id
stringlengths
14
15
text
stringlengths
35
2.51k
source
stringlengths
61
154
46c1298ceb12-0
API Reference¶ langchain.agents: Agents¶ Interface for agents. Classes¶ agents.agent.Agent Class responsible for calling the language model and deciding the action. agents.agent.AgentExecutor Consists of an agent using tools. agents.agent.AgentOutputParser Create a new model by parsing and validating input data from keyword arguments. agents.agent.BaseMultiActionAgent Base Agent class. agents.agent.BaseSingleActionAgent Base Agent class. agents.agent.ExceptionTool Create a new model by parsing and validating input data from keyword arguments. agents.agent.LLMSingleActionAgent Create a new model by parsing and validating input data from keyword arguments. agents.agent_toolkits.azure_cognitive_services.toolkit.AzureCognitiveServicesToolkit Toolkit for Azure Cognitive Services. agents.agent_toolkits.base.BaseToolkit Class responsible for defining a collection of related tools. agents.agent_toolkits.file_management.toolkit.FileManagementToolkit Toolkit for interacting with a Local Files. agents.agent_toolkits.gmail.toolkit.GmailToolkit Toolkit for interacting with Gmail. agents.agent_toolkits.jira.toolkit.JiraToolkit Jira Toolkit. agents.agent_toolkits.json.toolkit.JsonToolkit Toolkit for interacting with a JSON spec. agents.agent_toolkits.nla.tool.NLATool Natural Language API Tool. agents.agent_toolkits.nla.toolkit.NLAToolkit Natural Language API Toolkit Definition. agents.agent_toolkits.office365.toolkit.O365Toolkit Toolkit for interacting with Office365. agents.agent_toolkits.openapi.planner.RequestsDeleteToolWithParsing Create a new model by parsing and validating input data from keyword arguments. agents.agent_toolkits.openapi.planner.RequestsGetToolWithParsing Create a new model by parsing and validating input data from keyword arguments. agents.agent_toolkits.openapi.planner.RequestsPatchToolWithParsing Create a new model by parsing and validating input data from keyword arguments.
https://api.python.langchain.com/en/latest/api_reference.html
46c1298ceb12-1
Create a new model by parsing and validating input data from keyword arguments. agents.agent_toolkits.openapi.planner.RequestsPostToolWithParsing Create a new model by parsing and validating input data from keyword arguments. agents.agent_toolkits.openapi.toolkit.OpenAPIToolkit Toolkit for interacting with a OpenAPI api. agents.agent_toolkits.openapi.toolkit.RequestsToolkit Toolkit for making requests. agents.agent_toolkits.playwright.toolkit.PlayWrightBrowserToolkit Toolkit for web browser tools. agents.agent_toolkits.powerbi.toolkit.PowerBIToolkit Toolkit for interacting with PowerBI dataset. agents.agent_toolkits.spark_sql.toolkit.SparkSQLToolkit Toolkit for interacting with Spark SQL. agents.agent_toolkits.sql.toolkit.SQLDatabaseToolkit Toolkit for interacting with SQL databases. agents.agent_toolkits.vectorstore.toolkit.VectorStoreInfo Information about a vectorstore. agents.agent_toolkits.vectorstore.toolkit.VectorStoreRouterToolkit Toolkit for routing between vector stores. agents.agent_toolkits.vectorstore.toolkit.VectorStoreToolkit Toolkit for interacting with a vector store. agents.agent_toolkits.zapier.toolkit.ZapierToolkit Zapier Toolkit. agents.agent_types.AgentType(value[, names, ...]) Enumerator with the Agent types. agents.chat.base.ChatAgent Create a new model by parsing and validating input data from keyword arguments. agents.chat.output_parser.ChatOutputParser Create a new model by parsing and validating input data from keyword arguments. agents.conversational.base.ConversationalAgent An agent designed to hold a conversation in addition to using tools. agents.conversational.output_parser.ConvoOutputParser Create a new model by parsing and validating input data from keyword arguments. agents.conversational_chat.base.ConversationalChatAgent An agent designed to hold a conversation in addition to using tools.
https://api.python.langchain.com/en/latest/api_reference.html
46c1298ceb12-2
An agent designed to hold a conversation in addition to using tools. agents.conversational_chat.output_parser.ConvoOutputParser Create a new model by parsing and validating input data from keyword arguments. agents.mrkl.base.ChainConfig(action_name, ...) Configuration for chain to use in MRKL system. agents.mrkl.base.MRKLChain Chain that implements the MRKL system. agents.mrkl.base.ZeroShotAgent Agent for the MRKL chain. agents.mrkl.output_parser.MRKLOutputParser Create a new model by parsing and validating input data from keyword arguments. agents.openai_functions_agent.base.OpenAIFunctionsAgent An Agent driven by OpenAIs function powered API. agents.openai_functions_multi_agent.base.OpenAIMultiFunctionsAgent An Agent driven by OpenAIs function powered API. agents.react.base.ReActChain Chain that implements the ReAct paper. agents.react.base.ReActDocstoreAgent Agent for the ReAct chain. agents.react.base.ReActTextWorldAgent Agent for the ReAct TextWorld chain. agents.react.output_parser.ReActOutputParser Create a new model by parsing and validating input data from keyword arguments. agents.schema.AgentScratchPadChatPromptTemplate Create a new model by parsing and validating input data from keyword arguments. agents.self_ask_with_search.base.SelfAskWithSearchAgent Agent for the self-ask-with-search paper. agents.self_ask_with_search.base.SelfAskWithSearchChain Chain that does self ask with search. agents.self_ask_with_search.output_parser.SelfAskOutputParser Create a new model by parsing and validating input data from keyword arguments. agents.structured_chat.base.StructuredChatAgent Create a new model by parsing and validating input data from keyword arguments. agents.structured_chat.output_parser.StructuredChatOutputParser
https://api.python.langchain.com/en/latest/api_reference.html
46c1298ceb12-3
agents.structured_chat.output_parser.StructuredChatOutputParser Create a new model by parsing and validating input data from keyword arguments. agents.structured_chat.output_parser.StructuredChatOutputParserWithRetries Create a new model by parsing and validating input data from keyword arguments. agents.tools.InvalidTool Tool that is run when invalid tool name is encountered by agent. Functions¶ agents.agent_toolkits.csv.base.create_csv_agent(...) Create csv agent by loading to a dataframe and using pandas agent. agents.agent_toolkits.json.base.create_json_agent(...) Construct a json agent from an LLM and tools. agents.agent_toolkits.openapi.base.create_openapi_agent(...) Construct a json agent from an LLM and tools. agents.agent_toolkits.openapi.planner.create_openapi_agent(...) Instantiate API planner and controller for a given spec. agents.agent_toolkits.openapi.spec.dereference_refs(...) Try to substitute $refs. agents.agent_toolkits.openapi.spec.reduce_openapi_spec(spec) Simplify/distill/minify a spec somehow. agents.agent_toolkits.pandas.base.create_pandas_dataframe_agent(llm, df) Construct a pandas agent from an LLM and dataframe. agents.agent_toolkits.powerbi.base.create_pbi_agent(...) Construct a pbi agent from an LLM and tools. agents.agent_toolkits.powerbi.chat_base.create_pbi_chat_agent(...) Construct a pbi agent from an Chat LLM and tools. agents.agent_toolkits.python.base.create_python_agent(...) Construct a python agent from an LLM and tool. agents.agent_toolkits.spark.base.create_spark_dataframe_agent(llm, df) Construct a spark agent from an LLM and dataframe. agents.agent_toolkits.spark_sql.base.create_spark_sql_agent(...) Construct a sql agent from an LLM and tools. agents.agent_toolkits.sql.base.create_sql_agent(...)
