Dataset Viewer
The dataset viewer is not available for this split.
Cannot extract the features (columns) for the split 'train' of the config 'default' of the dataset.
Error code:   FeaturesError
Exception:    ArrowInvalid
Message:      Schema at index 1 was different: 
celex_id: string
reference: string
summary: string
tags: list<item: string>
subjects: list<item: string>
split: string
reference_annotations: struct<>
summary_annotations: struct<21981A0905(01)_p1: struct<text: string, triples: list<item: string>>, 21981A0905(01)_p2: struct<text: string, triples: list<item: string>>, 21981A0905(01)_p3: struct<text: string, triples: list<item: string>>, 21981A0905(01)_p4: struct<text: string, triples: list<item: string>>>
vs
celex_id: string
reference: string
summary: string
tags: list<item: string>
subjects: list<item: string>
split: string
reference_annotations: struct<>
summary_annotations: struct<21986A0618(01)_p1: struct<text: string, triples: list<item: string>>>
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/split/first_rows.py", line 228, in compute_first_rows_from_streaming_response
                  iterable_dataset = iterable_dataset._resolve_features()
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 3422, in _resolve_features
                  features = _infer_features_from_batch(self.with_format(None)._head())
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 2187, in _head
                  return next(iter(self.iter(batch_size=n)))
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 2391, in iter
                  for key, example in iterator:
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 1882, in __iter__
                  for key, pa_table in self._iter_arrow():
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 1904, in _iter_arrow
                  yield from self.ex_iterable._iter_arrow()
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 527, in _iter_arrow
                  yield new_key, pa.Table.from_batches(chunks_buffer)
                File "pyarrow/table.pxi", line 4116, in pyarrow.lib.Table.from_batches
                File "pyarrow/error.pxi", line 154, in pyarrow.lib.pyarrow_internal_check_status
                File "pyarrow/error.pxi", line 91, in pyarrow.lib.check_status
              pyarrow.lib.ArrowInvalid: Schema at index 1 was different: 
              celex_id: string
              reference: string
              summary: string
              tags: list<item: string>
              subjects: list<item: string>
              split: string
              reference_annotations: struct<>
              summary_annotations: struct<21981A0905(01)_p1: struct<text: string, triples: list<item: string>>, 21981A0905(01)_p2: struct<text: string, triples: list<item: string>>, 21981A0905(01)_p3: struct<text: string, triples: list<item: string>>, 21981A0905(01)_p4: struct<text: string, triples: list<item: string>>>
              vs
              celex_id: string
              reference: string
              summary: string
              tags: list<item: string>
              subjects: list<item: string>
              split: string
              reference_annotations: struct<>
              summary_annotations: struct<21986A0618(01)_p1: struct<text: string, triples: list<item: string>>>

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

YAML Metadata Warning: The task_categories "relation-extraction" is not in the official list: text-classification, token-classification, table-question-answering, question-answering, zero-shot-classification, translation, summarization, feature-extraction, text-generation, fill-mask, sentence-similarity, text-to-speech, text-to-audio, automatic-speech-recognition, audio-to-audio, audio-classification, audio-text-to-text, voice-activity-detection, depth-estimation, image-classification, object-detection, image-segmentation, text-to-image, image-to-text, image-to-image, image-to-video, unconditional-image-generation, video-classification, reinforcement-learning, robotics, tabular-classification, tabular-regression, tabular-to-text, table-to-text, multiple-choice, text-ranking, text-retrieval, time-series-forecasting, text-to-video, image-text-to-text, visual-question-answering, document-question-answering, zero-shot-image-classification, graph-ml, mask-generation, zero-shot-object-detection, text-to-3d, image-to-3d, image-feature-extraction, video-text-to-text, keypoint-detection, visual-document-retrieval, any-to-any, video-to-video, other

EUR-Lex-Triples: A Legal Relation Extraction Dataset from European Legislation

EUR-Lex-Sum dataset Aumiller, 2022 annotated with triples

Relation Extraction Baselines

  • Code/RE-Baselines contains the code used to run the RE baselines : Fine-Tuning and Inference.
  • Results of baseline models for Relation Extraction are :
Model Precision Recall F1-Score
Legal-Bert 0.64 0.59 0.60
Bert 0.58 0.52 0.54
Rebel-Large 0.88 0.75 0.80
Mistral 7b zero-Shot 0.38 0.30 0.33
Mistral 7b In-Context 0.42 0.36 0.38
Mistral 7b Finetuning 0.84 0.69 0.75
Zephyr 7b Zero-Shot 0.40 0.36 0.37
Zephyr 7b In-Context 0.52 0.44 0.47
Zephyr 7b Finetuning 0.85 0.61 0.71
Llama 2 13b Zero-Shot 0.31 0.25 0.27
Llama 2 13b In-Context 0.33 0.29 0.30
Llama 2 13b Finetuning 0.82 0.61 0.69

Citation

EUR-Lex-Triples: A Legal Relation Extraction Dataset from European Legislation. Paper accepted at TPDL 2025.

Licence

Copyright for the editorial content of EUR-Lex website, the summaries of EU legislation and the consolidated texts owned by the EU, are licensed under the Creative Commons Attribution 4.0 International licence, i.e., CC BY 4.0 as mentioned on the official EUR-Lex website. Any data artifacts remain licensed under the CC BY 4.0 license.

Downloads last month
58