Dataset Viewer
Auto-converted to Parquet
text
stringlengths
38
361k
type
stringclasses
1 value
start
int64
156
155k
end
int64
451
418k
depth
int64
0
0
filepath
stringlengths
87
141
parent_class
null
class_index
int64
0
305
class EvalResult: """ Flattened representation of individual evaluation results found in model-index of Model Cards. For more information on the model-index spec, see https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1. Args: task_type (`str`): The task identifier. Example: "image-classification". dataset_type (`str`): The dataset identifier. Example: "common_voice". Use dataset id from https://hf.co/datasets. dataset_name (`str`): A pretty name for the dataset. Example: "Common Voice (French)". metric_type (`str`): The metric identifier. Example: "wer". Use metric id from https://hf.co/metrics. metric_value (`Any`): The metric value. Example: 0.9 or "20.0 ± 1.2". task_name (`str`, *optional*): A pretty name for the task. Example: "Speech Recognition". dataset_config (`str`, *optional*): The name of the dataset configuration used in `load_dataset()`. Example: fr in `load_dataset("common_voice", "fr")`. See the `datasets` docs for more info: https://hf.co/docs/datasets/package_reference/loading_methods#datasets.load_dataset.name dataset_split (`str`, *optional*): The split used in `load_dataset()`. Example: "test". dataset_revision (`str`, *optional*): The revision (AKA Git Sha) of the dataset used in `load_dataset()`. Example: 5503434ddd753f426f4b38109466949a1217c2bb dataset_args (`Dict[str, Any]`, *optional*): The arguments passed during `Metric.compute()`. Example for `bleu`: `{"max_order": 4}` metric_name (`str`, *optional*): A pretty name for the metric. Example: "Test WER". metric_config (`str`, *optional*): The name of the metric configuration used in `load_metric()`. Example: bleurt-large-512 in `load_metric("bleurt", "bleurt-large-512")`. See the `datasets` docs for more info: https://huggingface.co/docs/datasets/v2.1.0/en/loading#load-configurations metric_args (`Dict[str, Any]`, *optional*): The arguments passed during `Metric.compute()`. Example for `bleu`: max_order: 4 verified (`bool`, *optional*): Indicates whether the metrics originate from Hugging Face's [evaluation service](https://huggingface.co/spaces/autoevaluate/model-evaluator) or not. Automatically computed by Hugging Face, do not set. verify_token (`str`, *optional*): A JSON Web Token that is used to verify whether the metrics originate from Hugging Face's [evaluation service](https://huggingface.co/spaces/autoevaluate/model-evaluator) or not. source_name (`str`, *optional*): The name of the source of the evaluation result. Example: "Open LLM Leaderboard". source_url (`str`, *optional*): The URL of the source of the evaluation result. Example: "https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard". """ # Required # The task identifier # Example: automatic-speech-recognition task_type: str # The dataset identifier # Example: common_voice. Use dataset id from https://hf.co/datasets dataset_type: str # A pretty name for the dataset. # Example: Common Voice (French) dataset_name: str # The metric identifier # Example: wer. Use metric id from https://hf.co/metrics metric_type: str # Value of the metric. # Example: 20.0 or "20.0 ± 1.2" metric_value: Any # Optional # A pretty name for the task. # Example: Speech Recognition task_name: Optional[str] = None # The name of the dataset configuration used in `load_dataset()`. # Example: fr in `load_dataset("common_voice", "fr")`. # See the `datasets` docs for more info: # https://huggingface.co/docs/datasets/package_reference/loading_methods#datasets.load_dataset.name dataset_config: Optional[str] = None # The split used in `load_dataset()`. # Example: test dataset_split: Optional[str] = None # The revision (AKA Git Sha) of the dataset used in `load_dataset()`. # Example: 5503434ddd753f426f4b38109466949a1217c2bb dataset_revision: Optional[str] = None # The arguments passed during `Metric.compute()`. # Example for `bleu`: max_order: 4 dataset_args: Optional[Dict[str, Any]] = None # A pretty name for the metric. # Example: Test WER metric_name: Optional[str] = None # The name of the metric configuration used in `load_metric()`. # Example: bleurt-large-512 in `load_metric("bleurt", "bleurt-large-512")`. # See the `datasets` docs for more info: https://huggingface.co/docs/datasets/v2.1.0/en/loading#load-configurations metric_config: Optional[str] = None # The arguments passed during `Metric.compute()`. # Example for `bleu`: max_order: 4 metric_args: Optional[Dict[str, Any]] = None # Indicates whether the metrics originate from Hugging Face's [evaluation service](https://huggingface.co/spaces/autoevaluate/model-evaluator) or not. Automatically computed by Hugging Face, do not set. verified: Optional[bool] = None # A JSON Web Token that is used to verify whether the metrics originate from Hugging Face's [evaluation service](https://huggingface.co/spaces/autoevaluate/model-evaluator) or not. verify_token: Optional[str] = None # The name of the source of the evaluation result. # Example: Open LLM Leaderboard source_name: Optional[str] = None # The URL of the source of the evaluation result. # Example: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard source_url: Optional[str] = None @property def unique_identifier(self) -> tuple: """Returns a tuple that uniquely identifies this evaluation.""" return ( self.task_type, self.dataset_type, self.dataset_config, self.dataset_split, self.dataset_revision, ) def is_equal_except_value(self, other: "EvalResult") -> bool: """ Return True if `self` and `other` describe exactly the same metric but with a different value. """ for key, _ in self.__dict__.items(): if key == "metric_value": continue # For metrics computed by Hugging Face's evaluation service, `verify_token` is derived from `metric_value`, # so we exclude it here in the comparison. if key != "verify_token" and getattr(self, key) != getattr(other, key): return False return True def __post_init__(self) -> None: if self.source_name is not None and self.source_url is None: raise ValueError("If `source_name` is provided, `source_url` must also be provided.")
class_definition
248
7,185
0
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/repocard_data.py
null
0
class CardData: """Structure containing metadata from a RepoCard. [`CardData`] is the parent class of [`ModelCardData`] and [`DatasetCardData`]. Metadata can be exported as a dictionary or YAML. Export can be customized to alter the representation of the data (example: flatten evaluation results). `CardData` behaves as a dictionary (can get, pop, set values) but do not inherit from `dict` to allow this export step. """ def __init__(self, ignore_metadata_errors: bool = False, **kwargs): self.__dict__.update(kwargs) def to_dict(self): """Converts CardData to a dict. Returns: `dict`: CardData represented as a dictionary ready to be dumped to a YAML block for inclusion in a README.md file. """ data_dict = copy.deepcopy(self.__dict__) self._to_dict(data_dict) return {key: value for key, value in data_dict.items() if value is not None} def _to_dict(self, data_dict): """Use this method in child classes to alter the dict representation of the data. Alter the dict in-place. Args: data_dict (`dict`): The raw dict representation of the card data. """ pass def to_yaml(self, line_break=None, original_order: Optional[List[str]] = None) -> str: """Dumps CardData to a YAML block for inclusion in a README.md file. Args: line_break (str, *optional*): The line break to use when dumping to yaml. Returns: `str`: CardData represented as a YAML block. """ if original_order: self.__dict__ = { k: self.__dict__[k] for k in original_order + list(set(self.__dict__.keys()) - set(original_order)) if k in self.__dict__ } return yaml_dump(self.to_dict(), sort_keys=False, line_break=line_break).strip() def __repr__(self): return repr(self.__dict__) def __str__(self): return self.to_yaml() def get(self, key: str, default: Any = None) -> Any: """Get value for a given metadata key.""" return self.__dict__.get(key, default) def pop(self, key: str, default: Any = None) -> Any: """Pop value for a given metadata key.""" return self.__dict__.pop(key, default) def __getitem__(self, key: str) -> Any: """Get value for a given metadata key.""" return self.__dict__[key] def __setitem__(self, key: str, value: Any) -> None: """Set value for a given metadata key.""" self.__dict__[key] = value def __contains__(self, key: str) -> bool: """Check if a given metadata key is set.""" return key in self.__dict__ def __len__(self) -> int: """Return the number of metadata keys set.""" return len(self.__dict__)
class_definition
7,199
10,080
0
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/repocard_data.py
null
1
class ModelCardData(CardData): """Model Card Metadata that is used by Hugging Face Hub when included at the top of your README.md Args: base_model (`str` or `List[str]`, *optional*): The identifier of the base model from which the model derives. This is applicable for example if your model is a fine-tune or adapter of an existing model. The value must be the ID of a model on the Hub (or a list of IDs if your model derives from multiple models). Defaults to None. datasets (`Union[str, List[str]]`, *optional*): Dataset or list of datasets that were used to train this model. Should be a dataset ID found on https://hf.co/datasets. Defaults to None. eval_results (`Union[List[EvalResult], EvalResult]`, *optional*): List of `huggingface_hub.EvalResult` that define evaluation results of the model. If provided, `model_name` is used to as a name on PapersWithCode's leaderboards. Defaults to `None`. language (`Union[str, List[str]]`, *optional*): Language of model's training data or metadata. It must be an ISO 639-1, 639-2 or 639-3 code (two/three letters), or a special value like "code", "multilingual". Defaults to `None`. library_name (`str`, *optional*): Name of library used by this model. Example: keras or any library from https://github.com/huggingface/huggingface.js/blob/main/packages/tasks/src/model-libraries.ts. Defaults to None. license (`str`, *optional*): License of this model. Example: apache-2.0 or any license from https://huggingface.co/docs/hub/repositories-licenses. Defaults to None. license_name (`str`, *optional*): Name of the license of this model. Defaults to None. To be used in conjunction with `license_link`. Common licenses (Apache-2.0, MIT, CC-BY-SA-4.0) do not need a name. In that case, use `license` instead. license_link (`str`, *optional*): Link to the license of this model. Defaults to None. To be used in conjunction with `license_name`. Common licenses (Apache-2.0, MIT, CC-BY-SA-4.0) do not need a link. In that case, use `license` instead. metrics (`List[str]`, *optional*): List of metrics used to evaluate this model. Should be a metric name that can be found at https://hf.co/metrics. Example: 'accuracy'. Defaults to None. model_name (`str`, *optional*): A name for this model. It is used along with `eval_results` to construct the `model-index` within the card's metadata. The name you supply here is what will be used on PapersWithCode's leaderboards. If None is provided then the repo name is used as a default. Defaults to None. pipeline_tag (`str`, *optional*): The pipeline tag associated with the model. Example: "text-classification". tags (`List[str]`, *optional*): List of tags to add to your model that can be used when filtering on the Hugging Face Hub. Defaults to None. ignore_metadata_errors (`str`): If True, errors while parsing the metadata section will be ignored. Some information might be lost during the process. Use it at your own risk. kwargs (`dict`, *optional*): Additional metadata that will be added to the model card. Defaults to None. Example: ```python >>> from huggingface_hub import ModelCardData >>> card_data = ModelCardData( ... language="en", ... license="mit", ... library_name="timm", ... tags=['image-classification', 'resnet'], ... ) >>> card_data.to_dict() {'language': 'en', 'license': 'mit', 'library_name': 'timm', 'tags': ['image-classification', 'resnet']} ``` """ def __init__( self, *, base_model: Optional[Union[str, List[str]]] = None, datasets: Optional[Union[str, List[str]]] = None, eval_results: Optional[List[EvalResult]] = None, language: Optional[Union[str, List[str]]] = None, library_name: Optional[str] = None, license: Optional[str] = None, license_name: Optional[str] = None, license_link: Optional[str] = None, metrics: Optional[List[str]] = None, model_name: Optional[str] = None, pipeline_tag: Optional[str] = None, tags: Optional[List[str]] = None, ignore_metadata_errors: bool = False, **kwargs, ): self.base_model = base_model self.datasets = datasets self.eval_results = eval_results self.language = language self.library_name = library_name self.license = license self.license_name = license_name self.license_link = license_link self.metrics = metrics self.model_name = model_name self.pipeline_tag = pipeline_tag self.tags = _to_unique_list(tags) model_index = kwargs.pop("model-index", None) if model_index: try: model_name, eval_results = model_index_to_eval_results(model_index) self.model_name = model_name self.eval_results = eval_results except (KeyError, TypeError) as error: if ignore_metadata_errors: logger.warning("Invalid model-index. Not loading eval results into CardData.") else: raise ValueError( f"Invalid `model_index` in metadata cannot be parsed: {error.__class__} {error}. Pass" " `ignore_metadata_errors=True` to ignore this error while loading a Model Card. Warning:" " some information will be lost. Use it at your own risk." ) super().__init__(**kwargs) if self.eval_results: if isinstance(self.eval_results, EvalResult): self.eval_results = [self.eval_results] if self.model_name is None: raise ValueError("Passing `eval_results` requires `model_name` to be set.") def _to_dict(self, data_dict): """Format the internal data dict. In this case, we convert eval results to a valid model index""" if self.eval_results is not None: data_dict["model-index"] = eval_results_to_model_index(self.model_name, self.eval_results) del data_dict["eval_results"], data_dict["model_name"]
class_definition
10,083
16,711
0
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/repocard_data.py
null
2
class DatasetCardData(CardData): """Dataset Card Metadata that is used by Hugging Face Hub when included at the top of your README.md Args: language (`List[str]`, *optional*): Language of dataset's data or metadata. It must be an ISO 639-1, 639-2 or 639-3 code (two/three letters), or a special value like "code", "multilingual". license (`Union[str, List[str]]`, *optional*): License(s) of this dataset. Example: apache-2.0 or any license from https://huggingface.co/docs/hub/repositories-licenses. annotations_creators (`Union[str, List[str]]`, *optional*): How the annotations for the dataset were created. Options are: 'found', 'crowdsourced', 'expert-generated', 'machine-generated', 'no-annotation', 'other'. language_creators (`Union[str, List[str]]`, *optional*): How the text-based data in the dataset was created. Options are: 'found', 'crowdsourced', 'expert-generated', 'machine-generated', 'other' multilinguality (`Union[str, List[str]]`, *optional*): Whether the dataset is multilingual. Options are: 'monolingual', 'multilingual', 'translation', 'other'. size_categories (`Union[str, List[str]]`, *optional*): The number of examples in the dataset. Options are: 'n<1K', '1K<n<10K', '10K<n<100K', '100K<n<1M', '1M<n<10M', '10M<n<100M', '100M<n<1B', '1B<n<10B', '10B<n<100B', '100B<n<1T', 'n>1T', and 'other'. source_datasets (`List[str]]`, *optional*): Indicates whether the dataset is an original dataset or extended from another existing dataset. Options are: 'original' and 'extended'. task_categories (`Union[str, List[str]]`, *optional*): What categories of task does the dataset support? task_ids (`Union[str, List[str]]`, *optional*): What specific tasks does the dataset support? paperswithcode_id (`str`, *optional*): ID of the dataset on PapersWithCode. pretty_name (`str`, *optional*): A more human-readable name for the dataset. (ex. "Cats vs. Dogs") train_eval_index (`Dict`, *optional*): A dictionary that describes the necessary spec for doing evaluation on the Hub. If not provided, it will be gathered from the 'train-eval-index' key of the kwargs. config_names (`Union[str, List[str]]`, *optional*): A list of the available dataset configs for the dataset. """ def __init__( self, *, language: Optional[Union[str, List[str]]] = None, license: Optional[Union[str, List[str]]] = None, annotations_creators: Optional[Union[str, List[str]]] = None, language_creators: Optional[Union[str, List[str]]] = None, multilinguality: Optional[Union[str, List[str]]] = None, size_categories: Optional[Union[str, List[str]]] = None, source_datasets: Optional[List[str]] = None, task_categories: Optional[Union[str, List[str]]] = None, task_ids: Optional[Union[str, List[str]]] = None, paperswithcode_id: Optional[str] = None, pretty_name: Optional[str] = None, train_eval_index: Optional[Dict] = None, config_names: Optional[Union[str, List[str]]] = None, ignore_metadata_errors: bool = False, **kwargs, ): self.annotations_creators = annotations_creators self.language_creators = language_creators self.language = language self.license = license self.multilinguality = multilinguality self.size_categories = size_categories self.source_datasets = source_datasets self.task_categories = task_categories self.task_ids = task_ids self.paperswithcode_id = paperswithcode_id self.pretty_name = pretty_name self.config_names = config_names # TODO - maybe handle this similarly to EvalResult? self.train_eval_index = train_eval_index or kwargs.pop("train-eval-index", None) super().__init__(**kwargs) def _to_dict(self, data_dict): data_dict["train-eval-index"] = data_dict.pop("train_eval_index")