https://api.python.langchain.com/en/latest/api_reference.html
46c1298ceb12-4
agents.agent_toolkits.sql.base.create_sql_agent(...) Construct a sql agent from an LLM and tools. agents.agent_toolkits.vectorstore.base.create_vectorstore_agent(...) Construct a vectorstore agent from an LLM and tools. agents.agent_toolkits.vectorstore.base.create_vectorstore_router_agent(...) Construct a vectorstore router agent from an LLM and tools. agents.initialize.initialize_agent(tools, llm) Load an agent executor given tools and LLM. agents.load_tools.get_all_tool_names() Get a list of all possible tool names. agents.load_tools.load_huggingface_tool(...) Loads a tool from the HuggingFace Hub. agents.load_tools.load_tools(tool_names[, ...]) Load tools based on their name. agents.loading.load_agent(path, **kwargs) Unified method for loading a agent from LangChainHub or local fs. agents.loading.load_agent_from_config(config) Load agent from Config Dict. agents.utils.validate_tools_single_input(...) Validate tools for single input. langchain.base_language: Base Language¶ Base class for all language models. Classes¶ base_language.BaseLanguageModel Create a new model by parsing and validating input data from keyword arguments. langchain.cache: Cache¶ Beta Feature: base interface for cache. Classes¶ cache.BaseCache() Base interface for cache. cache.FullLLMCache(**kwargs) SQLite table for full LLM Cache (all generations). cache.GPTCache([init_func]) Cache that uses GPTCache as a backend. cache.InMemoryCache() Cache that stores things in memory. cache.MomentoCache(cache_client, cache_name, *) Cache that uses Momento as a backend. cache.RedisCache(redis_) Cache that uses Redis as a backend. cache.RedisSemanticCache(redis_url, embedding)
https://api.python.langchain.com/en/latest/api_reference.html
46c1298ceb12-5
Cache that uses Redis as a backend. cache.RedisSemanticCache(redis_url, embedding) Cache that uses Redis as a vector-store backend. cache.SQLAlchemyCache(engine, cache_schema) Cache that uses SQAlchemy as a backend. cache.SQLiteCache([database_path]) Cache that uses SQLite as a backend. langchain.callbacks: Callbacks¶ Callback handlers that allow listening to events in LangChain. Classes¶ callbacks.aim_callback.AimCallbackHandler([...]) Callback Handler that logs to Aim. callbacks.argilla_callback.ArgillaCallbackHandler(...) Callback Handler that logs into Argilla. callbacks.arize_callback.ArizeCallbackHandler([...]) Callback Handler that logs to Arize. callbacks.arthur_callback.ArthurCallbackHandler(...) Callback Handler that logs to Arthur platform. callbacks.base.AsyncCallbackHandler() Async callback handler that can be used to handle callbacks from langchain. callbacks.base.BaseCallbackHandler() Base callback handler that can be used to handle callbacks from langchain. callbacks.base.BaseCallbackManager(handlers) Base callback manager that can be used to handle callbacks from LangChain. callbacks.clearml_callback.ClearMLCallbackHandler([...]) Callback Handler that logs to ClearML. callbacks.comet_ml_callback.CometCallbackHandler([...]) Callback Handler that logs to Comet. callbacks.file.FileCallbackHandler(filename) Callback Handler that writes to a file. callbacks.flyte_callback.FlyteCallbackHandler() This callback handler is designed specifically for usage within a Flyte task. callbacks.human.HumanApprovalCallbackHandler(...) Callback for manually validating values. callbacks.human.HumanRejectedException Exception to raise when a person manually review and rejects a value. callbacks.infino_callback.InfinoCallbackHandler([...]) Callback Handler that logs to Infino. callbacks.manager.AsyncCallbackManager(handlers)
https://api.python.langchain.com/en/latest/api_reference.html
46c1298ceb12-6
Callback Handler that logs to Infino. callbacks.manager.AsyncCallbackManager(handlers) Async callback manager that can be used to handle callbacks from LangChain. callbacks.manager.AsyncCallbackManagerForChainRun(*, ...) Async callback manager for chain run. callbacks.manager.AsyncCallbackManagerForLLMRun(*, ...) Async callback manager for LLM run. callbacks.manager.AsyncCallbackManagerForRetrieverRun(*, ...) Async callback manager for retriever run. callbacks.manager.AsyncCallbackManagerForToolRun(*, ...) Async callback manager for tool run. callbacks.manager.AsyncRunManager(*, run_id, ...) Async Run Manager. callbacks.manager.BaseRunManager(*, run_id, ...) Base class for run manager (a bound callback manager). callbacks.manager.CallbackManager(handlers) Callback manager that can be used to handle callbacks from langchain. callbacks.manager.CallbackManagerForChainRun(*, ...) Callback manager for chain run. callbacks.manager.CallbackManagerForLLMRun(*, ...) Callback manager for LLM run. callbacks.manager.CallbackManagerForRetrieverRun(*, ...) Callback manager for retriever run. callbacks.manager.CallbackManagerForToolRun(*, ...) Callback manager for tool run. callbacks.manager.RunManager(*, run_id, ...) Sync Run Manager. callbacks.mlflow_callback.MlflowCallbackHandler([...]) Callback Handler that logs metrics and artifacts to mlflow server. callbacks.openai_info.OpenAICallbackHandler() Callback Handler that tracks OpenAI info. callbacks.promptlayer_callback.PromptLayerCallbackHandler([...]) Callback handler for promptlayer. callbacks.stdout.StdOutCallbackHandler([color]) Callback Handler that prints to std out. callbacks.streaming_aiter.AsyncIteratorCallbackHandler() Callback handler that returns an async iterator.
https://api.python.langchain.com/en/latest/api_reference.html
46c1298ceb12-7
callbacks.streaming_aiter.AsyncIteratorCallbackHandler() Callback handler that returns an async iterator. callbacks.streaming_aiter_final_only.AsyncFinalIteratorCallbackHandler(*) Callback handler that returns an async iterator. callbacks.streaming_stdout.StreamingStdOutCallbackHandler() Callback handler for streaming. callbacks.streaming_stdout_final_only.FinalStreamingStdOutCallbackHandler(*) Callback handler for streaming in agents. callbacks.streamlit.mutable_expander.ChildRecord(...) Create new instance of ChildRecord(type, kwargs, dg) callbacks.streamlit.mutable_expander.ChildType(value) callbacks.streamlit.streamlit_callback_handler.LLMThoughtState(value) callbacks.streamlit.streamlit_callback_handler.StreamlitCallbackHandler(...) Create a StreamlitCallbackHandler instance. callbacks.streamlit.streamlit_callback_handler.ToolRecord(...) Create new instance of ToolRecord(name, input_str) callbacks.tracers.base.BaseTracer(**kwargs) Base interface for tracers. callbacks.tracers.base.TracerException Base class for exceptions in tracers module. callbacks.tracers.evaluation.EvaluatorCallbackHandler(...) A tracer that runs a run evaluator whenever a run is persisted. callbacks.tracers.langchain.LangChainTracer([...]) An implementation of the SharedTracer that POSTS to the langchain endpoint. callbacks.tracers.langchain_v1.LangChainTracerV1(...) An implementation of the SharedTracer that POSTS to the langchain endpoint. callbacks.tracers.run_collector.RunCollectorCallbackHandler([...]) A tracer that collects all nested runs in a list. callbacks.tracers.schemas.BaseRun Base class for Run. callbacks.tracers.schemas.ChainRun Class for ChainRun. callbacks.tracers.schemas.LLMRun Class for LLMRun. callbacks.tracers.schemas.Run Run schema for the V2 API in the Tracer. callbacks.tracers.schemas.ToolRun Class for ToolRun.
