.current_device()} # logger.info( # "The device_map was not initialized. " # "Setting device_map to {'':torch.cuda.current_device()}. " # "If you want to use the model for inference, please set device_map ='auto' " # ) # return device_map def _process_model_before_weight_loading( self, model: "ModelMixin", device_map, keep_in_fp32_modules: List[str] = [], **kwargs, ): from .utils import replace_with_bnb_linear load_in_8bit_fp32_cpu_offload = self.quantization_config.llm_int8_enable_fp32_cpu_offload # We may keep some modules such as the `proj_out` in their original dtype for numerical stability reasons self.modules_to_not_convert = self.quantization_config.llm_int8_skip_modules if not isinstance(self.modules_to_not_convert, list): self.modules_to_not_convert = [self.modules_to_not_convert] self.modules_to_not_convert.extend(keep_in_fp32_modules) # Extend `self.modules_to_not_convert` to keys that are supposed to be offloaded to `cpu` or `disk` if isinstance(device_map, dict) and len(device_map.keys()) > 1: keys_on_cpu = [key for key, value in device_map.items() if value in ["disk", "cpu"]] if len(keys_on_cpu) > 0 and not load_in_8bit_fp32_cpu_offload: raise ValueError( "If you want to offload some keys to `cpu` or `disk`, you need to set " "`llm_int8_enable_fp32_cpu_offload=True`. Note that these modules will not be " " converted to 8-bit but kept in 32-bit." ) self.modules_to_not_convert.extend(keys_on_cpu) # Purge `None`. # Unlike `transformers`, we don't know if we should always keep certain modules in FP32 # in case of diffusion transformer models. For language models and others alike, `lm_head` # and tied modules are usually kept in FP32. self.modules_to_not_convert = [module for module in self.modules_to_not_convert if module is not None] model = replace_with_bnb_linear( model, modules_to_not_convert=self.modules_to_not_convert, quantization_config=self.quantization_config ) model.config.quantization_config = self.quantization_config def _process_model_after_weight_loading(self, model: "ModelMixin", **kwargs): model.is_loaded_in_4bit = True model.is_4bit_serializable = self.is_serializable return model @property def is_serializable(self): # Because we're mandating `bitsandbytes` 0.43.3. return True @property def is_trainable(self) -> bool: # Because we're mandating `bitsandbytes` 0.43.3. return True def _dequantize(self, model): from .utils import dequantize_and_replace is_model_on_cpu = model.device.type == "cpu" if is_model_on_cpu: logger.info( "Model was found to be on CPU (could happen as a result of `enable_model_cpu_offload()`). So, moving it to GPU. After dequantization, will move the model back to CPU again to preserve the previous device." ) model.to(torch.cuda.current_device()) model = dequantize_and_replace( model, self.modules_to_not_convert, quantization_config=self.quantization_config ) if is_model_on_cpu: model.to("cpu") return model
class_definition
1,257
14,257
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/quantizers/bitsandbytes/bnb_quantizer.py
null
28
End of preview. Expand in Data Studio
README.md exists but content is empty.
Downloads last month
28