class_definition
16,714
20,971
0
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/repocard_data.py
null
3
class SpaceCardData(CardData): """Space Card Metadata that is used by Hugging Face Hub when included at the top of your README.md To get an exhaustive reference of Spaces configuration, please visit https://huggingface.co/docs/hub/spaces-config-reference#spaces-configuration-reference. Args: title (`str`, *optional*) Title of the Space. sdk (`str`, *optional*) SDK of the Space (one of `gradio`, `streamlit`, `docker`, or `static`). sdk_version (`str`, *optional*) Version of the used SDK (if Gradio/Streamlit sdk). python_version (`str`, *optional*) Python version used in the Space (if Gradio/Streamlit sdk). app_file (`str`, *optional*) Path to your main application file (which contains either gradio or streamlit Python code, or static html code). Path is relative to the root of the repository. app_port (`str`, *optional*) Port on which your application is running. Used only if sdk is `docker`. license (`str`, *optional*) License of this model. Example: apache-2.0 or any license from https://huggingface.co/docs/hub/repositories-licenses. duplicated_from (`str`, *optional*) ID of the original Space if this is a duplicated Space. models (List[`str`], *optional*) List of models related to this Space. Should be a dataset ID found on https://hf.co/models. datasets (`List[str]`, *optional*) List of datasets related to this Space. Should be a dataset ID found on https://hf.co/datasets. tags (`List[str]`, *optional*) List of tags to add to your Space that can be used when filtering on the Hub. ignore_metadata_errors (`str`): If True, errors while parsing the metadata section will be ignored. Some information might be lost during the process. Use it at your own risk. kwargs (`dict`, *optional*): Additional metadata that will be added to the space card. Example: ```python >>> from huggingface_hub import SpaceCardData >>> card_data = SpaceCardData( ... title="Dreambooth Training", ... license="mit", ... sdk="gradio", ... duplicated_from="multimodalart/dreambooth-training" ... ) >>> card_data.to_dict() {'title': 'Dreambooth Training', 'sdk': 'gradio', 'license': 'mit', 'duplicated_from': 'multimodalart/dreambooth-training'} ``` """ def __init__( self, *, title: Optional[str] = None, sdk: Optional[str] = None, sdk_version: Optional[str] = None, python_version: Optional[str] = None, app_file: Optional[str] = None, app_port: Optional[int] = None, license: Optional[str] = None, duplicated_from: Optional[str] = None, models: Optional[List[str]] = None, datasets: Optional[List[str]] = None, tags: Optional[List[str]] = None, ignore_metadata_errors: bool = False, **kwargs, ): self.title = title self.sdk = sdk self.sdk_version = sdk_version self.python_version = python_version self.app_file = app_file self.app_port = app_port self.license = license self.duplicated_from = duplicated_from self.models = models self.datasets = datasets self.tags = _to_unique_list(tags) super().__init__(**kwargs)
class_definition
20,974
24,542
0
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/repocard_data.py
null
4
class BaseModel: # type: ignore [no-redef] def __init__(self, *args, **kwargs) -> None: raise ImportError( "You must have `pydantic` installed to use `WebhookPayload`. This is an optional dependency that" " should be installed separately. Please run `pip install --upgrade pydantic` and retry." )
class_definition
986
1,347
0
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/_webhooks_payload.py
null
5
class ObjectId(BaseModel): id: str
class_definition
1,991
2,029
0
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/_webhooks_payload.py
null
6
class WebhookPayloadUrl(BaseModel): web: str api: Optional[str] = None
class_definition
2,032
2,110
0
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/_webhooks_payload.py
null
7
class WebhookPayloadMovedTo(BaseModel): name: str owner: ObjectId
class_definition
2,113
2,186
0
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/_webhooks_payload.py
null
8
class WebhookPayloadWebhook(ObjectId): version: SupportedWebhookVersion
class_definition
2,189
2,264
0
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/_webhooks_payload.py
null
9
class WebhookPayloadEvent(BaseModel): action: WebhookEvent_T scope: str
class_definition
2,267
2,346
0
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/_webhooks_payload.py
null
10
class WebhookPayloadDiscussionChanges(BaseModel): base: str mergeCommitId: Optional[str] = None
class_definition
2,349
2,452
0
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/_webhooks_payload.py
null
11
class WebhookPayloadComment(ObjectId): author: ObjectId hidden: bool content: Optional[str] = None url: WebhookPayloadUrl
class_definition
2,455
2,592
0
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/_webhooks_payload.py
null
12
class WebhookPayloadDiscussion(ObjectId): num: int author: ObjectId url: WebhookPayloadUrl title: str isPullRequest: bool status: DiscussionStatus_T changes: Optional[WebhookPayloadDiscussionChanges] = None pinned: Optional[bool] = None
class_definition
2,595
2,863
0
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/_webhooks_payload.py
null
13
class WebhookPayloadRepo(ObjectId): owner: ObjectId head_sha: Optional[str] = None name: str private: bool subdomain: Optional[str] = None tags: Optional[List[str]] = None type: Literal["dataset", "model", "space"] url: WebhookPayloadUrl
class_definition
2,866
3,135
0
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/_webhooks_payload.py
null
14
class WebhookPayloadUpdatedRef(BaseModel): ref: str oldSha: Optional[str] = None newSha: Optional[str] = None
class_definition
3,138
3,259
0
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/_webhooks_payload.py
null
15
class WebhookPayload(BaseModel): event: WebhookPayloadEvent repo: WebhookPayloadRepo discussion: Optional[WebhookPayloadDiscussion] = None comment: Optional[WebhookPayloadComment] = None webhook: WebhookPayloadWebhook movedTo: Optional[WebhookPayloadMovedTo] = None updatedRefs: Optional[List[WebhookPayloadUpdatedRef]] = None
class_definition
3,262
3,616
0
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/_webhooks_payload.py
null
16
class MixinInfo: model_card_template: str model_card_data: ModelCardData repo_url: Optional[str] = None docs_url: Optional[str] = None
class_definition
1,902
2,052
0
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/hub_mixin.py
null
17
class ModelHubMixin: """ A generic mixin to integrate ANY machine learning framework with the Hub. To integrate your framework, your model class must inherit from this class. Custom logic for saving/loading models have to be overwritten in [`_from_pretrained`] and [`_save_pretrained`]. [`PyTorchModelHubMixin`] is a good example of mixin integration with the Hub. Check out our [integration guide](../guides/integrations) for more instructions. When inheriting from [`ModelHubMixin`], you can define class-level attributes. These attributes are not passed to `__init__` but to the class definition itself. This is useful to define metadata about the library integrating [`ModelHubMixin`]. For more details on how to integrate the mixin with your library, checkout the [integration guide](../guides/integrations). Args: repo_url (`str`, *optional*): URL of the library repository. Used to generate model card. docs_url (`str`, *optional*): URL of the library documentation. Used to generate model card. model_card_template (`str`, *optional*): Template of the model card. Used to generate model card. Defaults to a generic template. language (`str` or `List[str]`, *optional*): Language supported by the library. Used to generate model card. library_name (`str`, *optional*): Name of the library integrating ModelHubMixin. Used to generate model card. license (`str`, *optional*): License of the library integrating ModelHubMixin. Used to generate model card. E.g: "apache-2.0" license_name (`str`, *optional*): Name of the library integrating ModelHubMixin. Used to generate model card. Only used if `license` is set to `other`. E.g: "coqui-public-model-license". license_link (`str`, *optional*): URL to the license of the library integrating ModelHubMixin. Used to generate model card. Only used if `license` is set to `other` and `license_name` is set. E.g: "https://coqui.ai/cpml". pipeline_tag (`str`, *optional*): Tag of the pipeline. Used to generate model card. E.g. "text-classification". tags (`List[str]`, *optional*): Tags to be added to the model card. Used to generate model card. E.g. ["x-custom-tag", "arxiv:2304.12244"] coders (`Dict[Type, Tuple[Callable, Callable]]`, *optional*): Dictionary of custom types and their encoders/decoders. Used to encode/decode arguments that are not jsonable by default. E.g dataclasses, argparse.Namespace, OmegaConf, etc. Example: ```python >>> from huggingface_hub import ModelHubMixin # Inherit from ModelHubMixin >>> class MyCustomModel( ... ModelHubMixin, ... library_name="my-library", ... tags=["x-custom-tag", "arxiv:2304.12244"], ... repo_url="https://github.com/huggingface/my-cool-library", ... docs_url="https://huggingface.co/docs/my-cool-library", ... # ^ optional metadata to generate model card ... ): ... def __init__(self, size: int = 512, device: str = "cpu"): ... # define how to initialize your model ... super().__init__() ... ... ... ... def _save_pretrained(self, save_directory: Path) -> None: ... # define how to serialize your model ... ... ... ... @classmethod ... def from_pretrained( ... cls: Type[T], ... pretrained_model_name_or_path: Union[str, Path], ... *, ... force_download: bool = False, ... resume_download: Optional[bool] = None, ... proxies: Optional[Dict] = None, ... token: Optional[Union[str, bool]] = None, ... cache_dir: Optional[Union[str, Path]] = None, ... local_files_only: bool = False, ... revision: Optional[str] = None, ... **model_kwargs, ... ) -> T: ... # define how to deserialize your model ... ... >>> model = MyCustomModel(size=256, device="gpu") # Save model weights to local directory >>> model.save_pretrained("my-awesome-model") # Push model weights to the Hub >>> model.push_to_hub("my-awesome-model") # Download and initialize weights from the Hub >>> reloaded_model = MyCustomModel.from_pretrained("username/my-awesome-model") >>> reloaded_model.size 256 # Model card has been correctly populated >>> from huggingface_hub import ModelCard >>> card = ModelCard.load("username/my-awesome-model") >>> card.data.tags ["x-custom-tag", "pytorch_model_hub_mixin", "model_hub_mixin"] >>> card.data.library_name "my-library" ``` """ _hub_mixin_config: Optional[Union[dict, "DataclassInstance"]] = None # ^ optional config attribute automatically set in `from_pretrained` _hub_mixin_info: MixinInfo # ^ information about the library integrating ModelHubMixin (used to generate model card) _hub_mixin_inject_config: bool # whether `_from_pretrained` expects `config` or not _hub_mixin_init_parameters: Dict[str, inspect.Parameter] # __init__ parameters _hub_mixin_jsonable_default_values: Dict[str, Any] # default values for __init__ parameters _hub_mixin_jsonable_custom_types: Tuple[Type, ...] # custom types that can be encoded/decoded _hub_mixin_coders: Dict[Type, CODER_T] # encoders/decoders for custom types # ^ internal values to handle config def __init_subclass__( cls, *, # Generic info for model card repo_url: Optional[str] = None, docs_url: Optional[str] = None, # Model card template model_card_template: str = DEFAULT_MODEL_CARD, # Model card metadata language: Optional[List[str]] = None, library_name: Optional[str] = None, license: Optional[str] = None, license_name: Optional[str] = None, license_link: Optional[str] = None, pipeline_tag: Optional[str] = None, tags: Optional[List[str]] = None, # How to encode/decode arguments with custom type into a JSON config? coders: Optional[ Dict[Type, CODER_T] # Key is a type. # Value is a tuple (encoder, decoder). # Example: {MyCustomType: (lambda x: x.value, lambda data: MyCustomType(data))} ] = None, ) -> None: """Inspect __init__ signature only once when subclassing + handle modelcard.""" super().__init_subclass__() # Will be reused when creating modelcard tags = tags or [] tags.append("model_hub_mixin") # Initialize MixinInfo if not existent info = MixinInfo(model_card_template=model_card_template, model_card_data=ModelCardData()) # If parent class has a MixinInfo, inherit from it as a copy if hasattr(cls, "_hub_mixin_info"): # Inherit model card template from parent class if not explicitly set if model_card_template == DEFAULT_MODEL_CARD: info.model_card_template = cls._hub_mixin_info.model_card_template # Inherit from parent model card data info.model_card_data = ModelCardData(**cls._hub_mixin_info.model_card_data.to_dict()) # Inherit other info info.docs_url = cls._hub_mixin_info.docs_url info.repo_url = cls._hub_mixin_info.repo_url cls._hub_mixin_info = info # Update MixinInfo with metadata if model_card_template is not None and model_card_template != DEFAULT_MODEL_CARD: info.model_card_template = model_card_template if repo_url is not None: info.repo_url = repo_url if docs_url is not None: info.docs_url = docs_url if language is not None: info.model_card_data.language = language if library_name is not None: info.model_card_data.library_name = library_name if license is not None: info.model_card_data.license = license if license_name is not None: info.model_card_data.license_name = license_name if license_link is not None: info.model_card_data.license_link = license_link if pipeline_tag is not None: info.model_card_data.pipeline_tag = pipeline_tag if tags is not None: if info.model_card_data.tags is not None: info.model_card_data.tags.extend(tags) else: info.model_card_data.tags = tags info.model_card_data.tags = sorted(set(info.model_card_data.tags)) # Handle encoders/decoders for args cls._hub_mixin_coders = coders or {} cls._hub_mixin_jsonable_custom_types = tuple(cls._hub_mixin_coders.keys()) # Inspect __init__ signature to handle config cls._hub_mixin_init_parameters = dict(inspect.signature(cls.__init__).parameters) cls._hub_mixin_jsonable_default_values = { param.name: cls._encode_arg(param.default) for param in cls._hub_mixin_init_parameters.values() if param.default is not inspect.Parameter.empty and cls._is_jsonable(param.default) } cls._hub_mixin_inject_config = "config" in inspect.signature(cls._from_pretrained).parameters def __new__(cls: Type[T], *args, **kwargs) -> T: """Create a new instance of the class and handle config. 3 cases: - If `self._hub_mixin_config` is already set, do nothing. - If `config` is passed as a dataclass, set it as `self._hub_mixin_config`. - Otherwise, build `self._hub_mixin_config` from default values and passed values. """ instance = super().