https://api.python.langchain.com/en/latest/api_reference.html
46c1298ceb12-8
callbacks.tracers.schemas.ToolRun Class for ToolRun. callbacks.tracers.schemas.TracerSession TracerSessionV1 schema for the V2 API. callbacks.tracers.schemas.TracerSessionBase A creation class for TracerSession. callbacks.tracers.schemas.TracerSessionV1 TracerSessionV1 schema. callbacks.tracers.schemas.TracerSessionV1Base Base class for TracerSessionV1. callbacks.tracers.schemas.TracerSessionV1Create Create class for TracerSessionV1. callbacks.tracers.stdout.ConsoleCallbackHandler(...) Tracer that prints to the console. callbacks.tracers.wandb.WandbRunArgs Arguments for the WandbTracer. callbacks.tracers.wandb.WandbTracer([run_args]) Callback Handler that logs to Weights and Biases. callbacks.wandb_callback.WandbCallbackHandler([...]) Callback Handler that logs to Weights and Biases. callbacks.whylabs_callback.WhyLabsCallbackHandler(logger) WhyLabs CallbackHandler. Functions¶ callbacks.aim_callback.import_aim() Import the aim python package and raise an error if it is not installed. callbacks.clearml_callback.import_clearml() Import the clearml python package and raise an error if it is not installed. callbacks.comet_ml_callback.import_comet_ml() callbacks.flyte_callback.analyze_text(text) Analyze text using textstat and spacy. callbacks.flyte_callback.import_flytekit() callbacks.infino_callback.import_infino() callbacks.manager.env_var_is_set(env_var) Check if an environment variable is set. callbacks.manager.get_openai_callback() Get the OpenAI callback handler in a context manager. callbacks.manager.trace_as_chain_group(...) Get a callback manager for a chain group in a context manager.
https://api.python.langchain.com/en/latest/api_reference.html
46c1298ceb12-9
Get a callback manager for a chain group in a context manager. callbacks.manager.tracing_enabled([session_name]) Get the Deprecated LangChainTracer in a context manager. callbacks.manager.tracing_v2_enabled([...]) Instruct LangChain to log all runs in context to LangSmith. callbacks.manager.wandb_tracing_enabled([...]) Get the WandbTracer in a context manager. callbacks.mlflow_callback.analyze_text(text) Analyze text using textstat and spacy. callbacks.mlflow_callback.construct_html_from_prompt_and_generation(...) Construct an html element from a prompt and a generation. callbacks.mlflow_callback.import_mlflow() Import the mlflow python package and raise an error if it is not installed. callbacks.openai_info.get_openai_token_cost_for_model(...) Get the cost in USD for a given model and number of tokens. callbacks.openai_info.standardize_model_name(...) Standardize the model name to a format that can be used in the OpenAI API. :param model_name: Model name to standardize. :param is_completion: Whether the model is used for completion or not. Defaults to False. callbacks.streamlit.__init__.StreamlitCallbackHandler(...) Construct a new StreamlitCallbackHandler. callbacks.tracers.langchain.log_error_once(...) Log an error once. callbacks.tracers.langchain.wait_for_all_tracers() callbacks.tracers.langchain_v1.get_headers() Get the headers for the LangChain API. callbacks.tracers.stdout.elapsed(run) Get the elapsed time of a run. callbacks.tracers.stdout.try_json_stringify(...) Try to stringify an object to JSON. callbacks.utils.flatten_dict(nested_dict[, ...]) Flattens a nested dictionary into a flat dictionary. callbacks.utils.hash_string(s) Hash a string using sha1. callbacks.utils.import_pandas()
https://api.python.langchain.com/en/latest/api_reference.html
46c1298ceb12-10
Hash a string using sha1. callbacks.utils.import_pandas() Import the pandas python package and raise an error if it is not installed. callbacks.utils.import_spacy() Import the spacy python package and raise an error if it is not installed. callbacks.utils.import_textstat() Import the textstat python package and raise an error if it is not installed. callbacks.utils.load_json(json_path) Load json file to a string. callbacks.wandb_callback.analyze_text(text) Analyze text using textstat and spacy. callbacks.wandb_callback.construct_html_from_prompt_and_generation(...) Construct an html element from a prompt and a generation. callbacks.wandb_callback.import_wandb() Import the wandb python package and raise an error if it is not installed. callbacks.wandb_callback.load_json_to_dict(...) Load json file to a dictionary. callbacks.whylabs_callback.import_langkit([...]) Import the langkit python package and raise an error if it is not installed. langchain.chains: Chains¶ Chains are easily reusable components which can be linked together. Classes¶ chains.api.base.APIChain Chain that makes API calls and summarizes the responses to answer a question. chains.api.openapi.chain.OpenAPIEndpointChain Chain interacts with an OpenAPI endpoint using natural language. chains.api.openapi.requests_chain.APIRequesterChain Get the request parser. chains.api.openapi.requests_chain.APIRequesterOutputParser Parse the request and error tags. chains.api.openapi.response_chain.APIResponderChain Get the response parser. chains.api.openapi.response_chain.APIResponderOutputParser Parse the response and error tags. chains.base.Chain Base interface that all chains should implement. chains.combine_documents.base.AnalyzeDocumentChain Chain that splits documents, then analyzes it in pieces. chains.combine_documents.base.BaseCombineDocumentsChain
https://api.python.langchain.com/en/latest/api_reference.html
46c1298ceb12-11
chains.combine_documents.base.BaseCombineDocumentsChain Base interface for chains combining documents. chains.combine_documents.map_reduce.CombineDocsProtocol(...) Interface for the combine_docs method. chains.combine_documents.map_reduce.MapReduceDocumentsChain Combining documents by mapping a chain over them, then combining results. chains.combine_documents.map_rerank.MapRerankDocumentsChain Combining documents by mapping a chain over them, then reranking results. chains.combine_documents.refine.RefineDocumentsChain Combine documents by doing a first pass and then refining on more documents. chains.combine_documents.stuff.StuffDocumentsChain Chain that combines documents by stuffing into context. chains.constitutional_ai.base.ConstitutionalChain Chain for applying constitutional principles. chains.constitutional_ai.models.ConstitutionalPrinciple Class for a constitutional principle. chains.conversation.base.ConversationChain Chain to have a conversation and load context from memory. chains.conversational_retrieval.base.BaseConversationalRetrievalChain Chain for chatting with an index. chains.conversational_retrieval.base.ChatVectorDBChain Chain for chatting with a vector database. chains.conversational_retrieval.base.ConversationalRetrievalChain Chain for chatting with an index. chains.flare.base.FlareChain Create a new model by parsing and validating input data from keyword arguments. chains.flare.base.QuestionGeneratorChain Create a new model by parsing and validating input data from keyword arguments. chains.flare.prompts.FinishedOutputParser Create a new model by parsing and validating input data from keyword arguments. chains.graph_qa.base.GraphQAChain Chain for question-answering against a graph. chains.graph_qa.cypher.GraphCypherQAChain Chain for question-answering against a graph by generating Cypher statements. chains.graph_qa.kuzu.KuzuQAChain
https://api.python.langchain.com/en/latest/api_reference.html
46c1298ceb12-12
chains.graph_qa.kuzu.KuzuQAChain Chain for question-answering against a graph by generating Cypher statements for Kùzu. chains.graph_qa.nebulagraph.NebulaGraphQAChain Chain for question-answering against a graph by generating nGQL statements. chains.hyde.base.HypotheticalDocumentEmbedder Generate hypothetical document for query, and then embed that. chains.llm.LLMChain Chain to run queries against LLMs. chains.llm_bash.base.LLMBashChain Chain that interprets a prompt and executes bash code to perform bash operations. chains.llm_bash.prompt.BashOutputParser Parser for bash output. chains.llm_checker.base.LLMCheckerChain Chain for question-answering with self-verification. chains.llm_math.base.LLMMathChain Chain that interprets a prompt and executes python code to do math. chains.llm_requests.LLMRequestsChain Chain that hits a URL and then uses an LLM to parse results. chains.llm_summarization_checker.base.LLMSummarizationCheckerChain Chain for question-answering with self-verification. chains.mapreduce.MapReduceChain Map-reduce chain. chains.moderation.OpenAIModerationChain Pass input through a moderation endpoint. chains.natbot.base.NatBotChain Implement an LLM driven browser. chains.natbot.crawler.ElementInViewPort A typed dictionary containing information about elements in the viewport. chains.openai_functions.citation_fuzzy_match.FactWithEvidence Class representing single statement. chains.openai_functions.citation_fuzzy_match.QuestionAnswer A question and its answer as a list of facts each one should have a source. chains.openai_functions.openapi.SimpleRequestChain Create a new model by parsing and validating input data from keyword arguments.
https://api.python.langchain.com/en/latest/api_reference.html
46c1298ceb12-13
Create a new model by parsing and validating input data from keyword arguments. chains.openai_functions.qa_with_structure.AnswerWithSources An answer to the question being asked, with sources. chains.pal.base.PALChain Implements Program-Aided Language Models. chains.prompt_selector.BasePromptSelector Create a new model by parsing and validating input data from keyword arguments. chains.prompt_selector.ConditionalPromptSelector Prompt collection that goes through conditionals. chains.qa_generation.base.QAGenerationChain Create a new model by parsing and validating input data from keyword arguments. chains.qa_with_sources.base.BaseQAWithSourcesChain Question answering with sources over documents. chains.qa_with_sources.base.QAWithSourcesChain Question answering with sources over documents. chains.qa_with_sources.loading.LoadingCallable(...) Interface for loading the combine documents chain. chains.qa_with_sources.retrieval.RetrievalQAWithSourcesChain Question-answering with sources over an index. chains.qa_with_sources.vector_db.VectorDBQAWithSourcesChain Question-answering with sources over a vector database. chains.query_constructor.base.StructuredQueryOutputParser Create a new model by parsing and validating input data from keyword arguments. chains.query_constructor.ir.Comparator(value) Enumerator of the comparison operators. chains.query_constructor.ir.Comparison A comparison to a value. chains.query_constructor.ir.Expr Create a new model by parsing and validating input data from keyword arguments. chains.query_constructor.ir.FilterDirective A filtering expression. chains.query_constructor.ir.Operation A logical operation over other directives. chains.query_constructor.ir.Operator(value) Enumerator of the operations. chains.query_constructor.ir.StructuredQuery Create a new model by parsing and validating input data from keyword arguments. chains.query_constructor.ir.Visitor() Defines interface for IR translation using visitor pattern. chains.query_constructor.parser.QueryTransformer
https://api.python.langchain.com/en/latest/api_reference.html
46c1298ceb12-14
Defines interface for IR translation using visitor pattern. chains.query_constructor.parser.QueryTransformer chains.query_constructor.schema.AttributeInfo Information about a data source attribute. chains.question_answering.__init__.LoadingCallable(...) Interface for loading the combine documents chain. chains.retrieval_qa.base.BaseRetrievalQA Create a new model by parsing and validating input data from keyword arguments. chains.retrieval_qa.base.RetrievalQA Chain for question-answering against an index. chains.retrieval_qa.base.VectorDBQA Chain for question-answering against a vector database. chains.router.base.MultiRouteChain Use a single chain to route an input to one of multiple candidate chains. chains.router.base.Route(destination, ...) Create new instance of Route(destination, next_inputs) chains.router.base.RouterChain Chain that outputs the name of a destination chain and the inputs to it. chains.router.embedding_router.EmbeddingRouterChain Class that uses embeddings to route between options. chains.router.llm_router.LLMRouterChain A router chain that uses an LLM chain to perform routing. chains.router.llm_router.RouterOutputParser Parser for output of router chain int he multi-prompt chain. chains.router.multi_prompt.MultiPromptChain A multi-route chain that uses an LLM router chain to choose amongst prompts. chains.router.multi_retrieval_qa.MultiRetrievalQAChain A multi-route chain that uses an LLM router chain to choose amongst retrieval qa chains. chains.sequential.SequentialChain Chain where the outputs of one chain feed directly into next. chains.sequential.SimpleSequentialChain Simple chain where the outputs of one step feed directly into next. chains.sql_database.base.SQLDatabaseChain Chain for interacting with SQL Database. chains.sql_database.base.SQLDatabaseSequentialChain Chain for querying SQL database that is a sequential chain.
https://api.python.langchain.com/en/latest/api_reference.html
46c1298ceb12-15
Chain for querying SQL database that is a sequential chain. chains.summarize.__init__.LoadingCallable(...) Interface for loading the combine documents chain. chains.transform.TransformChain Chain transform chain output. Functions¶ chains.combine_documents.base.format_document(...) Format a document into a string based on a prompt template. chains.graph_qa.cypher.extract_cypher(text) Extract Cypher code from a text. chains.loading.load_chain(path, **kwargs) Unified method for loading a chain from LangChainHub or local fs. chains.loading.load_chain_from_config(...) Load chain from Config Dict. chains.openai_functions.citation_fuzzy_match.create_citation_fuzzy_match_chain(llm) Create a citation fuzzy match chain. chains.openai_functions.extraction.create_extraction_chain(...) Creates a chain that extracts information from a passage. chains.openai_functions.extraction.create_extraction_chain_pydantic(...) Creates a chain that extracts information from a passage using pydantic schema. chains.openai_functions.openapi.get_openapi_chain(spec) Create a chain for querying an API from a OpenAPI spec. chains.openai_functions.openapi.openapi_spec_to_openai_fn(spec) Convert a valid OpenAPI spec to the JSON Schema format expected for OpenAI chains.openai_functions.qa_with_structure.create_qa_with_sources_chain(...) Create a question answering chain that returns an answer with sources. chains.openai_functions.qa_with_structure.create_qa_with_structure_chain(...) Create a question answering chain that returns an answer with sources. chains.openai_functions.tagging.create_tagging_chain(...) Creates a chain that extracts information from a passage. chains.openai_functions.tagging.create_tagging_chain_pydantic(...) Creates a chain that extracts information from a passage. chains.openai_functions.utils.get_llm_kwargs(...) Returns the kwargs for the LLMChain constructor.