__new__(cls) # If `config` is already set, return early if instance._hub_mixin_config is not None: return instance # Infer passed values passed_values = { **{ key: value for key, value in zip( # [1:] to skip `self` parameter list(cls._hub_mixin_init_parameters)[1:], args, ) }, **kwargs, } # If config passed as dataclass => set it and return early if is_dataclass(passed_values.get("config")): instance._hub_mixin_config = passed_values["config"] return instance # Otherwise, build config from default + passed values init_config = { # default values **cls._hub_mixin_jsonable_default_values, # passed values **{ key: cls._encode_arg(value) # Encode custom types as jsonable value for key, value in passed_values.items() if instance._is_jsonable(value) # Only if jsonable or we have a custom encoder }, } passed_config = init_config.pop("config", {}) # Populate `init_config` with provided config if isinstance(passed_config, dict): init_config.update(passed_config) # Set `config` attribute and return if init_config != {}: instance._hub_mixin_config = init_config return instance @classmethod def _is_jsonable(cls, value: Any) -> bool: """Check if a value is JSON serializable.""" if isinstance(value, cls._hub_mixin_jsonable_custom_types): return True return is_jsonable(value) @classmethod def _encode_arg(cls, arg: Any) -> Any: """Encode an argument into a JSON serializable format.""" for type_, (encoder, _) in cls._hub_mixin_coders.items(): if isinstance(arg, type_): if arg is None: return None return encoder(arg) return arg @classmethod def _decode_arg(cls, expected_type: Type[ARGS_T], value: Any) -> Optional[ARGS_T]: """Decode a JSON serializable value into an argument.""" if is_simple_optional_type(expected_type): if value is None: return None expected_type = unwrap_simple_optional_type(expected_type) # Dataclass => handle it if is_dataclass(expected_type): return _load_dataclass(expected_type, value) # type: ignore[return-value] # Otherwise => check custom decoders for type_, (_, decoder) in cls._hub_mixin_coders.items(): if inspect.isclass(expected_type) and issubclass(expected_type, type_): return decoder(value) # Otherwise => don't decode return value def save_pretrained( self, save_directory: Union[str, Path], *, config: Optional[Union[dict, "DataclassInstance"]] = None, repo_id: Optional[str] = None, push_to_hub: bool = False, model_card_kwargs: Optional[Dict[str, Any]] = None, **push_to_hub_kwargs, ) -> Optional[str]: """ Save weights in local directory. Args: save_directory (`str` or `Path`): Path to directory in which the model weights and configuration will be saved. config (`dict` or `DataclassInstance`, *optional*): Model configuration specified as a key/value dictionary or a dataclass instance. push_to_hub (`bool`, *optional*, defaults to `False`): Whether or not to push your model to the Huggingface Hub after saving it. repo_id (`str`, *optional*): ID of your repository on the Hub. Used only if `push_to_hub=True`. Will default to the folder name if not provided. model_card_kwargs (`Dict[str, Any]`, *optional*): Additional arguments passed to the model card template to customize the model card. push_to_hub_kwargs: Additional key word arguments passed along to the [`~ModelHubMixin.push_to_hub`] method. Returns: `str` or `None`: url of the commit on the Hub if `push_to_hub=True`, `None` otherwise. """ save_directory = Path(save_directory) save_directory.mkdir(parents=True, exist_ok=True) # Remove config.json if already exists. After `_save_pretrained` we don't want to overwrite config.json # as it might have been saved by the custom `_save_pretrained` already. However we do want to overwrite # an existing config.json if it was not saved by `_save_pretrained`. config_path = save_directory / constants.CONFIG_NAME config_path.unlink(missing_ok=True) # save model weights/files (framework-specific) self._save_pretrained(save_directory) # save config (if provided and if not serialized yet in `_save_pretrained`) if config is None: config = self._hub_mixin_config if config is not None: if is_dataclass(config): config = asdict(config) # type: ignore[arg-type] if not config_path.exists(): config_str = json.dumps(config, sort_keys=True, indent=2) config_path.write_text(config_str) # save model card model_card_path = save_directory / "README.md" model_card_kwargs = model_card_kwargs if model_card_kwargs is not None else {} if not model_card_path.exists(): # do not overwrite if already exists self.generate_model_card(**model_card_kwargs).save(save_directory / "README.md") # push to the Hub if required if push_to_hub: kwargs = push_to_hub_kwargs.copy() # soft-copy to avoid mutating input if config is not None: # kwarg for `push_to_hub` kwargs["config"] = config if repo_id is None: repo_id = save_directory.name # Defaults to `save_directory` name return self.push_to_hub(repo_id=repo_id, model_card_kwargs=model_card_kwargs, **kwargs) return None def _save_pretrained(self, save_directory: Path) -> None: """ Overwrite this method in subclass to define how to save your model. Check out our [integration guide](../guides/integrations) for instructions. Args: save_directory (`str` or `Path`): Path to directory in which the model weights and configuration will be saved. """ raise NotImplementedError @classmethod @validate_hf_hub_args def from_pretrained( cls: Type[T], pretrained_model_name_or_path: Union[str, Path], *, force_download: bool = False, resume_download: Optional[bool] = None, proxies: Optional[Dict] = None, token: Optional[Union[str, bool]] = None, cache_dir: Optional[Union[str, Path]] = None, local_files_only: bool = False, revision: Optional[str] = None, **model_kwargs, ) -> T: """ Download a model from the Huggingface Hub and instantiate it. Args: pretrained_model_name_or_path (`str`, `Path`): - Either the `model_id` (string) of a model hosted on the Hub, e.g. `bigscience/bloom`. - Or a path to a `directory` containing model weights saved using [`~transformers.PreTrainedModel.save_pretrained`], e.g., `../path/to/my_model_directory/`. revision (`str`, *optional*): Revision of the model on the Hub. Can be a branch name, a git tag or any commit id. Defaults to the latest commit on `main` branch. force_download (`bool`, *optional*, defaults to `False`): Whether to force (re-)downloading the model weights and configuration files from the Hub, overriding the existing cache. proxies (`Dict[str, str]`, *optional*): A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}`. The proxies are used on every request. token (`str` or `bool`, *optional*): The token to use as HTTP bearer authorization for remote files. By default, it will use the token cached when running `huggingface-cli login`. cache_dir (`str`, `Path`, *optional*): Path to the folder where cached files are stored. local_files_only (`bool`, *optional*, defaults to `False`): If `True`, avoid downloading the file and return the path to the local cached file if it exists. model_kwargs (`Dict`, *optional*): Additional kwargs to pass to the model during initialization. """ model_id = str(pretrained_model_name_or_path) config_file: Optional[str] = None if os.path.isdir(model_id): if constants.CONFIG_NAME in os.listdir(model_id): config_file = os.path.join(model_id, constants.CONFIG_NAME) else: logger.warning(f"{constants.CONFIG_NAME} not found in {Path(model_id).resolve()}") else: try: config_file = hf_hub_download( repo_id=model_id, filename=constants.CONFIG_NAME, revision=revision, cache_dir=cache_dir, force_download=force_download, proxies=proxies, resume_download=resume_download, token=token, local_files_only=local_files_only, ) except HfHubHTTPError as e: logger.info(f"{constants.CONFIG_NAME} not found on the HuggingFace Hub: {str(e)}") # Read config config = None if config_file is not None: with open(config_file, "r", encoding="utf-8") as f: config = json.load(f) # Decode custom types in config for key, value in config.items(): if key in cls._hub_mixin_init_parameters: expected_type = cls._hub_mixin_init_parameters[key].annotation if expected_type is not inspect.Parameter.empty: config[key] = cls._decode_arg(expected_type, value) # Populate model_kwargs from config for param in cls._hub_mixin_init_parameters.values(): if param.name not in model_kwargs and param.name in config: model_kwargs[param.name] = config[param.name] # Check if `config` argument was passed at init if "config" in cls._hub_mixin_init_parameters and "config" not in model_kwargs: # Decode `config` argument if it was passed config_annotation = cls._hub_mixin_init_parameters["config"].annotation config = cls._decode_arg(config_annotation, config) # Forward config to model initialization model_kwargs["config"] = config # Inject config if `**kwargs` are expected if is_dataclass(cls): for key in cls.__dataclass_fields__: if key not in model_kwargs and key in config: model_kwargs[key] = config[key] elif any(param.kind == inspect.Parameter.VAR_KEYWORD for param in cls._hub_mixin_init_parameters.values()): for key, value in config.items(): if key not in model_kwargs: model_kwargs[key] = value # Finally, also inject if `_from_pretrained` expects it if cls._hub_mixin_inject_config and "config" not in model_kwargs: model_kwargs["config"] = config instance = cls._from_pretrained( model_id=str(model_id), revision=revision, cache_dir=cache_dir, force_download=force_download, proxies=proxies, resume_download=resume_download, local_files_only=local_files_only, token=token, **model_kwargs, ) # Implicitly set the config as instance attribute if not already set by the class # This way `config` will be available when calling `save_pretrained` or `push_to_hub`. if config is not None and (getattr(instance, "_hub_mixin_config", None) in (None, {})): instance._hub_mixin_config = config return instance @classmethod def _from_pretrained( cls: Type[T], *, model_id: str, revision: Optional[str], cache_dir: Optional[Union[str, Path]], force_download: bool, proxies: Optional[Dict], resume_download: Optional[bool], local_files_only: bool, token: Optional[Union[str, bool]], **model_kwargs, ) -> T: """Overwrite this method in subclass to define how to load your model from pretrained. Use [`hf_hub_download`] or [`snapshot_download`] to download files from the Hub before loading them. Most args taken as input can be directly passed to those 2 methods. If needed, you can add more arguments to this method using "model_kwargs". For example [`PyTorchModelHubMixin._from_pretrained`] takes as input a `map_location` parameter to set on which device the model should be loaded. Check out our [integration guide](../guides/integrations) for more instructions. Args: model_id (`str`): ID of the model to load from the Huggingface Hub (e.g. `bigscience/bloom`). revision (`str`, *optional*): Revision of the model on the Hub. Can be a branch name, a git tag or any commit id. Defaults to the latest commit on `main` branch. force_download (`bool`, *optional*, defaults to `False`): Whether to force (re-)downloading the model weights and configuration files from the Hub, overriding the existing cache. proxies (`Dict[str, str]`, *optional*): A dictionary of proxy servers to use by protocol or endpoint (e.g., `{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}`). token (`str` or `bool`, *optional*): The token to use as HTTP bearer authorization for remote files. By default, it will use the token cached when running `huggingface-cli login`. cache_dir (`str`, `Path`, *optional*): Path to the folder where cached files are stored. local_files_only (`bool`, *optional*, defaults to `False`): If `True`, avoid downloading the file and return the path to the local cached file if it exists. model_kwargs: Additional keyword arguments passed along to the [`~ModelHubMixin._from_pretrained`] method. """ raise NotImplementedError @validate_hf_hub_args def push_to_hub( self, repo_id: str, *, config: Optional[Union[dict, "DataclassInstance"]] = None, commit_message: str = "Push model using huggingface_hub.", private: Optional[bool] = None, token: Optional[str] = None, branch: Optional[str] = None, create_pr: Optional[bool] = None, allow_patterns: Optional[Union[List[str], str]] = None, ignore_patterns: Optional[Union[List[str], str]] = None, delete_patterns: Optional[Union[List[str], str]] = None, model_card_kwargs: Optional[Dict[str, Any]] = None, ) -> str: """ Upload model checkpoint to the Hub. Use `allow_patterns` and `ignore_patterns` to precisely filter which files should be pushed to the hub. Use `delete_patterns` to delete existing remote files in the same commit. See [`upload_folder`] reference for more details. Args: repo_id (`str`): ID of the repository to push to (example: `"username/my-model"`). config (`dict` or `DataclassInstance`, *optional*): Model configuration specified as a key/value dictionary or a dataclass instance. commit_message (`str`, *optional*): Message to commit while pushing. private (`bool`, *optional*): Whether the repository created should be private. If `None` (default), the repo will be public unless the organization's default is private. token (`str`, *optional*): The token to use as HTTP bearer authorization for remote files. By default, it will use the token cached when running `huggingface-cli login`. branch (`str`, *optional*): The git branch on which to push the model. This defaults to `"main"`. create_pr (`boolean`, *optional*): Whether or not to create a Pull Request from `branch` with that commit. Defaults to `False`. allow_patterns (`List[str]` or `str`, *optional*): If provided, only files matching at least one pattern are pushed. ignore_patterns (`List[str]` or `str`, *optional*): If provided, files matching any of the patterns are not pushed. delete_patterns (`List[str]` or `str`, *optional*): If provided, remote files matching any of the patterns will be deleted from the repo. model_card_kwargs (`Dict[str, Any]`, *optional*): Additional arguments passed to the model card template to customize the model card. Returns: The url of the commit of your model in the given repository. """ api = HfApi(token=token) repo_id = api.create_repo(repo_id=repo_id, private=private, exist_ok=True).repo_id # Push the files to the repo in a single commit with SoftTemporaryDirectory() as tmp: saved_path = Path(tmp) / repo_id self.save_pretrained(saved_path, config=config, model_card_kwargs=model_card_kwargs) return api.upload_folder( repo_id=repo_id, repo_type="model", folder_path=saved_path, commit_message=commit_message, revision=branch, create_pr=create_pr, allow_patterns=allow_patterns, ignore_patterns=ignore_patterns, delete_patterns=delete_patterns, ) def generate_model_card(self, *args, **kwargs) -> ModelCard: card = ModelCard.from_template( card_data=self._hub_mixin_info.model_card_data, template_str=self._hub_mixin_info.model_card_template, repo_url=self._hub_mixin_info.repo_url, docs_url=self._hub_mixin_info.docs_url, **kwargs, ) return card
class_definition
2,055
31,281
0
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/hub_mixin.py
null
18
class PyTorchModelHubMixin(ModelHubMixin): """ Implementation of [`ModelHubMixin`] to provide model Hub upload/download capabilities to PyTorch models. The model is set in evaluation mode by default using `model.eval()` (dropout modules are deactivated). To train the model, you should first set it back in training mode with `model.train()`. See [`ModelHubMixin`] for more details on how to use the mixin. Example: ```python >>> import torch >>> import torch.nn as nn >>> from huggingface_hub import PyTorchModelHubMixin >>> class MyModel( ... nn.Module, ... PyTorchModelHubMixin, ... library_name="keras-nlp", ... repo_url="https://github.com/keras-team/keras-nlp", ... docs_url="https://keras.io/keras_nlp/", ... # ^ optional metadata to generate model card ... ): ... def __init__(self, hidden_size: int = 512, vocab_size: int = 30000, output_size: int = 4): ... super().__init__() ... self.param = nn.Parameter(torch.rand(hidden_size, vocab_size)) ... self.linear = nn.Linear(output_size, vocab_size) ... def forward(self, x): ... return self.linear(x + self.param) >>> model = MyModel(hidden_size=256) # Save model weights to local directory >>> model.save_pretrained("my-awesome-model") # Push model weights to the Hub >>> model.push_to_hub("my-awesome-model") # Download and initialize weights from the Hub >>> model = MyModel.from_pretrained("username/my-awesome-model") >>> model.hidden_size 256 ``` """ def __init_subclass__(cls, *args, tags: Optional[List[str]] = None, **kwargs) -> None: tags = tags or [] tags.append("pytorch_model_hub_mixin") kwargs["tags"] = tags return super().__init_subclass__(*args, **kwargs) def _save_pretrained(self, save_directory: Path) -> None: """Save weights from a Pytorch model to a local directory.""" model_to_save = self.module if hasattr(self, "module") else self # type: ignore save_model_as_safetensor(model_to_save, str(save_directory / constants.SAFETENSORS_SINGLE_FILE)) @classmethod def _from_pretrained( cls, *, model_id: str, revision: Optional[str], cache_dir: Optional[Union[str, Path]], force_download: bool, proxies: Optional[Dict], resume_download: Optional[bool], local_files_only: bool, token: Union[str, bool, None], map_location: str = "cpu", strict: bool = False, **model_kwargs, ): """Load Pytorch pretrained weights and return the loaded model.""" model = cls(**model_kwargs) if os.path.isdir(model_id): print("Loading weights from local directory") model_file = os.path.join(model_id, constants.SAFETENSORS_SINGLE_FILE) return cls._load_as_safetensor(model, model_file, map_location, strict) else: try: model_file = hf_hub_download( repo_id=model_id, filename=constants.SAFETENSORS_SINGLE_FILE, revision=revision, cache_dir=cache_dir, force_download=force_download, proxies=proxies, resume_download=resume_download, token=token, local_files_only=local_files_only, ) return cls._load_as_safetensor(model, model_file, map_location, strict) except EntryNotFoundError: model_file = hf_hub_download( repo_id=model_id, filename=constants.PYTORCH_WEIGHTS_NAME, revision=revision, cache_dir=cache_dir, force_download=force_download, proxies=proxies, resume_download=resume_download, token=token, local_files_only=local_files_only, ) return cls._load_as_pickle(model, model_file, map_location, strict) @classmethod def _load_as_pickle(cls, model: T, model_file: str, map_location: str, strict: bool) -> T: state_dict = torch.load(model_file, map_location=torch.device(map_location), weights_only=True) model.load_state_dict(state_dict, strict=strict) # type: ignore model.eval() # type: ignore return model @classmethod def _load_as_safetensor(cls, model: T, model_file: str, map_location: str, strict: bool) -> T: if packaging.version.parse(safetensors.__version__) < packaging.version.parse("0.4.3"): # type: ignore [attr-defined] load_model_as_safetensor(model, model_file, strict=strict) # type: ignore [arg-type] if map_location != "cpu": logger.warning( "Loading model weights on other devices than 'cpu' is not supported natively in your version of safetensors." " This means that the model is loaded on 'cpu' first and then copied to the device." " This leads to a slower loading time." " Please update safetensors to version 0.4.3 or above for improved performance." ) model.to(map_location) # type: ignore [attr-defined] else: safetensors.torch.load_model(model, model_file, strict=strict, device=map_location) # type: ignore [arg-type] return model
class_definition
31,284
36,922
0
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/hub_mixin.py
null
19