https://api.python.langchain.com/en/latest/api_reference.html
46c1298ceb12-16
Returns the kwargs for the LLMChain constructor. chains.prompt_selector.is_chat_model(llm) Check if the language model is a chat model. chains.prompt_selector.is_llm(llm) Check if the language model is a LLM. chains.qa_with_sources.loading.load_qa_with_sources_chain(llm) Load question answering with sources chain. chains.query_constructor.base.load_query_constructor_chain(...) Load a query constructor chain. :param llm: BaseLanguageModel to use for the chain. :param document_contents: The contents of the document to be queried. :param attribute_info: A list of AttributeInfo objects describing the attributes of the document. :param examples: Optional list of examples to use for the chain. :param allowed_comparators: An optional list of allowed comparators. :param allowed_operators: An optional list of allowed operators. :param enable_limit: Whether to enable the limit operator. Defaults to False. :param **kwargs:. chains.query_constructor.parser.get_parser([...]) Returns a parser for the query language. chains.question_answering.__init__.load_qa_chain(llm) Load question answering chain. chains.summarize.__init__.load_summarize_chain(llm) Load summarizing chain. langchain.chat_models: Chat Models¶ Classes¶ chat_models.anthropic.ChatAnthropic Wrapper around Anthropic's large language model. chat_models.azure_openai.AzureChatOpenAI Wrapper around Azure OpenAI Chat Completion API. chat_models.base.BaseChatModel Create a new model by parsing and validating input data from keyword arguments. chat_models.base.SimpleChatModel Create a new model by parsing and validating input data from keyword arguments. chat_models.fake.FakeListChatModel Fake ChatModel for testing purposes. chat_models.google_palm.ChatGooglePalm Wrapper around Google's PaLM Chat API.
https://api.python.langchain.com/en/latest/api_reference.html
46c1298ceb12-17
chat_models.google_palm.ChatGooglePalm Wrapper around Google's PaLM Chat API. chat_models.google_palm.ChatGooglePalmError Error raised when there is an issue with the Google PaLM API. chat_models.openai.ChatOpenAI Wrapper around OpenAI Chat large language models. chat_models.promptlayer_openai.PromptLayerChatOpenAI Wrapper around OpenAI Chat large language models and PromptLayer. chat_models.vertexai.ChatVertexAI Wrapper around Vertex AI large language models. Functions¶ chat_models.google_palm.chat_with_retry(llm, ...) Use tenacity to retry the completion call. langchain.client: Client¶ LangChain+ Client. Classes¶ client.runner_utils.InputFormatError Raised when the input format is invalid. Functions¶ client.runner_utils.run_llm(llm, inputs, ...) Run the language model on the example. client.runner_utils.run_llm_or_chain(...[, ...]) Run the Chain or language model synchronously. client.runner_utils.run_on_dataset(...[, ...]) Run the Chain or language model on a dataset and store traces to the specified project name. client.runner_utils.run_on_examples(...[, ...]) Run the Chain or language model on examples and store traces to the specified project name. langchain.docstore: Docstore¶ Wrappers on top of docstores. Classes¶ docstore.arbitrary_fn.DocstoreFn(lookup_fn) Langchain Docstore via arbitrary lookup function. docstore.base.AddableMixin() Mixin class that supports adding texts. docstore.base.Docstore() Interface to access to place that stores documents. docstore.in_memory.InMemoryDocstore(_dict) Simple in memory docstore in the form of a dict. docstore.wikipedia.Wikipedia() Wrapper around wikipedia API.
https://api.python.langchain.com/en/latest/api_reference.html
46c1298ceb12-18
docstore.wikipedia.Wikipedia() Wrapper around wikipedia API. langchain.document_loaders: Document Loaders¶ All different types of document loaders. Classes¶ document_loaders.acreom.AcreomLoader(path[, ...]) Initialize with path. document_loaders.airbyte_json.AirbyteJSONLoader(...) Loader that loads local airbyte json files. document_loaders.airtable.AirtableLoader(...) Loader for Airtable tables. document_loaders.apify_dataset.ApifyDatasetLoader Logic for loading documents from Apify datasets. document_loaders.arxiv.ArxivLoader(query[, ...]) Loads a query result from arxiv.org into a list of Documents. document_loaders.azlyrics.AZLyricsLoader(...) Loader that loads AZLyrics webpages. document_loaders.azure_blob_storage_container.AzureBlobStorageContainerLoader(...) Loading logic for loading documents from Azure Blob Storage. document_loaders.azure_blob_storage_file.AzureBlobStorageFileLoader(...) Loading logic for loading documents from Azure Blob Storage. document_loaders.base.BaseBlobParser() Abstract interface for blob parsers. document_loaders.base.BaseLoader() Interface for loading documents. document_loaders.bibtex.BibtexLoader(...[, ...]) Loads a bibtex file into a list of Documents. document_loaders.bigquery.BigQueryLoader(query) Loads a query result from BigQuery into a list of documents. document_loaders.bilibili.BiliBiliLoader(...) Loader that loads bilibili transcripts. document_loaders.blackboard.BlackboardLoader(...) Loader that loads all documents from a Blackboard course. document_loaders.blob_loaders.file_system.FileSystemBlobLoader(path, *) Blob loader for the local file system. document_loaders.blob_loaders.schema.Blob A blob is used to represent raw data by either reference or value.
https://api.python.langchain.com/en/latest/api_reference.html
46c1298ceb12-19
A blob is used to represent raw data by either reference or value. document_loaders.blob_loaders.schema.BlobLoader() Abstract interface for blob loaders implementation. document_loaders.blob_loaders.youtube_audio.YoutubeAudioLoader(...) Load YouTube urls as audio file(s). document_loaders.blockchain.BlockchainDocumentLoader(...) Loads elements from a blockchain smart contract into Langchain documents. document_loaders.blockchain.BlockchainType(value) Enumerator of the supported blockchains. document_loaders.chatgpt.ChatGPTLoader(log_file) Loader that loads conversations from exported ChatGPT data. document_loaders.college_confidential.CollegeConfidentialLoader(...) Loader that loads College Confidential webpages. document_loaders.confluence.ConfluenceLoader(url) Load Confluence pages. document_loaders.confluence.ContentFormat(value) Enumerator of the content formats of Confluence page. document_loaders.conllu.CoNLLULoader(file_path) Load CoNLL-U files. document_loaders.csv_loader.CSVLoader(file_path) Loads a CSV file into a list of documents. document_loaders.csv_loader.UnstructuredCSVLoader(...) Loader that uses unstructured to load CSV files. document_loaders.dataframe.DataFrameLoader(...) Load Pandas DataFrames. document_loaders.diffbot.DiffbotLoader(...) Loader that loads Diffbot file json. document_loaders.directory.DirectoryLoader(...) Loading logic for loading documents from a directory. document_loaders.discord.DiscordChatLoader(...) Load Discord chat logs. document_loaders.docugami.DocugamiLoader Loader that loads processed docs from Docugami. document_loaders.duckdb_loader.DuckDBLoader(query) Loads a query result from DuckDB into a list of documents. document_loaders.email.OutlookMessageLoader(...) Loader that loads Outlook Message files using extract_msg.