class WebhooksServer: """ The [`WebhooksServer`] class lets you create an instance of a Gradio app that can receive Huggingface webhooks. These webhooks can be registered using the [`~WebhooksServer.add_webhook`] decorator. Webhook endpoints are added to the app as a POST endpoint to the FastAPI router. Once all the webhooks are registered, the `launch` method has to be called to start the app. It is recommended to accept [`WebhookPayload`] as the first argument of the webhook function. It is a Pydantic model that contains all the information about the webhook event. The data will be parsed automatically for you. Check out the [webhooks guide](../guides/webhooks_server) for a step-by-step tutorial on how to setup your WebhooksServer and deploy it on a Space. <Tip warning={true}> `WebhooksServer` is experimental. Its API is subject to change in the future. </Tip> <Tip warning={true}> You must have `gradio` installed to use `WebhooksServer` (`pip install --upgrade gradio`). </Tip> Args: ui (`gradio.Blocks`, optional): A Gradio UI instance to be used as the Space landing page. If `None`, a UI displaying instructions about the configured webhooks is created. webhook_secret (`str`, optional): A secret key to verify incoming webhook requests. You can set this value to any secret you want as long as you also configure it in your [webhooks settings panel](https://huggingface.co/settings/webhooks). You can also set this value as the `WEBHOOK_SECRET` environment variable. If no secret is provided, the webhook endpoints are opened without any security. Example: ```python import gradio as gr from huggingface_hub import WebhooksServer, WebhookPayload with gr.Blocks() as ui: ... app = WebhooksServer(ui=ui, webhook_secret="my_secret_key") @app.add_webhook("/say_hello") async def hello(payload: WebhookPayload): return {"message": "hello"} app.launch() ``` """ def __new__(cls, *args, **kwargs) -> "WebhooksServer": if not is_gradio_available(): raise ImportError( "You must have `gradio` installed to use `WebhooksServer`. Please run `pip install --upgrade gradio`" " first." ) if not is_fastapi_available(): raise ImportError( "You must have `fastapi` installed to use `WebhooksServer`. Please run `pip install --upgrade fastapi`" " first." ) return super().__new__(cls) def __init__( self, ui: Optional["gr.Blocks"] = None, webhook_secret: Optional[str] = None, ) -> None: self._ui = ui self.webhook_secret = webhook_secret or os.getenv("WEBHOOK_SECRET") self.registered_webhooks: Dict[str, Callable] = {} _warn_on_empty_secret(self.webhook_secret) def add_webhook(self, path: Optional[str] = None) -> Callable: """ Decorator to add a webhook to the [`WebhooksServer`] server. Args: path (`str`, optional): The URL path to register the webhook function. If not provided, the function name will be used as the path. In any case, all webhooks are registered under `/webhooks`. Raises: ValueError: If the provided path is already registered as a webhook. Example: ```python from huggingface_hub import WebhooksServer, WebhookPayload app = WebhooksServer() @app.add_webhook async def trigger_training(payload: WebhookPayload): if payload.repo.type == "dataset" and payload.event.action == "update": # Trigger a training job if a dataset is updated ... app.launch() ``` """ # Usage: directly as decorator. Example: `@app.add_webhook` if callable(path): # If path is a function, it means it was used as a decorator without arguments return self.add_webhook()(path) # Usage: provide a path. Example: `@app.add_webhook(...)` @wraps(FastAPI.post) def _inner_post(*args, **kwargs): func = args[0] abs_path = f"/webhooks/{(path or func.__name__).strip('/')}" if abs_path in self.registered_webhooks: raise ValueError(f"Webhook {abs_path} already exists.") self.registered_webhooks[abs_path] = func return _inner_post def launch(self, prevent_thread_lock: bool = False, **launch_kwargs: Any) -> None: """Launch the Gradio app and register webhooks to the underlying FastAPI server. Input parameters are forwarded to Gradio when launching the app. """ ui = self._ui or self._get_default_ui() # Start Gradio App # - as non-blocking so that webhooks can be added afterwards # - as shared if launch locally (to debug webhooks) launch_kwargs.setdefault("share", _is_local) self.fastapi_app, _, _ = ui.launch(prevent_thread_lock=True, **launch_kwargs) # Register webhooks to FastAPI app for path, func in self.registered_webhooks.items(): # Add secret check if required if self.webhook_secret is not None: func = _wrap_webhook_to_check_secret(func, webhook_secret=self.webhook_secret) # Add route to FastAPI app self.fastapi_app.post(path)(func) # Print instructions and block main thread space_host = os.environ.get("SPACE_HOST") url = "https://" + space_host if space_host is not None else (ui.share_url or ui.local_url) url = url.strip("/") message = "\nWebhooks are correctly setup and ready to use:" message += "\n" + "\n".join(f" - POST {url}{webhook}" for webhook in self.registered_webhooks) message += "\nGo to https://huggingface.co/settings/webhooks to setup your webhooks." print(message) if not prevent_thread_lock: ui.block_thread() def _get_default_ui(self) -> "gr.Blocks": """Default UI if not provided (lists webhooks and provides basic instructions).""" import gradio as gr with gr.Blocks() as ui: gr.Markdown("# This is an app to process 🤗 Webhooks") gr.Markdown( "Webhooks are a foundation for MLOps-related features. They allow you to listen for new changes on" " specific repos or to all repos belonging to particular set of users/organizations (not just your" " repos, but any repo). Check out this [guide](https://huggingface.co/docs/hub/webhooks) to get to" " know more about webhooks on the Huggingface Hub." ) gr.Markdown( f"{len(self.registered_webhooks)} webhook(s) are registered:" + "\n\n" + "\n ".join( f"- [{webhook_path}]({_get_webhook_doc_url(webhook.__name__, webhook_path)})" for webhook_path, webhook in self.registered_webhooks.items() ) ) gr.Markdown( "Go to https://huggingface.co/settings/webhooks to setup your webhooks." + "\nYou app is running locally. Please look at the logs to check the full URL you need to set." if _is_local else ( "\nThis app is running on a Space. You can find the corresponding URL in the options menu" " (top-right) > 'Embed the Space'. The URL looks like 'https://{username}-{repo_name}.hf.space'." ) ) return ui
class_definition
1,356
9,272
0
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/_webhooks_server.py
null
20
class SpaceStage(str, Enum): """ Enumeration of possible stage of a Space on the Hub. Value can be compared to a string: ```py assert SpaceStage.BUILDING == "BUILDING" ``` Taken from https://github.com/huggingface/moon-landing/blob/main/server/repo_types/SpaceInfo.ts#L61 (private url). """ # Copied from moon-landing > server > repo_types > SpaceInfo.ts (private repo) NO_APP_FILE = "NO_APP_FILE" CONFIG_ERROR = "CONFIG_ERROR" BUILDING = "BUILDING" BUILD_ERROR = "BUILD_ERROR" RUNNING = "RUNNING" RUNNING_BUILDING = "RUNNING_BUILDING" RUNTIME_ERROR = "RUNTIME_ERROR" DELETING = "DELETING" STOPPED = "STOPPED" PAUSED = "PAUSED"
class_definition
786
1,492
0
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/_space_api.py
null
21
class SpaceHardware(str, Enum): """ Enumeration of hardwares available to run your Space on the Hub. Value can be compared to a string: ```py assert SpaceHardware.CPU_BASIC == "cpu-basic" ``` Taken from https://github.com/huggingface/moon-landing/blob/main/server/repo_types/SpaceInfo.ts#L73 (private url). """ CPU_BASIC = "cpu-basic" CPU_UPGRADE = "cpu-upgrade" T4_SMALL = "t4-small" T4_MEDIUM = "t4-medium" L4X1 = "l4x1" L4X4 = "l4x4" ZERO_A10G = "zero-a10g" A10G_SMALL = "a10g-small" A10G_LARGE = "a10g-large" A10G_LARGEX2 = "a10g-largex2" A10G_LARGEX4 = "a10g-largex4" A100_LARGE = "a100-large" V5E_1X1 = "v5e-1x1" V5E_2X2 = "v5e-2x2" V5E_2X4 = "v5e-2x4"
class_definition
1,495
2,248
0
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/_space_api.py
null
22
class SpaceStorage(str, Enum): """ Enumeration of persistent storage available for your Space on the Hub. Value can be compared to a string: ```py assert SpaceStorage.SMALL == "small" ``` Taken from https://github.com/huggingface/moon-landing/blob/main/server/repo_types/SpaceHardwareFlavor.ts#L24 (private url). """ SMALL = "small" MEDIUM = "medium" LARGE = "large"
class_definition
2,251
2,664
0
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/_space_api.py
null
23
class SpaceRuntime: """ Contains information about the current runtime of a Space. Args: stage (`str`): Current stage of the space. Example: RUNNING. hardware (`str` or `None`): Current hardware of the space. Example: "cpu-basic". Can be `None` if Space is `BUILDING` for the first time. requested_hardware (`str` or `None`): Requested hardware. Can be different than `hardware` especially if the request has just been made. Example: "t4-medium". Can be `None` if no hardware has been requested yet. sleep_time (`int` or `None`): Number of seconds the Space will be kept alive after the last request. By default (if value is `None`), the Space will never go to sleep if it's running on an upgraded hardware, while it will go to sleep after 48 hours on a free 'cpu-basic' hardware. For more details, see https://huggingface.co/docs/hub/spaces-gpus#sleep-time. raw (`dict`): Raw response from the server. Contains more information about the Space runtime like number of replicas, number of cpu, memory size,... """ stage: SpaceStage hardware: Optional[SpaceHardware] requested_hardware: Optional[SpaceHardware] sleep_time: Optional[int] storage: Optional[SpaceStorage] raw: Dict def __init__(self, data: Dict) -> None: self.stage = data["stage"] self.hardware = data.get("hardware", {}).get("current") self.requested_hardware = data.get("hardware", {}).get("requested") self.sleep_time = data.get("gcTimeout") self.storage = data.get("storage") self.raw = data
class_definition
2,678
4,403
0
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/_space_api.py
null
24
class SpaceVariable: """ Contains information about the current variables of a Space. Args: key (`str`): Variable key. Example: `"MODEL_REPO_ID"` value (`str`): Variable value. Example: `"the_model_repo_id"`. description (`str` or None): Description of the variable. Example: `"Model Repo ID of the implemented model"`. updatedAt (`datetime` or None): datetime of the last update of the variable (if the variable has been updated at least once). """ key: str value: str description: Optional[str] updated_at: Optional[datetime] def __init__(self, key: str, values: Dict) -> None: self.key = key self.value = values["value"] self.description = values.get("description") updated_at = values.get("updatedAt") self.updated_at = parse_datetime(updated_at) if updated_at is not None else None
class_definition
4,417
5,362
0
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/_space_api.py
null
25
class KerasModelHubMixin(ModelHubMixin): """ Implementation of [`ModelHubMixin`] to provide model Hub upload/download capabilities to Keras models. ```python >>> import tensorflow as tf >>> from huggingface_hub import KerasModelHubMixin >>> class MyModel(tf.keras.Model, KerasModelHubMixin): ... def __init__(self, **kwargs): ... super().__init__() ... self.config = kwargs.pop("config", None) ... self.dummy_inputs = ... ... self.layer = ... ... def call(self, *args): ... return ... >>> # Initialize and compile the model as you normally would >>> model = MyModel() >>> model.compile(...) >>> # Build the graph by training it or passing dummy inputs >>> _ = model(model.dummy_inputs) >>> # Save model weights to local directory >>> model.save_pretrained("my-awesome-model") >>> # Push model weights to the Hub >>> model.push_to_hub("my-awesome-model") >>> # Download and initialize weights from the Hub >>> model = MyModel.from_pretrained("username/super-cool-model") ``` """ def _save_pretrained(self, save_directory): save_pretrained_keras(self, save_directory) @classmethod def _from_pretrained( cls, model_id, revision, cache_dir, force_download, proxies, resume_download, local_files_only, token, config: Optional[Dict[str, Any]] = None, **model_kwargs, ): """Here we just call [`from_pretrained_keras`] function so both the mixin and functional APIs stay in sync. TODO - Some args above aren't used since we are calling snapshot_download instead of hf_hub_download. """ if keras is None: raise ImportError("Called a TensorFlow-specific function but could not import it.") # Root is either a local filepath matching model_id or a cached snapshot if not os.path.isdir(model_id): storage_folder = snapshot_download( repo_id=model_id, revision=revision, cache_dir=cache_dir, library_name="keras", library_version=get_tf_version(), ) else: storage_folder = model_id # TODO: change this in a future PR. We are not returning a KerasModelHubMixin instance here... model = keras.models.load_model(storage_folder) # For now, we add a new attribute, config, to store the config loaded from the hub/a local dir. model.config = config return model
class_definition
16,893
19,573
0
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/keras_mixin.py
null
26
class _FileToUpload: """Temporary dataclass to store info about files to upload. Not meant to be used directly.""" local_path: Path path_in_repo: str size_limit: int last_modified: float
class_definition
461
668
0
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/_commit_scheduler.py
null
27
class CommitScheduler: """ Scheduler to upload a local folder to the Hub at regular intervals (e.g. push to hub every 5 minutes). The recommended way to use the scheduler is to use it as a context manager. This ensures that the scheduler is properly stopped and the last commit is triggered when the script ends. The scheduler can also be stopped manually with the `stop` method. Checkout the [upload guide](https://huggingface.co/docs/huggingface_hub/guides/upload#scheduled-uploads) to learn more about how to use it. Args: repo_id (`str`): The id of the repo to commit to. folder_path (`str` or `Path`): Path to the local folder to upload regularly. every (`int` or `float`, *optional*): The number of minutes between each commit. Defaults to 5 minutes. path_in_repo (`str`, *optional*): Relative path of the directory in the repo, for example: `"checkpoints/"`. Defaults to the root folder of the repository. repo_type (`str`, *optional*): The type of the repo to commit to. Defaults to `model`. revision (`str`, *optional*): The revision of the repo to commit to. Defaults to `main`. private (`bool`, *optional*): Whether to make the repo private. If `None` (default), the repo will be public unless the organization's default is private. This value is ignored if the repo already exists. token (`str`, *optional*): The token to use to commit to the repo. Defaults to the token saved on the machine. allow_patterns (`List[str]` or `str`, *optional*): If provided, only files matching at least one pattern are uploaded. ignore_patterns (`List[str]` or `str`, *optional*): If provided, files matching any of the patterns are not uploaded. squash_history (`bool`, *optional*): Whether to squash the history of the repo after each commit. Defaults to `False`. Squashing commits is useful to avoid degraded performances on the repo when it grows too large. hf_api (`HfApi`, *optional*): The [`HfApi`] client to use to commit to the Hub. Can be set with custom settings (user agent, token,...). Example: ```py >>> from pathlib import Path >>> from huggingface_hub import CommitScheduler # Scheduler uploads every 10 minutes >>> csv_path = Path("watched_folder/data.csv") >>> CommitScheduler(repo_id="test_scheduler", repo_type="dataset", folder_path=csv_path.parent, every=10) >>> with csv_path.open("a") as f: ... f.write("first line") # Some time later (...) >>> with csv_path.open("a") as f: ... f.write("second line") ``` Example using a context manager: ```py >>> from pathlib import Path >>> from huggingface_hub import CommitScheduler >>> with CommitScheduler(repo_id="test_scheduler", repo_type="dataset", folder_path="watched_folder", every=10) as scheduler: ... csv_path = Path("watched_folder/data.csv") ... with csv_path.open("a") as f: ... f.write("first line") ... (...) ... with csv_path.open("a") as f: ... f.write("second line") # Scheduler is now stopped and last commit have been triggered ``` """ def __init__( self, *, repo_id: str, folder_path: Union[str, Path], every: Union[int, float] = 5, path_in_repo: Optional[str] = None, repo_type: Optional[str] = None, revision: Optional[str] = None, private: Optional[bool] = None, token: Optional[str] = None, allow_patterns: Optional[Union[List[str], str]] = None, ignore_patterns: Optional[Union[List[str], str]] = None, squash_history: bool = False, hf_api: Optional["HfApi"] = None, ) -> None: self.api = hf_api or HfApi(token=token) # Folder self.folder_path = Path(folder_path).expanduser().resolve() self.path_in_repo = path_in_repo or "" self.allow_patterns = allow_patterns if ignore_patterns is None: ignore_patterns = [] elif isinstance(ignore_patterns, str): ignore_patterns = [ignore_patterns] self.ignore_patterns = ignore_patterns + DEFAULT_IGNORE_PATTERNS if self.folder_path.is_file(): raise ValueError(f"'folder_path' must be a directory, not a file: '{self.folder_path}'.") self.folder_path.mkdir(parents=True, exist_ok=True) # Repository repo_url = self.api.create_repo(repo_id=repo_id, private=private, repo_type=repo_type, exist_ok=True) self.repo_id = repo_url.repo_id self.repo_type = repo_type self.revision = revision self.token = token # Keep track of already uploaded files self.last_uploaded: Dict[Path, float] = {} # key is local path, value is timestamp # Scheduler if not every > 0: raise ValueError(f"'every' must be a positive integer, not '{every}'.") self.lock = Lock() self.every = every self.squash_history = squash_history logger.info(f"Scheduled job to push '{self.folder_path}' to '{self.repo_id}' every {self.every} minutes.") self._scheduler_thread = Thread(target=self._run_scheduler, daemon=True) self._scheduler_thread.start() atexit.register(self._push_to_hub) self.