https://api.python.langchain.com/en/latest/api_reference.html
46c1298ceb12-20
Loader that loads Outlook Message files using extract_msg. document_loaders.email.UnstructuredEmailLoader(...) Loader that uses unstructured to load email files. document_loaders.embaas.BaseEmbaasLoader Create a new model by parsing and validating input data from keyword arguments. document_loaders.embaas.EmbaasBlobLoader Wrapper around embaas's document byte loader service. document_loaders.embaas.EmbaasDocumentExtractionParameters Parameters for the embaas document extraction API. document_loaders.embaas.EmbaasDocumentExtractionPayload Payload for the Embaas document extraction API. document_loaders.embaas.EmbaasLoader Wrapper around embaas's document loader service. document_loaders.epub.UnstructuredEPubLoader(...) Loader that uses unstructured to load epub files. document_loaders.evernote.EverNoteLoader(...) EverNote Loader. document_loaders.excel.UnstructuredExcelLoader(...) Loader that uses unstructured to load Microsoft Excel files. document_loaders.facebook_chat.FacebookChatLoader(path) Loader that loads Facebook messages json directory dump. document_loaders.fauna.FaunaLoader(query, ...) FaunaDB Loader. document_loaders.figma.FigmaFileLoader(...) Loader that loads Figma file json. document_loaders.gcs_directory.GCSDirectoryLoader(...) Loading logic for loading documents from GCS. document_loaders.gcs_file.GCSFileLoader(...) Loading logic for loading documents from GCS. document_loaders.generic.GenericLoader(...) A generic document loader. document_loaders.git.GitLoader(repo_path[, ...]) Loads files from a Git repository into a list of documents. document_loaders.gitbook.GitbookLoader(web_page) Load GitBook data. document_loaders.github.BaseGitHubLoader
https://api.python.langchain.com/en/latest/api_reference.html
46c1298ceb12-21
Load GitBook data. document_loaders.github.BaseGitHubLoader Load issues of a GitHub repository. document_loaders.github.GitHubIssuesLoader Create a new model by parsing and validating input data from keyword arguments. document_loaders.googledrive.GoogleDriveLoader Loader that loads Google Docs from Google Drive. document_loaders.gutenberg.GutenbergLoader(...) Loader that uses urllib to load .txt web files. document_loaders.helpers.FileEncoding(...) Create new instance of FileEncoding(encoding, confidence, language) document_loaders.hn.HNLoader(web_path[, ...]) Load Hacker News data from either main page results or the comments page. document_loaders.html.UnstructuredHTMLLoader(...) Loader that uses unstructured to load HTML files. document_loaders.html_bs.BSHTMLLoader(file_path) Loader that uses beautiful soup to parse HTML files. document_loaders.hugging_face_dataset.HuggingFaceDatasetLoader(path) Loading logic for loading documents from the Hugging Face Hub. document_loaders.ifixit.IFixitLoader(web_path) Load iFixit repair guides, device wikis and answers. document_loaders.image.UnstructuredImageLoader(...) Loader that uses unstructured to load image files, such as PNGs and JPGs. document_loaders.image_captions.ImageCaptionLoader(...) Loader that loads the captions of an image document_loaders.imsdb.IMSDbLoader(web_path) Loader that loads IMSDb webpages. document_loaders.iugu.IuguLoader(resource[, ...]) Loader that fetches data from IUGU. document_loaders.joplin.JoplinLoader([...]) Loader that fetches notes from Joplin. document_loaders.json_loader.JSONLoader(...) Loads a JSON file and references a jq schema provided to load the text into documents.
https://api.python.langchain.com/en/latest/api_reference.html
46c1298ceb12-22
Loads a JSON file and references a jq schema provided to load the text into documents. document_loaders.larksuite.LarkSuiteDocLoader(...) Loader that loads LarkSuite (FeiShu) document. document_loaders.markdown.UnstructuredMarkdownLoader(...) Loader that uses unstructured to load markdown files. document_loaders.mastodon.MastodonTootsLoader(...) Mastodon toots loader. document_loaders.max_compute.MaxComputeLoader(...) Loads a query result from Alibaba Cloud MaxCompute table into documents. document_loaders.mediawikidump.MWDumpLoader(...) Load MediaWiki dump from XML file . document_loaders.merge.MergedDataLoader(loaders) Merge documents from a list of loaders document_loaders.mhtml.MHTMLLoader(file_path) Loader that uses beautiful soup to parse HTML files. document_loaders.modern_treasury.ModernTreasuryLoader(...) Loader that fetches data from Modern Treasury. document_loaders.notebook.NotebookLoader(path) Loader that loads .ipynb notebook files. document_loaders.notion.NotionDirectoryLoader(path) Loader that loads Notion directory dump. document_loaders.notiondb.NotionDBLoader(...) Notion DB Loader. document_loaders.obsidian.ObsidianLoader(path) Loader that loads Obsidian files from disk. document_loaders.odt.UnstructuredODTLoader(...) Loader that uses unstructured to load open office ODT files. document_loaders.onedrive.OneDriveLoader Create a new model by parsing and validating input data from keyword arguments. document_loaders.onedrive_file.OneDriveFileLoader Create a new model by parsing and validating input data from keyword arguments. document_loaders.open_city_data.OpenCityDataLoader(...) Loader that loads Open city data. document_loaders.org_mode.UnstructuredOrgModeLoader(...)
https://api.python.langchain.com/en/latest/api_reference.html
46c1298ceb12-23
Loader that loads Open city data. document_loaders.org_mode.UnstructuredOrgModeLoader(...) Loader that uses unstructured to load Org-Mode files. document_loaders.parsers.audio.OpenAIWhisperParser() Transcribe and parse audio files. document_loaders.parsers.generic.MimeTypeBasedParser(...) A parser that uses mime-types to determine how to parse a blob. document_loaders.parsers.grobid.GrobidParser(...) Loader that uses Grobid to load article PDF files. document_loaders.parsers.grobid.ServerUnavailableException document_loaders.parsers.html.bs4.BS4HTMLParser(*) Parser that uses beautiful soup to parse HTML files. document_loaders.parsers.language.code_segmenter.CodeSegmenter(code) document_loaders.parsers.language.javascript.JavaScriptSegmenter(code) document_loaders.parsers.language.language_parser.LanguageParser([...]) Language parser that split code using the respective language syntax. document_loaders.parsers.language.python.PythonSegmenter(code) document_loaders.parsers.pdf.PDFMinerParser() Parse PDFs with PDFMiner. document_loaders.parsers.pdf.PDFPlumberParser([...]) Parse PDFs with PDFPlumber. document_loaders.parsers.pdf.PyMuPDFParser([...]) Parse PDFs with PyMuPDF. document_loaders.parsers.pdf.PyPDFParser([...]) Loads a PDF with pypdf and chunks at character level. document_loaders.parsers.pdf.PyPDFium2Parser() Parse PDFs with PyPDFium2. document_loaders.parsers.txt.TextParser() Parser for text blobs. document_loaders.pdf.BasePDFLoader(file_path) Base loader class for PDF files. document_loaders.pdf.MathpixPDFLoader(file_path) Initialize with file path. document_loaders.pdf.OnlinePDFLoader(file_path) Loader that loads online PDFs.
https://api.python.langchain.com/en/latest/api_reference.html
46c1298ceb12-24
document_loaders.pdf.OnlinePDFLoader(file_path) Loader that loads online PDFs. document_loaders.pdf.PDFMinerLoader(file_path) Loader that uses PDFMiner to load PDF files. document_loaders.pdf.PDFMinerPDFasHTMLLoader(...) Loader that uses PDFMiner to load PDF files as HTML content. document_loaders.pdf.PDFPlumberLoader(file_path) Loader that uses pdfplumber to load PDF files. document_loaders.pdf.PyMuPDFLoader(file_path) Loader that uses PyMuPDF to load PDF files. document_loaders.pdf.PyPDFDirectoryLoader(path) Loads a directory with PDF files with pypdf and chunks at character level. document_loaders.pdf.PyPDFLoader(file_path) Loads a PDF with pypdf and chunks at character level. document_loaders.pdf.PyPDFium2Loader(file_path) Loads a PDF with pypdfium2 and chunks at character level. document_loaders.pdf.UnstructuredPDFLoader(...) Loader that uses unstructured to load PDF files. document_loaders.powerpoint.UnstructuredPowerPointLoader(...) Loader that uses unstructured to load powerpoint files. document_loaders.psychic.PsychicLoader(...) Loader that loads documents from Psychic.dev. document_loaders.pyspark_dataframe.PySparkDataFrameLoader([...]) Load PySpark DataFrames document_loaders.python.PythonLoader(file_path) Load Python files, respecting any non-default encoding if specified. document_loaders.readthedocs.ReadTheDocsLoader(path) Loader that loads ReadTheDocs documentation directory dump. document_loaders.recursive_url_loader.RecursiveUrlLoader(url) Loader that loads all child links from a given url. document_loaders.reddit.RedditPostsLoader(...) Reddit posts loader. document_loaders.roam.RoamLoader(path)
https://api.python.langchain.com/en/latest/api_reference.html
46c1298ceb12-25
Reddit posts loader. document_loaders.roam.RoamLoader(path) Loader that loads Roam files from disk. document_loaders.rst.UnstructuredRSTLoader(...) Loader that uses unstructured to load RST files. document_loaders.rtf.UnstructuredRTFLoader(...) Loader that uses unstructured to load rtf files. document_loaders.s3_directory.S3DirectoryLoader(bucket) Loading logic for loading documents from s3. document_loaders.s3_file.S3FileLoader(...) Loading logic for loading documents from s3. document_loaders.sitemap.SitemapLoader(web_path) Loader that fetches a sitemap and loads those URLs. document_loaders.slack_directory.SlackDirectoryLoader(...) Loader for loading documents from a Slack directory dump. document_loaders.snowflake_loader.SnowflakeLoader(...) Loads a query result from Snowflake into a list of documents. document_loaders.spreedly.SpreedlyLoader(...) Loader that fetches data from Spreedly API. document_loaders.srt.SRTLoader(file_path) Loader for .srt (subtitle) files. document_loaders.stripe.StripeLoader(resource) Loader that fetches data from Stripe. document_loaders.telegram.TelegramChatApiLoader([...]) Loader that loads Telegram chat json directory dump. document_loaders.telegram.TelegramChatFileLoader(path) Loader that loads Telegram chat json directory dump. document_loaders.tencent_cos_directory.TencentCOSDirectoryLoader(...) Loading logic for loading documents from Tencent Cloud COS. document_loaders.tencent_cos_file.TencentCOSFileLoader(...) Loading logic for loading documents from Tencent Cloud COS. document_loaders.text.TextLoader(file_path) Load text files. document_loaders.tomarkdown.ToMarkdownLoader(...) Loader that loads HTML to markdown using 2markdown.
https://api.python.langchain.com/en/latest/api_reference.html
46c1298ceb12-26
Loader that loads HTML to markdown using 2markdown. document_loaders.toml.TomlLoader(source) A TOML document loader that inherits from the BaseLoader class. document_loaders.trello.TrelloLoader(client, ...) Trello loader. document_loaders.twitter.TwitterTweetLoader(...) Twitter tweets loader. document_loaders.unstructured.UnstructuredAPIFileIOLoader(file) Loader that uses the unstructured web API to load file IO objects. document_loaders.unstructured.UnstructuredAPIFileLoader([...]) Loader that uses the unstructured web API to load files. document_loaders.unstructured.UnstructuredBaseLoader([mode]) Loader that uses unstructured to load files. document_loaders.unstructured.UnstructuredFileIOLoader(file) Loader that uses unstructured to load file IO objects. document_loaders.unstructured.UnstructuredFileLoader(...) Loader that uses unstructured to load files. document_loaders.url.UnstructuredURLLoader(urls) Loader that uses unstructured to load HTML files. document_loaders.url_playwright.PlaywrightURLLoader(urls) Loader that uses Playwright and to load a page and unstructured to load the html. document_loaders.url_selenium.SeleniumURLLoader(urls) Loader that uses Selenium and to load a page and unstructured to load the html. document_loaders.weather.WeatherDataLoader(...) Weather Reader. document_loaders.web_base.WebBaseLoader(web_path) Loader that uses urllib and beautiful soup to load webpages. document_loaders.whatsapp_chat.WhatsAppChatLoader(path) Loader that loads WhatsApp messages text file. document_loaders.wikipedia.WikipediaLoader(query) Loads a query result from www.wikipedia.org into a list of Documents. document_loaders.word_document.Docx2txtLoader(...) Loads a DOCX with docx2txt and chunks at character level.
https://api.python.langchain.com/en/latest/api_reference.html
46c1298ceb12-27
Loads a DOCX with docx2txt and chunks at character level. document_loaders.word_document.UnstructuredWordDocumentLoader(...) Loader that uses unstructured to load word documents. document_loaders.xml.UnstructuredXMLLoader(...) Loader that uses unstructured to load XML files. document_loaders.youtube.GoogleApiYoutubeLoader(...) Loader that loads all Videos from a Channel document_loaders.youtube.YoutubeLoader(video_id) Loader that loads Youtube transcripts. Functions¶ document_loaders.chatgpt.concatenate_rows(...) Combine message information in a readable format ready to be used. document_loaders.facebook_chat.concatenate_rows(row) Combine message information in a readable format ready to be used. document_loaders.helpers.detect_file_encodings(...) Try to detect the file encoding. document_loaders.notebook.concatenate_cells(...) Combine cells information in a readable format ready to be used. document_loaders.notebook.remove_newlines(x) Remove recursively newlines, no matter the data structure they are stored in. document_loaders.parsers.registry.get_parser(...) Get a parser by parser name. document_loaders.telegram.concatenate_rows(row) Combine message information in a readable format ready to be used. document_loaders.telegram.text_to_docs(text) Converts a string or list of strings to a list of Documents with metadata. document_loaders.unstructured.get_elements_from_api([...]) Retrieves a list of elements from the Unstructured API. document_loaders.unstructured.satisfies_min_unstructured_version(...) Checks to see if the installed unstructured version exceeds the minimum version for the feature in question. document_loaders.unstructured.validate_unstructured_version(...) Raises an error if the unstructured version does not exceed the specified minimum. document_loaders.whatsapp_chat.concatenate_rows(...) Combine message information in a readable format ready to be used. langchain.document_transformers: Document Transformers¶
https://api.python.langchain.com/en/latest/api_reference.html
46c1298ceb12-28
langchain.document_transformers: Document Transformers¶ Transform documents Classes¶ document_transformers.EmbeddingsRedundantFilter Filter that drops redundant documents by comparing their embeddings. Functions¶ document_transformers.get_stateful_documents(...) Convert a list of documents to a list of documents with state. langchain.embeddings: Embeddings¶ Wrappers around embedding modules. Classes¶ embeddings.aleph_alpha.AlephAlphaAsymmetricSemanticEmbedding Wrapper for Aleph Alpha's Asymmetric Embeddings AA provides you with an endpoint to embed a document and a query. embeddings.aleph_alpha.AlephAlphaSymmetricSemanticEmbedding The symmetric version of the Aleph Alpha's semantic embeddings. embeddings.base.Embeddings() Interface for embedding models. embeddings.bedrock.BedrockEmbeddings Embeddings provider to invoke Bedrock embedding models. embeddings.cohere.CohereEmbeddings Wrapper around Cohere embedding models. embeddings.dashscope.DashScopeEmbeddings Wrapper around DashScope embedding models. embeddings.deepinfra.DeepInfraEmbeddings Wrapper around Deep Infra's embedding inference service. embeddings.elasticsearch.ElasticsearchEmbeddings(...) Wrapper around Elasticsearch embedding models. embeddings.embaas.EmbaasEmbeddings Wrapper around embaas's embedding service. embeddings.embaas.EmbaasEmbeddingsPayload Payload for the embaas embeddings API. embeddings.fake.FakeEmbeddings Create a new model by parsing and validating input data from keyword arguments. embeddings.google_palm.GooglePalmEmbeddings Create a new model by parsing and validating input data from keyword arguments. embeddings.huggingface.HuggingFaceEmbeddings Wrapper around sentence_transformers embedding models. embeddings.huggingface.HuggingFaceInstructEmbeddings Wrapper around sentence_transformers embedding models.