__stopped = False def stop(self) -> None: """Stop the scheduler. A stopped scheduler cannot be restarted. Mostly for tests purposes. """ self.__stopped = True def __enter__(self) -> "CommitScheduler": return self def __exit__(self, exc_type, exc_value, traceback) -> None: # Upload last changes before exiting self.trigger().result() self.stop() return def _run_scheduler(self) -> None: """Dumb thread waiting between each scheduled push to Hub.""" while True: self.last_future = self.trigger() time.sleep(self.every * 60) if self.__stopped: break def trigger(self) -> Future: """Trigger a `push_to_hub` and return a future. This method is automatically called every `every` minutes. You can also call it manually to trigger a commit immediately, without waiting for the next scheduled commit. """ return self.api.run_as_future(self._push_to_hub) def _push_to_hub(self) -> Optional[CommitInfo]: if self.__stopped: # If stopped, already scheduled commits are ignored return None logger.info("(Background) scheduled commit triggered.") try: value = self.push_to_hub() if self.squash_history: logger.info("(Background) squashing repo history.") self.api.super_squash_history(repo_id=self.repo_id, repo_type=self.repo_type, branch=self.revision) return value except Exception as e: logger.error(f"Error while pushing to Hub: {e}") # Depending on the setup, error might be silenced raise def push_to_hub(self) -> Optional[CommitInfo]: """ Push folder to the Hub and return the commit info. <Tip warning={true}> This method is not meant to be called directly. It is run in the background by the scheduler, respecting a queue mechanism to avoid concurrent commits. Making a direct call to the method might lead to concurrency issues. </Tip> The default behavior of `push_to_hub` is to assume an append-only folder. It lists all files in the folder and uploads only changed files. If no changes are found, the method returns without committing anything. If you want to change this behavior, you can inherit from [`CommitScheduler`] and override this method. This can be useful for example to compress data together in a single file before committing. For more details and examples, check out our [integration guide](https://huggingface.co/docs/huggingface_hub/main/en/guides/upload#scheduled-uploads). """ # Check files to upload (with lock) with self.lock: logger.debug("Listing files to upload for scheduled commit.") # List files from folder (taken from `_prepare_upload_folder_additions`) relpath_to_abspath = { path.relative_to(self.folder_path).as_posix(): path for path in sorted(self.folder_path.glob("**/*")) # sorted to be deterministic if path.is_file() } prefix = f"{self.path_in_repo.strip('/')}/" if self.path_in_repo else "" # Filter with pattern + filter out unchanged files + retrieve current file size files_to_upload: List[_FileToUpload] = [] for relpath in filter_repo_objects( relpath_to_abspath.keys(), allow_patterns=self.allow_patterns, ignore_patterns=self.ignore_patterns ): local_path = relpath_to_abspath[relpath] stat = local_path.stat() if self.last_uploaded.get(local_path) is None or self.last_uploaded[local_path] != stat.st_mtime: files_to_upload.append( _FileToUpload( local_path=local_path, path_in_repo=prefix + relpath, size_limit=stat.st_size, last_modified=stat.st_mtime, ) ) # Return if nothing to upload if len(files_to_upload) == 0: logger.debug("Dropping schedule commit: no changed file to upload.") return None # Convert `_FileToUpload` as `CommitOperationAdd` (=> compute file shas + limit to file size) logger.debug("Removing unchanged files since previous scheduled commit.") add_operations = [ CommitOperationAdd( # Cap the file to its current size, even if the user append data to it while a scheduled commit is happening path_or_fileobj=PartialFileIO(file_to_upload.local_path, size_limit=file_to_upload.size_limit), path_in_repo=file_to_upload.path_in_repo, ) for file_to_upload in files_to_upload ] # Upload files (append mode expected - no need for lock) logger.debug("Uploading files for scheduled commit.") commit_info = self.api.create_commit( repo_id=self.repo_id, repo_type=self.repo_type, operations=add_operations, commit_message="Scheduled Commit", revision=self.revision, ) # Successful commit: keep track of the latest "last_modified" for each file for file in files_to_upload: self.last_uploaded[file.local_path] = file.last_modified return commit_info
class_definition
671
11,802
0
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/_commit_scheduler.py
null
28
class PartialFileIO(BytesIO): """A file-like object that reads only the first part of a file. Useful to upload a file to the Hub when the user might still be appending data to it. Only the first part of the file is uploaded (i.e. the part that was available when the filesystem was first scanned). In practice, only used internally by the CommitScheduler to regularly push a folder to the Hub with minimal disturbance for the user. The object is passed to `CommitOperationAdd`. Only supports `read`, `tell` and `seek` methods. Args: file_path (`str` or `Path`): Path to the file to read. size_limit (`int`): The maximum number of bytes to read from the file. If the file is larger than this, only the first part will be read (and uploaded). """ def __init__(self, file_path: Union[str, Path], size_limit: int) -> None: self._file_path = Path(file_path) self._file = self._file_path.open("rb") self._size_limit = min(size_limit, os.fstat(self._file.fileno()).st_size) def __del__(self) -> None: self._file.close() return super().__del__() def __repr__(self) -> str: return f"<PartialFileIO file_path={self._file_path} size_limit={self._size_limit}>" def __len__(self) -> int: return self._size_limit def __getattribute__(self, name: str): if name.startswith("_") or name in ("read", "tell", "seek"): # only 3 public methods supported return super().__getattribute__(name) raise NotImplementedError(f"PartialFileIO does not support '{name}'.") def tell(self) -> int: """Return the current file position.""" return self._file.tell() def seek(self, __offset: int, __whence: int = SEEK_SET) -> int: """Change the stream position to the given offset. Behavior is the same as a regular file, except that the position is capped to the size limit. """ if __whence == SEEK_END: # SEEK_END => set from the truncated end __offset = len(self) + __offset __whence = SEEK_SET pos = self._file.seek(__offset, __whence) if pos > self._size_limit: return self._file.seek(self._size_limit) return pos def read(self, __size: Optional[int] = -1) -> bytes: """Read at most `__size` bytes from the file. Behavior is the same as a regular file, except that it is capped to the size limit. """ current = self._file.tell() if __size is None or __size < 0: # Read until file limit truncated_size = self._size_limit - current else: # Read until file limit or __size truncated_size = min(__size, self._size_limit - current) return self._file.read(truncated_size)
class_definition
11,805
14,678
0
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/_commit_scheduler.py
null
29
class LocalDownloadFilePaths: """ Paths to the files related to a download process in a local dir. Returned by [`get_local_download_paths`]. Attributes: file_path (`Path`): Path where the file will be saved. lock_path (`Path`): Path to the lock file used to ensure atomicity when reading/writing metadata. metadata_path (`Path`): Path to the metadata file. """ file_path: Path lock_path: Path metadata_path: Path def incomplete_path(self, etag: str) -> Path: """Return the path where a file will be temporarily downloaded before being moved to `file_path`.""" return self.metadata_path.with_suffix(f".{etag}.incomplete")
class_definition
1,891
2,627
0
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/_local_folder.py
null
30
class LocalUploadFilePaths: """ Paths to the files related to an upload process in a local dir. Returned by [`get_local_upload_paths`]. Attributes: path_in_repo (`str`): Path of the file in the repo. file_path (`Path`): Path where the file will be saved. lock_path (`Path`): Path to the lock file used to ensure atomicity when reading/writing metadata. metadata_path (`Path`): Path to the metadata file. """ path_in_repo: str file_path: Path lock_path: Path metadata_path: Path
class_definition
2,654
3,250
0
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/_local_folder.py
null
31
class LocalDownloadFileMetadata: """ Metadata about a file in the local directory related to a download process. Attributes: filename (`str`): Path of the file in the repo. commit_hash (`str`): Commit hash of the file in the repo. etag (`str`): ETag of the file in the repo. Used to check if the file has changed. For LFS files, this is the sha256 of the file. For regular files, it corresponds to the git hash. timestamp (`int`): Unix timestamp of when the metadata was saved i.e. when the metadata was accurate. """ filename: str commit_hash: str etag: str timestamp: float
class_definition
3,264
3,965
0
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/_local_folder.py
null
32
class LocalUploadFileMetadata: """ Metadata about a file in the local directory related to an upload process. """ size: int # Default values correspond to "we don't know yet" timestamp: Optional[float] = None should_ignore: Optional[bool] = None sha256: Optional[str] = None upload_mode: Optional[str] = None is_uploaded: bool = False is_committed: bool = False def save(self, paths: LocalUploadFilePaths) -> None: """Save the metadata to disk.""" with WeakFileLock(paths.lock_path): with paths.metadata_path.open("w") as f: new_timestamp = time.time() f.write(str(new_timestamp) + "\n") f.write(str(self.size)) # never None f.write("\n") if self.should_ignore is not None: f.write(str(int(self.should_ignore))) f.write("\n") if self.sha256 is not None: f.write(self.sha256) f.write("\n") if self.upload_mode is not None: f.write(self.upload_mode) f.write("\n") f.write(str(int(self.is_uploaded)) + "\n") f.write(str(int(self.is_committed)) + "\n") self.timestamp = new_timestamp
class_definition
3,979
5,308
0
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/_local_folder.py
null
33
class UploadInfo: """ Dataclass holding required information to determine whether a blob should be uploaded to the hub using the LFS protocol or the regular protocol Args: sha256 (`bytes`): SHA256 hash of the blob size (`int`): Size in bytes of the blob sample (`bytes`): First 512 bytes of the blob """ sha256: bytes size: int sample: bytes @classmethod def from_path(cls, path: str): size = getsize(path) with io.open(path, "rb") as file: sample = file.peek(512)[:512] sha = sha_fileobj(file) return cls(size=size, sha256=sha, sample=sample) @classmethod def from_bytes(cls, data: bytes): sha = sha256(data).digest() return cls(size=len(data), sample=data[:512], sha256=sha) @classmethod def from_fileobj(cls, fileobj: BinaryIO): sample = fileobj.read(512) fileobj.seek(0, io.SEEK_SET) sha = sha_fileobj(fileobj) size = fileobj.tell() fileobj.seek(0, io.SEEK_SET) return cls(size=size, sha256=sha, sample=sample)
class_definition
1,632
2,779
0
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/lfs.py
null
34
class PayloadPartT(TypedDict): partNumber: int etag: str
class_definition
5,640
5,704
0
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/lfs.py
null
35
class CompletionPayloadT(TypedDict): """Payload that will be sent to the Hub when uploading multi-part.""" oid: str parts: List[PayloadPartT]
class_definition
5,707
5,861
0
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/lfs.py
null
36
class HfFileMetadata: """Data structure containing information about a file versioned on the Hub. Returned by [`get_hf_file_metadata`] based on a URL. Args: commit_hash (`str`, *optional*): The commit_hash related to the file. etag (`str`, *optional*): Etag of the file on the server. location (`str`): Location where to download the file. Can be a Hub url or not (CDN). size (`size`): Size of the file. In case of an LFS file, contains the size of the actual LFS file, not the pointer. """ commit_hash: Optional[str] etag: Optional[str] location: str size: Optional[int]
class_definition
5,777
6,475
0
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/file_download.py
null
37
class Discussion: """ A Discussion or Pull Request on the Hub. This dataclass is not intended to be instantiated directly. Attributes: title (`str`): The title of the Discussion / Pull Request status (`str`): The status of the Discussion / Pull Request. It must be one of: * `"open"` * `"closed"` * `"merged"` (only for Pull Requests ) * `"draft"` (only for Pull Requests ) num (`int`): The number of the Discussion / Pull Request. repo_id (`str`): The id (`"{namespace}/{repo_name}"`) of the repo on which the Discussion / Pull Request was open. repo_type (`str`): The type of the repo on which the Discussion / Pull Request was open. Possible values are: `"model"`, `"dataset"`, `"space"`. author (`str`): The username of the Discussion / Pull Request author. Can be `"deleted"` if the user has been deleted since. is_pull_request (`bool`): Whether or not this is a Pull Request. created_at (`datetime`): The `datetime` of creation of the Discussion / Pull Request. endpoint (`str`): Endpoint of the Hub. Default is https://huggingface.co. git_reference (`str`, *optional*): (property) Git reference to which changes can be pushed if this is a Pull Request, `None` otherwise. url (`str`): (property) URL of the discussion on the Hub. """ title: str status: DiscussionStatus num: int repo_id: str repo_type: str author: str is_pull_request: bool created_at: datetime endpoint: str @property def git_reference(self) -> Optional[str]: """ If this is a Pull Request , returns the git reference to which changes can be pushed. Returns `None` otherwise. """ if self.is_pull_request: return f"refs/pr/{self.num}" return None @property def url(self) -> str: """Returns the URL of the discussion on the Hub.""" if self.repo_type is None or self.repo_type == constants.REPO_TYPE_MODEL: return f"{self.endpoint}/{self.repo_id}/discussions/{self.num}" return f"{self.endpoint}/{self.repo_type}s/{self.repo_id}/discussions/{self.num}"
class_definition
530
2,958
0
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/community.py
null
38
class DiscussionWithDetails(Discussion): """ Subclass of [`Discussion`]. Attributes: title (`str`): The title of the Discussion / Pull Request status (`str`): The status of the Discussion / Pull Request. It can be one of: * `"open"` * `"closed"` * `"merged"` (only for Pull Requests ) * `"draft"` (only for Pull Requests ) num (`int`): The number of the Discussion / Pull Request. repo_id (`str`): The id (`"{namespace}/{repo_name}"`) of the repo on which the Discussion / Pull Request was open. repo_type (`str`): The type of the repo on which the Discussion / Pull Request was open. Possible values are: `"model"`, `"dataset"`, `"space"`. author (`str`): The username of the Discussion / Pull Request author. Can be `"deleted"` if the user has been deleted since. is_pull_request (`bool`): Whether or not this is a Pull Request. created_at (`datetime`): The `datetime` of creation of the Discussion / Pull Request. events (`list` of [`DiscussionEvent`]) The list of [`DiscussionEvents`] in this Discussion or Pull Request. conflicting_files (`Union[List[str], bool, None]`, *optional*): A list of conflicting files if this is a Pull Request. `None` if `self.is_pull_request` is `False`. `True` if there are conflicting files but the list can't be retrieved. target_branch (`str`, *optional*): The branch into which changes are to be merged if this is a Pull Request . `None` if `self.is_pull_request` is `False`. merge_commit_oid (`str`, *optional*): If this is a merged Pull Request , this is set to the OID / SHA of the merge commit, `None` otherwise. diff (`str`, *optional*): The git diff if this is a Pull Request , `None` otherwise. endpoint (`str`): Endpoint of the Hub. Default is https://huggingface.co. git_reference (`str`, *optional*): (property) Git reference to which changes can be pushed if this is a Pull Request, `None` otherwise. url (`str`): (property) URL of the discussion on the Hub. """ events: List["DiscussionEvent"] conflicting_files: Union[List[str], bool, None] target_branch: Optional[str] merge_commit_oid: Optional[str] diff: Optional[str]
class_definition
2,972
5,564
0
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/community.py
null
39
class DiscussionEvent: """ An event in a Discussion or Pull Request. Use concrete classes: * [`DiscussionComment`] * [`DiscussionStatusChange`] * [`DiscussionCommit`] * [`DiscussionTitleChange`] Attributes: id (`str`): The ID of the event. An hexadecimal string. type (`str`): The type of the event. created_at (`datetime`): A [`datetime`](https://docs.python.org/3/library/datetime.html?highlight=datetime#datetime.datetime) object holding the creation timestamp for the event. author (`str`): The username of the Discussion / Pull Request author. Can be `"deleted"` if the user has been deleted since. """ id: str type: str created_at: datetime author: str _event: dict """Stores the original event data, in case we need to access it later."""
class_definition
5,578
6,507
0
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/community.py
null
40
class DiscussionComment(DiscussionEvent): """A comment in a Discussion / Pull Request. Subclass of [`DiscussionEvent`]. Attributes: id (`str`): The ID of the event. An hexadecimal string. type (`str`): The type of the event. created_at (`datetime`): A [`datetime`](https://docs.python.org/3/library/datetime.html?highlight=datetime#datetime.datetime) object holding the creation timestamp for the event. author (`str`): The username of the Discussion / Pull Request author. Can be `"deleted"` if the user has been deleted since. content (`str`): The raw markdown content of the comment. Mentions, links and images are not rendered. edited (`bool`): Whether or not this comment has been edited. hidden (`bool`): Whether or not this comment has been hidden. """ content: str edited: bool hidden: bool @property def rendered(self) -> str: """The rendered comment, as a HTML string""" return self._event["data"]["latest"]["html"] @property def last_edited_at(self) -> datetime: """The last edit time, as a `datetime` object.""" return parse_datetime(self._event["data"]["latest"]["updatedAt"]) @property def last_edited_by(self) -> str: """The last edit time, as a `datetime` object.""" return self._event["data"]["latest"].get("author", {}).get("name", "deleted") @property def edit_history(self) -> List[dict]: """The edit history of the comment""" return self._event["data"]["history"] @property def number_of_edits(self) -> int: return len(self.edit_history)
class_definition
6,521
8,292
0
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/community.py
null
41
class DiscussionStatusChange(DiscussionEvent): """A change of status in a Discussion / Pull Request. Subclass of [`DiscussionEvent`]. Attributes: id (`str`): The ID of the event. An hexadecimal string. type (`str`): The type of the event. created_at (`datetime`): A [`datetime`](https://docs.python.org/3/library/datetime.html?highlight=datetime#datetime.datetime) object holding the creation timestamp for the event. author (`str`): The username of the Discussion / Pull Request author. Can be `"deleted"` if the user has been deleted since. new_status (`str`): The status of the Discussion / Pull Request after the change. It can be one of: * `"open"` * `"closed"` * `"merged"` (only for Pull Requests ) """ new_status: str
class_definition
8,306
9,238
0
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/community.py
null
42
class DiscussionCommit(DiscussionEvent): """A commit in a Pull Request. Subclass of [`DiscussionEvent`]. Attributes: id (`str`): The ID of the event. An hexadecimal string. type (`str`): The type of the event. created_at (`datetime`): A [`datetime`](https://docs.python.org/3/library/datetime.html?highlight=datetime#datetime.datetime) object holding the creation timestamp for the event. author (`str`): The username of the Discussion / Pull Request author. Can be `"deleted"` if the user has been deleted since. summary (`str`): The summary of the commit. oid (`str`): The OID / SHA of the commit, as a hexadecimal string. """ summary: str oid: str
class_definition
9,252
10,073
0
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/community.py
null
43
class DiscussionTitleChange(DiscussionEvent): """A rename event in a Discussion / Pull Request. Subclass of [`DiscussionEvent`]. Attributes: id (`str`): The ID of the event. An hexadecimal string. type (`str`): The type of the event. created_at (`datetime`): A [`datetime`](https://docs.python.org/3/library/datetime.html?highlight=datetime#datetime.datetime) object holding the creation timestamp for the event. author (`str`): The username of the Discussion / Pull Request author. Can be `"deleted"` if the user has been deleted since. old_title (`str`): The previous title for the Discussion / Pull Request. new_title (`str`): The new title. """ old_title: str new_title: str
class_definition
10,087
10,936
0
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/community.py
null
44
class InferenceApi: """Client to configure requests and make calls to the HuggingFace Inference API. Example: ```python >>> from huggingface_hub.inference_api import InferenceApi >>> # Mask-fill example >>> inference = InferenceApi("bert-base-uncased") >>> inference(inputs="The goal of life is [MASK].") [{'sequence': 'the goal of life is life.', 'score': 0.10933292657136917, 'token': 2166, 'token_str': 'life'}] >>> # Question Answering example >>> inference = InferenceApi("deepset/roberta-base-squad2") >>> inputs = { ... "question": "What's my name?", ... "context": "My name is Clara and I live in Berkeley.", ... } >>> inference(inputs) {'score': 0.9326569437980652, 'start': 11, 'end': 16, 'answer': 'Clara'} >>> # Zero-shot example >>> inference = InferenceApi("typeform/distilbert-base-uncased-mnli") >>> inputs = "Hi, I recently bought a device from your company but it is not working as advertised and I would like to get reimbursed!" >>> params = {"candidate_labels": ["refund", "legal", "faq"]} >>> inference(inputs, params) {'sequence': 'Hi, I recently bought a device from your company but it is not working as advertised and I would like to get reimbursed!', 'labels': ['refund', 'faq', 'legal'], 'scores': [0.9378499388694763, 0.04914155602455139, 0.013008488342165947]} >>> # Overriding configured task >>> inference = InferenceApi("bert-base-uncased", task="feature-extraction") >>> # Text-to-image >>> inference = InferenceApi("stabilityai/stable-diffusion-2-1") >>> inference("cat") <PIL.PngImagePlugin.PngImageFile image (...)> >>> # Return as raw response to parse the output yourself >>> inference = InferenceApi("mio/amadeus") >>> response = inference("hello world", raw_response=True) >>> response.headers {"Content-Type": "audio/flac", ...} >>> response.content # raw bytes from server b'(...)' ``` """ @validate_hf_hub_args @_deprecate_method( version="1.0", message=( "`InferenceApi` client is deprecated in favor of the more feature-complete `InferenceClient`. Check out" " this guide to learn how to convert your script to use it:" " https://huggingface.co/docs/huggingface_hub/guides/inference#legacy-inferenceapi-client." ), ) def __init__( self, repo_id: str, task: Optional[str] = None, token: Optional[str] = None, gpu: bool = False, ): """Inits headers and API call information. Args: repo_id (``str``): Id of repository (e.g. `user/bert-base-uncased`). task (``str``, `optional`, defaults ``None``): Whether to force a task instead of using task specified in the repository. token (`str`, `optional`): The API token to use as HTTP bearer authorization. This is not the authentication token. You can find the token in https://huggingface.co/settings/token. Alternatively, you can find both your organizations and personal API tokens using `HfApi().whoami(token)`. gpu (`bool`, `optional`, defaults `False`): Whether to use GPU instead of CPU for inference(requires Startup plan at least). """ self.options = {"wait_for_model": True, "use_gpu": gpu} self.headers = build_hf_headers(token=token) # Configure task model_info = HfApi(token=token).model_info(repo_id=repo_id) if not model_info.pipeline_tag and not task: raise ValueError( "Task not specified in the repository. Please add it to the model card" " using pipeline_tag" " (https://huggingface.co/docs#how-is-a-models-type-of-inference-api-and-widget-determined)" ) if task and task != model_info.pipeline_tag: if task not in ALL_TASKS: raise ValueError(f"Invalid task {task}. Make sure it's valid.") logger.warning( "You're using a different task than the one specified in the" " repository. Be sure to know what you're doing :)" ) self.task = task else: assert model_info.pipeline_tag is not None, "Pipeline tag cannot be None" self.task = model_info.pipeline_tag self.api_url = f"{constants.INFERENCE_ENDPOINT}/pipeline/{self.task}/{repo_id}" def __repr__(self): # Do not add headers to repr to avoid leaking token. return f"InferenceAPI(api_url='{self.api_url}', task='{self.task}', options={self.options})" def __call__( self, inputs: Optional[Union[str, Dict, List[str], List[List[str]]]] = None, params: Optional[Dict] = None, data: Optional[bytes] = None, raw_response: bool = False, ) -> Any: """Make a call to the Inference API. Args: inputs (`str` or `Dict` or `List[str]` or `List[List[str]]`, *optional*): Inputs for the prediction. params (`Dict`, *optional*): Additional parameters for the models. Will be sent as `parameters` in the payload. data (`bytes`, *optional*): Bytes content of the request. In this case, leave `inputs` and `params` empty. raw_response (`bool`, defaults to `False`): If `True`, the raw `Response` object is returned. You can parse its content as preferred. By default, the content is parsed into a more practical format (json dictionary or PIL Image for example). """ # Build payload payload: Dict[str, Any] = { "options": self.options, } if inputs: payload["inputs"] = inputs if params: payload["parameters"] = params # Make API call response = get_session().post(self.api_url, headers=self.headers, json=payload, data=data) # Let the user handle the response if raw_response: return response # By default, parse the response for the user. content_type = response.headers.get("Content-Type") or "" if content_type.startswith("image"): if not is_pillow_available(): raise ImportError( f"Task '{self.task}' returned as image but Pillow is not installed." " Please install it (`pip install Pillow`) or pass" " `raw_response=True` to get the raw `Response` object and parse" " the image by yourself." ) from PIL import Image return Image.open(io.BytesIO(response.content)) elif content_type == "application/json": return response.json() else: raise NotImplementedError( f"{content_type} output type is not implemented yet. You can pass" " `raw_response=True` to get the raw `Response` object and parse the" " output by yourself." )
class_definition
1,026
8,322
0
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/inference_api.py
null
45
class InferenceEndpointStatus(str, Enum): PENDING = "pending" INITIALIZING = "initializing" UPDATING = "updating" UPDATE_FAILED = "updateFailed" RUNNING = "running" PAUSED = "paused" FAILED = "failed" SCALED_TO_ZERO = "scaledToZero"
class_definition
516
780
0
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/_inference_endpoints.py
null
46
class InferenceEndpointType(str, Enum): PUBlIC = "public" PROTECTED = "protected" PRIVATE = "private"
class_definition
783
896
0
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/_inference_endpoints.py
null
47
class InferenceEndpoint: """ Contains information about a deployed Inference Endpoint. Args: name (`str`): The unique name of the Inference Endpoint. namespace (`str`): The namespace where the Inference Endpoint is located. repository (`str`): The name of the model repository deployed on this Inference Endpoint. status ([`InferenceEndpointStatus`]): The current status of the Inference Endpoint. url (`str`, *optional*): The URL of the Inference Endpoint, if available. Only a deployed Inference Endpoint will have a URL. framework (`str`): The machine learning framework used for the model. revision (`str`): The specific model revision deployed on the Inference Endpoint. task (`str`): The task associated with the deployed model. created_at (`datetime.datetime`): The timestamp when the Inference Endpoint was created. updated_at (`datetime.datetime`): The timestamp of the last update of the Inference Endpoint. type ([`InferenceEndpointType`]): The type of the Inference Endpoint (public, protected, private). raw (`Dict`): The raw dictionary data returned from the API. token (`str` or `bool`, *optional*): Authentication token for the Inference Endpoint, if set when requesting the API. Will default to the locally saved token if not provided. Pass `token=False` if you don't want to send your token to the server. Example: ```python >>> from huggingface_hub import get_inference_endpoint >>> endpoint = get_inference_endpoint("my-text-to-image") >>> endpoint InferenceEndpoint(name='my-text-to-image', ...) # Get status >>> endpoint.status 'running' >>> endpoint.url 'https://my-text-to-image.region.vendor.endpoints.huggingface.cloud' # Run inference >>> endpoint.client.text_to_image(...) # Pause endpoint to save $$$ >>> endpoint.pause() # ... # Resume and wait for deployment >>> endpoint.resume() >>> endpoint.wait() >>> endpoint.client.text_to_image(...) ``` """ # Field in __repr__ name: str = field(init=False) namespace: str repository: str = field(init=False) status: InferenceEndpointStatus = field(init=False) url: Optional[str] = field(init=False) # Other fields framework: str = field(repr=False, init=False) revision: str = field(repr=False, init=False) task: str = field(repr=False, init=False) created_at: datetime = field(repr=False, init=False) updated_at: datetime = field(repr=False, init=False) type: InferenceEndpointType = field(repr=False, init=False) # Raw dict from the API raw: Dict = field(repr=False) # Internal fields _token: Union[str, bool, None] = field(repr=False, compare=False) _api: "HfApi" = field(repr=False, compare=False) @classmethod def from_raw( cls, raw: Dict, namespace: str, token: Union[str, bool, None] = None, api: Optional["HfApi"] = None ) -> "InferenceEndpoint": """Initialize object from raw dictionary.""" if api is None: from .hf_api import HfApi api = HfApi() if token is None: token = api.token # All other fields are populated in __post_init__ return cls(raw=raw, namespace=namespace, _token=token, _api=api) def __post_init__(self) -> None: """Populate fields from raw dictionary.""" self._populate_from_raw() @property def client(self) -> InferenceClient: """Returns a client to make predictions on this Inference Endpoint. Returns: [`InferenceClient`]: an inference client pointing to the deployed endpoint. Raises: [`InferenceEndpointError`]: If the Inference Endpoint is not yet deployed. """ if self.url is None: raise InferenceEndpointError( "Cannot create a client for this Inference Endpoint as it is not yet deployed. " "Please wait for the Inference Endpoint to be deployed using `endpoint.wait()` and try again." ) return InferenceClient(model=self.url, token=self._token) @property def async_client(self) -> AsyncInferenceClient: """Returns a client to make predictions on this Inference Endpoint. Returns: [`AsyncInferenceClient`]: an asyncio-compatible inference client pointing to the deployed endpoint. Raises: [`InferenceEndpointError`]: If the Inference Endpoint is not yet deployed. """ if self.url is None: raise InferenceEndpointError( "Cannot create a client for this Inference Endpoint as it is not yet deployed. " "Please wait for the Inference Endpoint to be deployed using `endpoint.wait()` and try again." ) return AsyncInferenceClient(model=self.url, token=self._token) def wait(self, timeout: Optional[int] = None, refresh_every: int = 5) -> "InferenceEndpoint": """Wait for the Inference Endpoint to be deployed. Information from the server will be fetched every 1s. If the Inference Endpoint is not deployed after `timeout` seconds, a [`InferenceEndpointTimeoutError`] will be raised. The [`InferenceEndpoint`] will be mutated in place with the latest data. Args: timeout (`int`, *optional*): The maximum time to wait for the Inference Endpoint to be deployed, in seconds. If `None`, will wait indefinitely. refresh_every (`int`, *optional*): The time to wait between each fetch of the Inference Endpoint status, in seconds. Defaults to 5s. Returns: [`InferenceEndpoint`]: the same Inference Endpoint, mutated in place with the latest data. Raises: [`InferenceEndpointError`] If the Inference Endpoint ended up in a failed state. [`InferenceEndpointTimeoutError`] If the Inference Endpoint is not deployed after `timeout` seconds. """ if timeout is not None and timeout < 0: raise ValueError("`timeout` cannot be negative.") if refresh_every <= 0: raise ValueError("`refresh_every` must be positive.") start = time.time() while True: if self.url is not None: # Means the URL is provisioned => check if the endpoint is reachable response = get_session().get(self.url, headers=self._api._build_hf_headers(token=self._token)) if response.status_code == 200: logger.info("Inference Endpoint is ready to be used.") return self if self.status == InferenceEndpointStatus.FAILED: raise InferenceEndpointError( f"Inference Endpoint {self.name} failed to deploy. Please check the logs for more information." ) if timeout is not None: if time.time() - start > timeout: raise InferenceEndpointTimeoutError("Timeout while waiting for Inference Endpoint to be deployed.") logger.info(f"Inference Endpoint is not deployed yet ({self.status}). Waiting {refresh_every}s...") time.sleep(refresh_every) self.fetch() def fetch(self) -> "InferenceEndpoint": """Fetch latest information about the Inference Endpoint. Returns: [`InferenceEndpoint`]: the same Inference Endpoint, mutated in place with the latest data. """ obj = self._api.get_inference_endpoint(name=self.name, namespace=self.namespace, token=self._token) # type: ignore [arg-type] self.raw = obj.raw self._populate_from_raw() return self def update( self, *, # Compute update accelerator: Optional[str] = None, instance_size: Optional[str] = None, instance_type: Optional[str] = None, min_replica: Optional[int] = None, max_replica: Optional[int] = None, scale_to_zero_timeout: Optional[int] = None, # Model update repository: Optional[str] = None, framework: Optional[str] = None, revision: Optional[str] = None, task: Optional[str] = None, custom_image: Optional[Dict] = None, secrets: Optional[Dict[str, str]] = None, ) -> "InferenceEndpoint": """Update the Inference Endpoint. This method allows the update of either the compute configuration, the deployed model, or both. All arguments are optional but at least one must be provided. This is an alias for [`HfApi.update_inference_endpoint`]. The current object is mutated in place with the latest data from the server. Args: accelerator (`str`, *optional*): The hardware accelerator to be used for inference (e.g. `"cpu"`). instance_size (`str`, *optional*): The size or type of the instance to be used for hosting the model (e.g. `"x4"`). instance_type (`str`, *optional*): The cloud instance type where the Inference Endpoint will be deployed (e.g. `"intel-icl"`). min_replica (`int`, *optional*): The minimum number of replicas (instances) to keep running for the Inference Endpoint. max_replica (`int`, *optional*): The maximum number of replicas (instances) to scale to for the Inference Endpoint. scale_to_zero_timeout (`int`, *optional*): The duration in minutes before an inactive endpoint is scaled to zero. repository (`str`, *optional*): The name of the model repository associated with the Inference Endpoint (e.g. `"gpt2"`). framework (`str`, *optional*): The machine learning framework used for the model (e.g. `"custom"`). revision (`str`, *optional*): The specific model revision to deploy on the Inference Endpoint (e.g. `"6c0e6080953db56375760c0471a8c5f2929baf11"`). task (`str`, *optional*): The task on which to deploy the model (e.g. `"text-classification"`). custom_image (`Dict`, *optional*): A custom Docker image to use for the Inference Endpoint. This is useful if you want to deploy an Inference Endpoint running on the `text-generation-inference` (TGI) framework (see examples). secrets (`Dict[str, str]`, *optional*): Secret values to inject in the container environment. Returns: [`InferenceEndpoint`]: the same Inference Endpoint, mutated in place with the latest data. """ # Make API call obj = self._api.update_inference_endpoint( name=self.name, namespace=self.namespace, accelerator=accelerator, instance_size=instance_size, instance_type=instance_type, min_replica=min_replica, max_replica=max_replica, scale_to_zero_timeout=scale_to_zero_timeout, repository=repository, framework=framework, revision=revision, task=task, custom_image=custom_image, secrets=secrets, token=self._token, # type: ignore [arg-type] ) # Mutate current object self.raw = obj.raw self._populate_from_raw() return self def pause(self) -> "InferenceEndpoint": """Pause the Inference Endpoint. A paused Inference Endpoint will not be charged. It can be resumed at any time using [`InferenceEndpoint.resume`]. This is different than scaling the Inference Endpoint to zero with [`InferenceEndpoint.scale_to_zero`], which would be automatically restarted when a request is made to it. This is an alias for [`HfApi.pause_inference_endpoint`]. The current object is mutated in place with the latest data from the server. Returns: [`InferenceEndpoint`]: the same Inference Endpoint, mutated in place with the latest data. """ obj = self._api.pause_inference_endpoint(name=self.name, namespace=self.namespace, token=self._token) # type: ignore [arg-type] self.raw = obj.raw self._populate_from_raw() return self def resume(self, running_ok: bool = True) -> "InferenceEndpoint": """Resume the Inference Endpoint. This is an alias for [`HfApi.resume_inference_endpoint`]. The current object is mutated in place with the latest data from the server. Args: running_ok (`bool`, *optional*): If `True`, the method will not raise an error if the Inference Endpoint is already running. Defaults to `True`. Returns: [`InferenceEndpoint`]: the same Inference Endpoint, mutated in place with the latest data. """ obj = self._api.resume_inference_endpoint( name=self.name, namespace=self.namespace, running_ok=running_ok, token=self._token ) # type: ignore [arg-type] self.raw = obj.raw self._populate_from_raw() return self def scale_to_zero(self) -> "InferenceEndpoint": """Scale Inference Endpoint to zero. An Inference Endpoint scaled to zero will not be charged. It will be resume on the next request to it, with a cold start delay. This is different than pausing the Inference Endpoint with [`InferenceEndpoint.pause`], which would require a manual resume with [`InferenceEndpoint.resume`]. This is an alias for [`HfApi.scale_to_zero_inference_endpoint`]. The current object is mutated in place with the latest data from the server. Returns: [`InferenceEndpoint`]: the same Inference Endpoint, mutated in place with the latest data. """ obj = self._api.scale_to_zero_inference_endpoint(name=self.name, namespace=self.namespace, token=self._token) # type: ignore [arg-type] self.raw = obj.raw self._populate_from_raw() return self def delete(self) -> None: """Delete the Inference Endpoint. This operation is not reversible. If you don't want to be charged for an Inference Endpoint, it is preferable to pause it with [`InferenceEndpoint.pause`] or scale it to zero with [`InferenceEndpoint.scale_to_zero`]. This is an alias for [`HfApi.delete_inference_endpoint`]. """ self._api.delete_inference_endpoint(name=self.name, namespace=self.namespace, token=self._token) # type: ignore [arg-type] def _populate_from_raw(self) -> None: """Populate fields from raw dictionary. Called in __post_init__ + each time the Inference Endpoint is updated. """ # Repr fields self.name = self.raw["name"] self.repository = self.raw["model"]["repository"] self.status = self.raw["status"]["state"] self.url = self.raw["status"].get("url") # Other fields self.framework = self.raw["model"]["framework"] self.revision = self.raw["model"]["revision"] self.task = self.raw["model"]["task"] self.created_at = parse_datetime(self.raw["status"]["createdAt"]) self.updated_at = parse_datetime(self.raw["status"]["updatedAt"]) self.type = self.raw["type"]
class_definition
910
16,749
0
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/_inference_endpoints.py
null
48
class LastCommitInfo(dict): oid: str title: str date: datetime def __post_init__(self): # hack to make LastCommitInfo backward compatible self.update(asdict(self))
class_definition
9,657
9,846
0
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/hf_api.py
null
49
class BlobLfsInfo(dict): size: int sha256: str pointer_size: int def __post_init__(self): # hack to make BlobLfsInfo backward compatible self.update(asdict(self))
class_definition
9,860
10,048
0
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/hf_api.py
null
50
class BlobSecurityInfo(dict): safe: bool # duplicate information with "status" field, keeping it for backward compatibility status: str av_scan: Optional[Dict] pickle_import_scan: Optional[Dict] def __post_init__(self): # hack to make BlogSecurityInfo backward compatible self.update(asdict(self))
class_definition
10,062
10,390
0
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/hf_api.py
null
51
class TransformersInfo(dict): auto_model: str custom_class: Optional[str] = None # possible `pipeline_tag` values: https://github.com/huggingface/huggingface.js/blob/3ee32554b8620644a6287e786b2a83bf5caf559c/packages/tasks/src/pipelines.ts#L72 pipeline_tag: Optional[str] = None processor: Optional[str] = None def __post_init__(self): # hack to make TransformersInfo backward compatible self.update(asdict(self))
class_definition
10,404
10,850
0
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/hf_api.py
null
52
class SafeTensorsInfo(dict): parameters: Dict[str, int] total: int def __post_init__(self): # hack to make SafeTensorsInfo backward compatible self.update(asdict(self))
class_definition
10,864
11,054
0
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/hf_api.py
null
53
class CommitInfo(str): """Data structure containing information about a newly created commit. Returned by any method that creates a commit on the Hub: [`create_commit`], [`upload_file`], [`upload_folder`], [`delete_file`], [`delete_folder`]. It inherits from `str` for backward compatibility but using methods specific to `str` is deprecated. Attributes: commit_url (`str`): Url where to find the commit. commit_message (`str`): The summary (first line) of the commit that has been created. commit_description (`str`): Description of the commit that has been created. Can be empty. oid (`str`): Commit hash id. Example: `"91c54ad1727ee830252e457677f467be0bfd8a57"`. pr_url (`str`, *optional*): Url to the PR that has been created, if any. Populated when `create_pr=True` is passed. pr_revision (`str`, *optional*): Revision of the PR that has been created, if any. Populated when `create_pr=True` is passed. Example: `"refs/pr/1"`. pr_num (`int`, *optional*): Number of the PR discussion that has been created, if any. Populated when `create_pr=True` is passed. Can be passed as `discussion_num` in [`get_discussion_details`]. Example: `1`. repo_url (`RepoUrl`): Repo URL of the commit containing info like repo_id, repo_type, etc. _url (`str`, *optional*): Legacy url for `str` compatibility. Can be the url to the uploaded file on the Hub (if returned by [`upload_file`]), to the uploaded folder on the Hub (if returned by [`upload_folder`]) or to the commit on the Hub (if returned by [`create_commit`]). Defaults to `commit_url`. It is deprecated to use this attribute. Please use `commit_url` instead. """ commit_url: str commit_message: str commit_description: str oid: str pr_url: Optional[str] = None # Computed from `commit_url` in `__post_init__` repo_url: RepoUrl = field(init=False) # Computed from `pr_url` in `__post_init__` pr_revision: Optional[str] = field(init=False) pr_num: Optional[str] = field(init=False) # legacy url for `str` compatibility (ex: url to uploaded file, url to uploaded folder, url to PR, etc.) _url: str = field(repr=False, default=None) # type: ignore # defaults to `commit_url` def __new__(cls, *args, commit_url: str, _url: Optional[str] = None, **kwargs): return str.__new__(cls, _url or commit_url) def __post_init__(self): """Populate pr-related fields after initialization. See https://docs.python.org/3.10/library/dataclasses.html#post-init-processing. """ # Repo info self.repo_url = RepoUrl(self.commit_url.split("/commit/")[0]) # PR info if self.pr_url is not None: self.pr_revision = _parse_revision_from_pr_url(self.pr_url) self.pr_num = int(self.pr_revision.split("/")[-1]) else: self.pr_revision = None self.pr_num = None
class_definition
11,068
14,227
0
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/hf_api.py
null
54
class AccessRequest: """Data structure containing information about a user access request. Attributes: username (`str`): Username of the user who requested access. fullname (`str`): Fullname of the user who requested access. email (`Optional[str]`): Email of the user who requested access. Can only be `None` in the /accepted list if the user was granted access manually. timestamp (`datetime`): Timestamp of the request. status (`Literal["pending", "accepted", "rejected"]`): Status of the request. Can be one of `["pending", "accepted", "rejected"]`. fields (`Dict[str, Any]`, *optional*): Additional fields filled by the user in the gate form. """ username: str fullname: str email: Optional[str] timestamp: datetime status: Literal["pending", "accepted", "rejected"] # Additional fields filled by the user in the gate form fields: Optional[Dict[str, Any]] = None
class_definition
14,241
15,282
0
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/hf_api.py
null
55
class WebhookWatchedItem: """Data structure containing information about the items watched by a webhook. Attributes: type (`Literal["dataset", "model", "org", "space", "user"]`): Type of the item to be watched. Can be one of `["dataset", "model", "org", "space", "user"]`. name (`str`): Name of the item to be watched. Can be the username, organization name, model name, dataset name or space name. """ type: Literal["dataset", "model", "org", "space", "user"] name: str
class_definition
15,296
15,828
0
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/hf_api.py
null
56
class WebhookInfo: """Data structure containing information about a webhook. Attributes: id (`str`): ID of the webhook. url (`str`): URL of the webhook. watched (`List[WebhookWatchedItem]`): List of items watched by the webhook, see [`WebhookWatchedItem`]. domains (`List[WEBHOOK_DOMAIN_T]`): List of domains the webhook is watching. Can be one of `["repo", "discussions"]`. secret (`str`, *optional*): Secret of the webhook. disabled (`bool`): Whether the webhook is disabled or not. """ id: str url: str watched: List[WebhookWatchedItem] domains: List[constants.WEBHOOK_DOMAIN_T] secret: Optional[str] disabled: bool
class_definition
15,842
16,618
0
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/hf_api.py
null
57
class RepoUrl(str): """Subclass of `str` describing a repo URL on the Hub. `RepoUrl` is returned by `HfApi.create_repo`. It inherits from `str` for backward compatibility. At initialization, the URL is parsed to populate properties: - endpoint (`str`) - namespace (`Optional[str]`) - repo_name (`str`) - repo_id (`str`) - repo_type (`Literal["model", "dataset", "space"]`) - url (`str`) Args: url (`Any`): String value of the repo url. endpoint (`str`, *optional*): Endpoint of the Hub. Defaults to <https://huggingface.co>. Example: ```py >>> RepoUrl('https://huggingface.co/gpt2') RepoUrl('https://huggingface.co/gpt2', endpoint='https://huggingface.co', repo_type='model', repo_id='gpt2') >>> RepoUrl('https://hub-ci.huggingface.co/datasets/dummy_user/dummy_dataset', endpoint='https://hub-ci.huggingface.co') RepoUrl('https://hub-ci.huggingface.co/datasets/dummy_user/dummy_dataset', endpoint='https://hub-ci.huggingface.co', repo_type='dataset', repo_id='dummy_user/dummy_dataset') >>> RepoUrl('hf://datasets/my-user/my-dataset') RepoUrl('hf://datasets/my-user/my-dataset', endpoint='https://huggingface.co', repo_type='dataset', repo_id='user/dataset') >>> HfApi.create_repo("dummy_model") RepoUrl('https://huggingface.co/Wauplin/dummy_model', endpoint='https://huggingface.co', repo_type='model', repo_id='Wauplin/dummy_model') ``` Raises: [`ValueError`](https://docs.python.org/3/library/exceptions.html#ValueError) If URL cannot be parsed. [`ValueError`](https://docs.python.org/3/library/exceptions.html#ValueError) If `repo_type` is unknown. """ def __new__(cls, url: Any, endpoint: Optional[str] = None): url = fix_hf_endpoint_in_url(url, endpoint=endpoint) return super(RepoUrl, cls).__new__(cls, url) def __init__(self, url: Any, endpoint: Optional[str] = None) -> None: super().__init__() # Parse URL self.endpoint = endpoint or constants.ENDPOINT repo_type, namespace, repo_name = repo_type_and_id_from_hf_id(self, hub_url=self.endpoint) # Populate fields self.namespace = namespace self.repo_name = repo_name self.repo_id = repo_name if namespace is None else f"{namespace}/{repo_name}" self.repo_type = repo_type or constants.REPO_TYPE_MODEL self.url = str(self) # just in case it's needed def __repr__(self) -> str: return f"RepoUrl('{self}', endpoint='{self.endpoint}', repo_type='{self.repo_type}', repo_id='{self.repo_id}')"
class_definition
16,621
19,267
0
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/hf_api.py
null
58
class RepoSibling: """ Contains basic information about a repo file inside a repo on the Hub. <Tip> All attributes of this class are optional except `rfilename`. This is because only the file names are returned when listing repositories on the Hub (with [`list_models`], [`list_datasets`] or [`list_spaces`]). If you need more information like file size, blob id or lfs details, you must request them specifically from one repo at a time (using [`model_info`], [`dataset_info`] or [`space_info`]) as it adds more constraints on the backend server to retrieve these. </Tip> Attributes: rfilename (str): file name, relative to the repo root. size (`int`, *optional*): The file's size, in bytes. This attribute is defined when `files_metadata` argument of [`repo_info`] is set to `True`. It's `None` otherwise. blob_id (`str`, *optional*): The file's git OID. This attribute is defined when `files_metadata` argument of [`repo_info`] is set to `True`. It's `None` otherwise. lfs (`BlobLfsInfo`, *optional*): The file's LFS metadata. This attribute is defined when`files_metadata` argument of [`repo_info`] is set to `True` and the file is stored with Git LFS. It's `None` otherwise. """ rfilename: str size: Optional[int] = None blob_id: Optional[str] = None lfs: Optional[BlobLfsInfo] = None
class_definition
19,281
20,751
0
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/hf_api.py
null
59
class RepoFile: """ Contains information about a file on the Hub. Attributes: path (str): file path relative to the repo root. size (`int`): The file's size, in bytes. blob_id (`str`): The file's git OID. lfs (`BlobLfsInfo`): The file's LFS metadata. last_commit (`LastCommitInfo`, *optional*): The file's last commit metadata. Only defined if [`list_repo_tree`] and [`get_paths_info`] are called with `expand=True`. security (`BlobSecurityInfo`, *optional*): The file's security scan metadata. Only defined if [`list_repo_tree`] and [`get_paths_info`] are called with `expand=True`. """ path: str size: int blob_id: str lfs: Optional[BlobLfsInfo] = None last_commit: Optional[LastCommitInfo] = None security: Optional[BlobSecurityInfo] = None def __init__(self, **kwargs): self.path = kwargs.pop("path") self.size = kwargs.pop("size") self.blob_id = kwargs.pop("oid") lfs = kwargs.pop("lfs", None) if lfs is not None: lfs = BlobLfsInfo(size=lfs["size"], sha256=lfs["oid"], pointer_size=lfs["pointerSize"]) self.lfs = lfs last_commit = kwargs.pop("lastCommit", None) or kwargs.pop("last_commit", None) if last_commit is not None: last_commit = LastCommitInfo( oid=last_commit["id"], title=last_commit["title"], date=parse_datetime(last_commit["date"]) ) self.last_commit = last_commit security = kwargs.pop("securityFileStatus", None) if security is not None: safe = security["status"] == "safe" security = BlobSecurityInfo( safe=safe, status=security["status"], av_scan=security["avScan"], pickle_import_scan=security["pickleImportScan"], ) self.security = security # backwards compatibility self.rfilename = self.path self.lastCommit = self.last_commit
class_definition
20,765
22,883
0
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/hf_api.py
null
60
class RepoFolder: """ Contains information about a folder on the Hub. Attributes: path (str): folder path relative to the repo root. tree_id (`str`): The folder's git OID. last_commit (`LastCommitInfo`, *optional*): The folder's last commit metadata. Only defined if [`list_repo_tree`] and [`get_paths_info`] are called with `expand=True`. """ path: str tree_id: str last_commit: Optional[LastCommitInfo] = None def __init__(self, **kwargs): self.path = kwargs.pop("path") self.tree_id = kwargs.pop("oid") last_commit = kwargs.pop("lastCommit", None) or kwargs.pop("last_commit", None) if last_commit is not None: last_commit = LastCommitInfo( oid=last_commit["id"], title=last_commit["title"], date=parse_datetime(last_commit["date"]) ) self.last_commit = last_commit
class_definition
22,897
23,852
0
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/hf_api.py
null
61
class ModelInfo: """ Contains information about a model on the Hub. <Tip> Most attributes of this class are optional. This is because the data returned by the Hub depends on the query made. In general, the more specific the query, the more information is returned. On the contrary, when listing models using [`list_models`] only a subset of the attributes are returned. </Tip> Attributes: id (`str`): ID of model. author (`str`, *optional*): Author of the model. sha (`str`, *optional*): Repo SHA at this particular revision. created_at (`datetime`, *optional*): Date of creation of the repo on the Hub. Note that the lowest value is `2022-03-02T23:29:04.000Z`, corresponding to the date when we began to store creation dates. last_modified (`datetime`, *optional*): Date of last commit to the repo. private (`bool`): Is the repo private. disabled (`bool`, *optional*): Is the repo disabled. downloads (`int`): Number of downloads of the model over the last 30 days. downloads_all_time (`int`): Cumulated number of downloads of the model since its creation. gated (`Literal["auto", "manual", False]`, *optional*): Is the repo gated. If so, whether there is manual or automatic approval. gguf (`Dict`, *optional*): GGUF information of the model. inference (`Literal["cold", "frozen", "warm"]`, *optional*): Status of the model on the inference API. Warm models are available for immediate use. Cold models will be loaded on first inference call. Frozen models are not available in Inference API. likes (`int`): Number of likes of the model. library_name (`str`, *optional*): Library associated with the model. tags (`List[str]`): List of tags of the model. Compared to `card_data.tags`, contains extra tags computed by the Hub (e.g. supported libraries, model's arXiv). pipeline_tag (`str`, *optional*): Pipeline tag associated with the model. mask_token (`str`, *optional*): Mask token used by the model. widget_data (`Any`, *optional*): Widget data associated with the model. model_index (`Dict`, *optional*): Model index for evaluation. config (`Dict`, *optional*): Model configuration. transformers_info (`TransformersInfo`, *optional*): Transformers-specific info (auto class, processor, etc.) associated with the model. trending_score (`int`, *optional*): Trending score of the model. card_data (`ModelCardData`, *optional*): Model Card Metadata as a [`huggingface_hub.repocard_data.ModelCardData`] object. siblings (`List[RepoSibling]`): List of [`huggingface_hub.hf_api.RepoSibling`] objects that constitute the model. spaces (`List[str]`, *optional*): List of spaces using the model. safetensors (`SafeTensorsInfo`, *optional*): Model's safetensors information. security_repo_status (`Dict`, *optional*): Model's security scan status. """ id: str author: Optional[str] sha: Optional[str] created_at: Optional[datetime] last_modified: Optional[datetime] private: Optional[bool] disabled: Optional[bool] downloads: Optional[int] downloads_all_time: Optional[int] gated: Optional[Literal["auto", "manual", False]] gguf: Optional[Dict] inference: Optional[Literal["warm", "cold", "frozen"]] likes: Optional[int] library_name: Optional[str] tags: Optional[List[str]] pipeline_tag: Optional[str] mask_token: Optional[str] card_data: Optional[ModelCardData] widget_data: Optional[Any] model_index: Optional[Dict] config: Optional[Dict] transformers_info: Optional[TransformersInfo] trending_score: Optional[int] siblings: Optional[List[RepoSibling]] spaces: Optional[List[str]] safetensors: Optional[SafeTensorsInfo] security_repo_status: Optional[Dict] def __init__(self, **kwargs): self.id = kwargs.pop("id") self.author = kwargs.pop("author", None) self.sha = kwargs.pop("sha", None) last_modified = kwargs.pop("lastModified", None) or kwargs.pop("last_modified", None) self.last_modified = parse_datetime(last_modified) if last_modified else None created_at = kwargs.pop("createdAt", None) or kwargs.pop("created_at", None) self.created_at = parse_datetime(created_at) if created_at else None self.private = kwargs.pop("private", None) self.gated = kwargs.pop("gated", None) self.disabled = kwargs.pop("disabled", None) self.downloads = kwargs.pop("downloads", None) self.downloads_all_time = kwargs.pop("downloadsAllTime", None) self.likes = kwargs.pop("likes", None) self.library_name = kwargs.pop("library_name", None) self.gguf = kwargs.pop("gguf", None) self.inference = kwargs.pop("inference", None) self.tags = kwargs.pop("tags", None) self.pipeline_tag = kwargs.pop("pipeline_tag", None) self.mask_token = kwargs.pop("mask_token", None) self.trending_score = kwargs.pop("trendingScore", None) card_data = kwargs.pop("cardData", None) or kwargs.pop("card_data", None) self.card_data = ( ModelCardData(**card_data, ignore_metadata_errors=True) if isinstance(card_data, dict) else card_data ) self.widget_data = kwargs.pop("widgetData", None) self.model_index = kwargs.pop("model-index", None) or kwargs.pop("model_index", None) self.config = kwargs.pop("config", None) transformers_info = kwargs.pop("transformersInfo", None) or kwargs.pop("transformers_info", None) self.transformers_info = TransformersInfo(**transformers_info) if transformers_info else None siblings = kwargs.pop("siblings", None) self.siblings = ( [ RepoSibling( rfilename=sibling["rfilename"], size=sibling.get("size"), blob_id=sibling.get("blobId"), lfs=( BlobLfsInfo( size=sibling["lfs"]["size"], sha256=sibling["lfs"]["sha256"], pointer_size=sibling["lfs"]["pointerSize"], ) if sibling.get("lfs") else None ), ) for sibling in siblings ] if siblings is not None else None ) self.spaces = kwargs.pop("spaces", None) safetensors = kwargs.pop("safetensors", None) self.safetensors = ( SafeTensorsInfo( parameters=safetensors["parameters"], total=safetensors["total"], ) if safetensors else None ) self.security_repo_status = kwargs.pop("securityRepoStatus", None) # backwards compatibility self.lastModified = self.last_modified self.cardData = self.card_data self.transformersInfo = self.transformers_info self.__dict__.update(**kwargs)
class_definition
23,866
31,439
0
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/hf_api.py
null
62
class DatasetInfo: """ Contains information about a dataset on the Hub. <Tip> Most attributes of this class are optional. This is because the data returned by the Hub depends on the query made. In general, the more specific the query, the more information is returned. On the contrary, when listing datasets using [`list_datasets`] only a subset of the attributes are returned. </Tip> Attributes: id (`str`): ID of dataset. author (`str`): Author of the dataset. sha (`str`): Repo SHA at this particular revision. created_at (`datetime`, *optional*): Date of creation of the repo on the Hub. Note that the lowest value is `2022-03-02T23:29:04.000Z`, corresponding to the date when we began to store creation dates. last_modified (`datetime`, *optional*): Date of last commit to the repo. private (`bool`): Is the repo private. disabled (`bool`, *optional*): Is the repo disabled. gated (`Literal["auto", "manual", False]`, *optional*): Is the repo gated. If so, whether there is manual or automatic approval. downloads (`int`): Number of downloads of the dataset over the last 30 days. downloads_all_time (`int`): Cumulated number of downloads of the model since its creation. likes (`int`): Number of likes of the dataset. tags (`List[str]`): List of tags of the dataset. card_data (`DatasetCardData`, *optional*): Model Card Metadata as a [`huggingface_hub.repocard_data.DatasetCardData`] object. siblings (`List[RepoSibling]`): List of [`huggingface_hub.hf_api.RepoSibling`] objects that constitute the dataset. paperswithcode_id (`str`, *optional*): Papers with code ID of the dataset. trending_score (`int`, *optional*): Trending score of the dataset. """ id: str author: Optional[str] sha: Optional[str] created_at: Optional[datetime] last_modified: Optional[datetime] private: Optional[bool] gated: Optional[Literal["auto", "manual", False]] disabled: Optional[bool] downloads: Optional[int] downloads_all_time: Optional[int] likes: Optional[int] paperswithcode_id: Optional[str] tags: Optional[List[str]] trending_score: Optional[int] card_data: Optional[DatasetCardData] siblings: Optional[List[RepoSibling]] def __init__(self, **kwargs): self.id = kwargs.pop("id") self.author = kwargs.pop("author", None) self.sha = kwargs.pop("sha", None) created_at = kwargs.pop("createdAt", None) or kwargs.pop("created_at", None) self.created_at = parse_datetime(created_at) if created_at else None last_modified = kwargs.pop("lastModified", None) or kwargs.pop("last_modified", None) self.last_modified = parse_datetime(last_modified) if last_modified else None self.private = kwargs.pop("private", None) self.gated = kwargs.pop("gated", None) self.disabled = kwargs.pop("disabled", None) self.downloads = kwargs.pop("downloads", None) self.downloads_all_time = kwargs.pop("downloadsAllTime", None) self.likes = kwargs.pop("likes", None) self.paperswithcode_id = kwargs.pop("paperswithcode_id", None) self.tags = kwargs.pop("tags", None) self.trending_score = kwargs.pop("trendingScore", None) card_data = kwargs.pop("cardData", None) or kwargs.pop("card_data", None) self.card_data = ( DatasetCardData(**card_data, ignore_metadata_errors=True) if isinstance(card_data, dict) else card_data ) siblings = kwargs.pop("siblings", None) self.siblings = ( [ RepoSibling( rfilename=sibling["rfilename"], size=sibling.get("size"), blob_id=sibling.get("blobId"), lfs=( BlobLfsInfo( size=sibling["lfs"]["size"], sha256=sibling["lfs"]["sha256"], pointer_size=sibling["lfs"]["pointerSize"], ) if sibling.get("lfs") else None ), ) for sibling in siblings ] if siblings is not None else None ) # backwards compatibility self.lastModified = self.last_modified self.cardData = self.card_data self.__dict__.update(**kwargs)
class_definition
31,453
36,212
0
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/hf_api.py
null
63
class SpaceInfo: """ Contains information about a Space on the Hub. <Tip> Most attributes of this class are optional. This is because the data returned by the Hub depends on the query made. In general, the more specific the query, the more information is returned. On the contrary, when listing spaces using [`list_spaces`] only a subset of the attributes are returned. </Tip> Attributes: id (`str`): ID of the Space. author (`str`, *optional*): Author of the Space. sha (`str`, *optional*): Repo SHA at this particular revision. created_at (`datetime`, *optional*): Date of creation of the repo on the Hub. Note that the lowest value is `2022-03-02T23:29:04.000Z`, corresponding to the date when we began to store creation dates. last_modified (`datetime`, *optional*): Date of last commit to the repo. private (`bool`): Is the repo private. gated (`Literal["auto", "manual", False]`, *optional*): Is the repo gated. If so, whether there is manual or automatic approval. disabled (`bool`, *optional*): Is the Space disabled. host (`str`, *optional*): Host URL of the Space. subdomain (`str`, *optional*): Subdomain of the Space. likes (`int`): Number of likes of the Space. tags (`List[str]`): List of tags of the Space. siblings (`List[RepoSibling]`): List of [`huggingface_hub.hf_api.RepoSibling`] objects that constitute the Space. card_data (`SpaceCardData`, *optional*): Space Card Metadata as a [`huggingface_hub.repocard_data.SpaceCardData`] object. runtime (`SpaceRuntime`, *optional*): Space runtime information as a [`huggingface_hub.hf_api.SpaceRuntime`] object. sdk (`str`, *optional*): SDK used by the Space. models (`List[str]`, *optional*): List of models used by the Space. datasets (`List[str]`, *optional*): List of datasets used by the Space. trending_score (`int`, *optional*): Trending score of the Space. """ id: str author: Optional[str] sha: Optional[str] created_at: Optional[datetime] last_modified: Optional[datetime] private: Optional[bool] gated: Optional[Literal["auto", "manual", False]] disabled: Optional[bool] host: Optional[str] subdomain: Optional[str] likes: Optional[int] sdk: Optional[str] tags: Optional[List[str]] siblings: Optional[List[RepoSibling]] trending_score: Optional[int] card_data: Optional[SpaceCardData] runtime: Optional[SpaceRuntime] models: Optional[List[str]] datasets: Optional[List[str]] def __init__(self, **kwargs): self.id = kwargs.pop("id") self.author = kwargs.pop("author", None) self.sha = kwargs.pop("sha", None) created_at = kwargs.pop("createdAt", None) or kwargs.pop("created_at", None) self.created_at = parse_datetime(created_at) if created_at else None last_modified = kwargs.pop("lastModified", None) or kwargs.pop("last_modified", None) self.last_modified = parse_datetime(last_modified) if last_modified else None self.private = kwargs.pop("private", None) self.gated = kwargs.pop("gated", None) self.disabled = kwargs.pop("disabled", None) self.host = kwargs.pop("host", None) self.subdomain = kwargs.pop("subdomain", None) self.likes = kwargs.pop("likes", None) self.sdk = kwargs.pop("sdk", None) self.tags = kwargs.pop("tags", None) self.trending_score = kwargs.pop("trendingScore", None) card_data = kwargs.pop("cardData", None) or kwargs.pop("card_data", None) self.card_data = ( SpaceCardData(**card_data, ignore_metadata_errors=True) if isinstance(card_data, dict) else card_data ) siblings = kwargs.pop("siblings", None) self.siblings = ( [ RepoSibling( rfilename=sibling["rfilename"], size=sibling.get("size"), blob_id=sibling.get("blobId"), lfs=( BlobLfsInfo( size=sibling["lfs"]["size"], sha256=sibling["lfs"]["sha256"], pointer_size=sibling["lfs"]["pointerSize"], ) if sibling.get("lfs") else None ), ) for sibling in siblings ] if siblings is not None else None ) runtime = kwargs.pop("runtime", None) self.runtime = SpaceRuntime(runtime) if runtime else None self.models = kwargs.pop("models", None) self.datasets = kwargs.pop("datasets", None) # backwards compatibility self.lastModified = self.last_modified self.cardData = self.card_data self.__dict__.update(**kwargs)
class_definition
36,226
41,445
0
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/hf_api.py
null
64
class CollectionItem: """ Contains information about an item of a Collection (model, dataset, Space or paper). Attributes: item_object_id (`str`): Unique ID of the item in the collection. item_id (`str`): ID of the underlying object on the Hub. Can be either a repo_id or a paper id e.g. `"jbilcke-hf/ai-comic-factory"`, `"2307.09288"`. item_type (`str`): Type of the underlying object. Can be one of `"model"`, `"dataset"`, `"space"` or `"paper"`. position (`int`): Position of the item in the collection. note (`str`, *optional*): Note associated with the item, as plain text. """ item_object_id: str # id in database item_id: str # repo_id or paper id item_type: str position: int note: Optional[str] = None def __init__( self, _id: str, id: str, type: CollectionItemType_T, position: int, note: Optional[Dict] = None, **kwargs ) -> None: self.item_object_id: str = _id # id in database self.item_id: str = id # repo_id or paper id self.item_type: CollectionItemType_T = type self.position: int = position self.note: str = note["text"] if note is not None else None
class_definition
41,459
42,738
0
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/hf_api.py
null
65
class Collection: """ Contains information about a Collection on the Hub. Attributes: slug (`str`): Slug of the collection. E.g. `"TheBloke/recent-models-64f9a55bb3115b4f513ec026"`. title (`str`): Title of the collection. E.g. `"Recent models"`. owner (`str`): Owner of the collection. E.g. `"TheBloke"`. items (`List[CollectionItem]`): List of items in the collection. last_updated (`datetime`): Date of the last update of the collection. position (`int`): Position of the collection in the list of collections of the owner. private (`bool`): Whether the collection is private or not. theme (`str`): Theme of the collection. E.g. `"green"`. upvotes (`int`): Number of upvotes of the collection. description (`str`, *optional*): Description of the collection, as plain text. url (`str`): (property) URL of the collection on the Hub. """ slug: str title: str owner: str items: List[CollectionItem] last_updated: datetime position: int private: bool theme: str upvotes: int description: Optional[str] = None def __init__(self, **kwargs) -> None: self.slug = kwargs.pop("slug") self.title = kwargs.pop("title") self.owner = kwargs.pop("owner") self.items = [CollectionItem(**item) for item in kwargs.pop("items")] self.last_updated = parse_datetime(kwargs.pop("lastUpdated")) self.position = kwargs.pop("position") self.private = kwargs.pop("private") self.theme = kwargs.pop("theme") self.upvotes = kwargs.pop("upvotes") self.description = kwargs.pop("description", None) endpoint = kwargs.pop("endpoint", None) if endpoint is None: endpoint = constants.ENDPOINT self._url = f"{endpoint}/collections/{self.slug}" @property def url(self) -> str: """Returns the URL of the collection on the Hub.""" return self._url
class_definition
42,752
44,887
0
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/hf_api.py
null
66
class GitRefInfo: """ Contains information about a git reference for a repo on the Hub. Attributes: name (`str`): Name of the reference (e.g. tag name or branch name). ref (`str`): Full git ref on the Hub (e.g. `"refs/heads/main"` or `"refs/tags/v1.0"`). target_commit (`str`): OID of the target commit for the ref (e.g. `"e7da7f221d5bf496a48136c0cd264e630fe9fcc8"`) """ name: str ref: str target_commit: str
class_definition
44,901
45,399
0
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/hf_api.py
null
67
class GitRefs: """ Contains information about all git references for a repo on the Hub. Object is returned by [`list_repo_refs`]. Attributes: branches (`List[GitRefInfo]`): A list of [`GitRefInfo`] containing information about branches on the repo. converts (`List[GitRefInfo]`): A list of [`GitRefInfo`] containing information about "convert" refs on the repo. Converts are refs used (internally) to push preprocessed data in Dataset repos. tags (`List[GitRefInfo]`): A list of [`GitRefInfo`] containing information about tags on the repo. pull_requests (`List[GitRefInfo]`, *optional*): A list of [`GitRefInfo`] containing information about pull requests on the repo. Only returned if `include_prs=True` is set. """ branches: List[GitRefInfo] converts: List[GitRefInfo] tags: List[GitRefInfo] pull_requests: Optional[List[GitRefInfo]] = None
class_definition
45,413
46,399
0
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/hf_api.py
null
68
class GitCommitInfo: """ Contains information about a git commit for a repo on the Hub. Check out [`list_repo_commits`] for more details. Attributes: commit_id (`str`): OID of the commit (e.g. `"e7da7f221d5bf496a48136c0cd264e630fe9fcc8"`) authors (`List[str]`): List of authors of the commit. created_at (`datetime`): Datetime when the commit was created. title (`str`): Title of the commit. This is a free-text value entered by the authors. message (`str`): Description of the commit. This is a free-text value entered by the authors. formatted_title (`str`): Title of the commit formatted as HTML. Only returned if `formatted=True` is set. formatted_message (`str`): Description of the commit formatted as HTML. Only returned if `formatted=True` is set. """ commit_id: str authors: List[str] created_at: datetime title: str message: str formatted_title: Optional[str] formatted_message: Optional[str]
class_definition
46,413
47,503
0
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/hf_api.py
null
69
class UserLikes: """ Contains information about a user likes on the Hub. Attributes: user (`str`): Name of the user for which we fetched the likes. total (`int`): Total number of likes. datasets (`List[str]`): List of datasets liked by the user (as repo_ids). models (`List[str]`): List of models liked by the user (as repo_ids). spaces (`List[str]`): List of spaces liked by the user (as repo_ids). """ # Metadata user: str total: int # User likes datasets: List[str] models: List[str] spaces: List[str]
class_definition
47,517
48,168
0
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/hf_api.py
null
70
class Organization: """ Contains information about an organization on the Hub. Attributes: avatar_url (`str`): URL of the organization's avatar. name (`str`): Name of the organization on the Hub (unique). fullname (`str`): Organization's full name. """ avatar_url: str name: str fullname: str def __init__(self, **kwargs) -> None: self.avatar_url = kwargs.pop("avatarUrl", "") self.name = kwargs.pop("name", "") self.fullname = kwargs.pop("fullname", "") # forward compatibility self.__dict__.update(**kwargs)
class_definition
48,182
48,827
0
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/hf_api.py
null
71
class User: """ Contains information about a user on the Hub. Attributes: username (`str`): Name of the user on the Hub (unique). fullname (`str`): User's full name. avatar_url (`str`): URL of the user's avatar. details (`str`, *optional*): User's details. is_following (`bool`, *optional*): Whether the authenticated user is following this user. is_pro (`bool`, *optional*): Whether the user is a pro user. num_models (`int`, *optional*): Number of models created by the user. num_datasets (`int`, *optional*): Number of datasets created by the user. num_spaces (`int`, *optional*): Number of spaces created by the user. num_discussions (`int`, *optional*): Number of discussions initiated by the user. num_papers (`int`, *optional*): Number of papers authored by the user. num_upvotes (`int`, *optional*): Number of upvotes received by the user. num_likes (`int`, *optional*): Number of likes given by the user. num_following (`int`, *optional*): Number of users this user is following. num_followers (`int`, *optional*): Number of users following this user. orgs (list of [`Organization`]): List of organizations the user is part of. """ # Metadata username: str fullname: str avatar_url: str details: Optional[str] = None is_following: Optional[bool] = None is_pro: Optional[bool] = None num_models: Optional[int] = None num_datasets: Optional[int] = None num_spaces: Optional[int] = None num_discussions: Optional[int] = None num_papers: Optional[int] = None num_upvotes: Optional[int] = None num_likes: Optional[int] = None num_following: Optional[int] = None num_followers: Optional[int] = None orgs: List[Organization] = field(default_factory=list) def __init__(self, **kwargs) -> None: self.username = kwargs.pop("user", "") self.fullname = kwargs.pop("fullname", "") self.avatar_url = kwargs.pop("avatarUrl", "") self.is_following = kwargs.pop("isFollowing", None) self.is_pro = kwargs.pop("isPro", None) self.details = kwargs.pop("details", None) self.num_models = kwargs.pop("numModels", None) self.num_datasets = kwargs.pop("numDatasets", None) self.num_spaces = kwargs.pop("numSpaces", None) self.num_discussions = kwargs.pop("numDiscussions", None) self.num_papers = kwargs.pop("numPapers", None) self.num_upvotes = kwargs.pop("numUpvotes", None) self.num_likes = kwargs.pop("numLikes", None) self.num_following = kwargs.pop("numFollowing", None) self.num_followers = kwargs.pop("numFollowers", None) self.user_type = kwargs.pop("type", None) self.orgs = [Organization(**org) for org in kwargs.pop("orgs", [])] # forward compatibility self.__dict__.update(**kwargs)
class_definition
48,841
51,985
0
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/hf_api.py
null
72
End of preview. Expand in Data Studio
README.md exists but content is empty.
Downloads last month
36