https://api.python.langchain.com/en/latest/api_reference.html
46c1298ceb12-29
Wrapper around sentence_transformers embedding models. embeddings.huggingface_hub.HuggingFaceHubEmbeddings Wrapper around HuggingFaceHub embedding models. embeddings.jina.JinaEmbeddings Create a new model by parsing and validating input data from keyword arguments. embeddings.llamacpp.LlamaCppEmbeddings Wrapper around llama.cpp embedding models. embeddings.minimax.MiniMaxEmbeddings Wrapper around MiniMax's embedding inference service. embeddings.modelscope_hub.ModelScopeEmbeddings Wrapper around modelscope_hub embedding models. embeddings.mosaicml.MosaicMLInstructorEmbeddings Wrapper around MosaicML's embedding inference service. embeddings.octoai_embeddings.OctoAIEmbeddings Wrapper around OctoAI Compute Service embedding models. embeddings.openai.OpenAIEmbeddings Wrapper around OpenAI embedding models. embeddings.sagemaker_endpoint.EmbeddingsContentHandler() Content handler for LLM class. embeddings.sagemaker_endpoint.SagemakerEndpointEmbeddings Wrapper around custom Sagemaker Inference Endpoints. embeddings.self_hosted.SelfHostedEmbeddings Runs custom embedding models on self-hosted remote hardware. embeddings.self_hosted_hugging_face.SelfHostedHuggingFaceEmbeddings Runs sentence_transformers embedding models on self-hosted remote hardware. embeddings.self_hosted_hugging_face.SelfHostedHuggingFaceInstructEmbeddings Runs InstructorEmbedding embedding models on self-hosted remote hardware. embeddings.tensorflow_hub.TensorflowHubEmbeddings Wrapper around tensorflow_hub embedding models. embeddings.vertexai.VertexAIEmbeddings Create a new model by parsing and validating input data from keyword arguments. Functions¶ embeddings.dashscope.embed_with_retry(...) Use tenacity to retry the embedding call. embeddings.google_palm.embed_with_retry(...)
https://api.python.langchain.com/en/latest/api_reference.html
46c1298ceb12-30
Use tenacity to retry the embedding call. embeddings.google_palm.embed_with_retry(...) Use tenacity to retry the completion call. embeddings.minimax.embed_with_retry(...) Use tenacity to retry the completion call. embeddings.openai.embed_with_retry(...) Use tenacity to retry the embedding call. embeddings.self_hosted_hugging_face.load_embedding_model(...) Load the embedding model. langchain.env: Env¶ Functions¶ env.get_runtime_environment() Get information about the environment. langchain.evaluation: Evaluation¶ Functionality relating to evaluation. This module contains off-the-shelf evaluation chains for grading the output of LangChain primitives such as LLMs and Chains. Some common use cases for evaluation include: Grading accuracy of a response against ground truth answers: QAEvalChain Comparing the output of two models: PairwiseStringEvalChain Judging the efficacy of an agent’s tool usage: TrajectoryEvalChain Checking whether an output complies with a set of criteria: CriteriaEvalChain This module also contains low level APIs for making more evaluators for your custom evaluation task. These include: - StringEvaluator: Evaluates an output string against a reference and/or with input context. PairwiseStringEvaluator: Evaluates two strings against each other. Classes¶ evaluation.agents.trajectory_eval_chain.TrajectoryEval(...) Create new instance of TrajectoryEval(score, reasoning) evaluation.agents.trajectory_eval_chain.TrajectoryEvalChain A chain for evaluating ReAct style agents. evaluation.agents.trajectory_eval_chain.TrajectoryOutputParser Create a new model by parsing and validating input data from keyword arguments. evaluation.comparison.eval_chain.PairwiseStringEvalChain A chain for comparing the output of two models. evaluation.comparison.eval_chain.PairwiseStringResultOutputParser
https://api.python.langchain.com/en/latest/api_reference.html
46c1298ceb12-31
evaluation.comparison.eval_chain.PairwiseStringResultOutputParser A parser for the output of the PairwiseStringEvalChain. evaluation.criteria.eval_chain.CriteriaEvalChain LLM Chain for evaluating runs against criteria. evaluation.criteria.eval_chain.CriteriaResultOutputParser A parser for the output of the CriteriaEvalChain. evaluation.qa.eval_chain.ContextQAEvalChain LLM Chain specifically for evaluating QA w/o GT based on context evaluation.qa.eval_chain.CotQAEvalChain LLM Chain specifically for evaluating QA using chain of thought reasoning. evaluation.qa.eval_chain.QAEvalChain LLM Chain specifically for evaluating question answering. evaluation.qa.generate_chain.QAGenerateChain LLM Chain specifically for generating examples for question answering. evaluation.run_evaluators.base.RunEvaluatorChain Evaluate Run and optional examples. evaluation.run_evaluators.base.RunEvaluatorOutputParser Parse the output of a run. evaluation.run_evaluators.implementations.ChoicesOutputParser Parse a feedback run with optional choices. evaluation.run_evaluators.implementations.CriteriaOutputParser Parse a criteria results into an evaluation result. evaluation.run_evaluators.implementations.StringRunEvaluatorInputMapper Maps the Run and Optional[Example] to a dictionary. evaluation.run_evaluators.implementations.TrajectoryEvalOutputParser Create a new model by parsing and validating input data from keyword arguments. evaluation.run_evaluators.implementations.TrajectoryInputMapper Maps the Run and Optional[Example] to a dictionary. evaluation.schema.PairwiseStringEvaluator(...) A protocol for comparing the output of two models. evaluation.schema.StringEvaluator(*args, ...) Protocol for evaluating strings. Functions¶ evaluation.loading.load_dataset(uri) evaluation.run_evaluators.implementations.get_criteria_evaluator(...) Get an eval chain for grading a model's response against a map of criteria.
https://api.python.langchain.com/en/latest/api_reference.html
46c1298ceb12-32
Get an eval chain for grading a model's response against a map of criteria. evaluation.run_evaluators.implementations.get_qa_evaluator(llm, *) Get an eval chain that compares response against ground truth. evaluation.run_evaluators.implementations.get_trajectory_evaluator(...) Get an eval chain for grading a model's response against a map of criteria. langchain.example_generator: Example Generator¶ Utility functions for working with prompts. Functions¶ example_generator.generate_example(examples, ...) Return another example given a list of examples for a prompt. langchain.experimental: Experimental¶ Classes¶ experimental.autonomous_agents.autogpt.memory.AutoGPTMemory Create a new model by parsing and validating input data from keyword arguments. experimental.autonomous_agents.autogpt.output_parser.AutoGPTAction(...) Create new instance of AutoGPTAction(name, args) experimental.autonomous_agents.autogpt.output_parser.AutoGPTOutputParser Create a new model by parsing and validating input data from keyword arguments. experimental.autonomous_agents.autogpt.output_parser.BaseAutoGPTOutputParser Create a new model by parsing and validating input data from keyword arguments. experimental.autonomous_agents.autogpt.prompt.AutoGPTPrompt Create a new model by parsing and validating input data from keyword arguments. experimental.autonomous_agents.baby_agi.baby_agi.BabyAGI Controller model for the BabyAGI agent. experimental.autonomous_agents.baby_agi.task_creation.TaskCreationChain Chain to generates tasks. experimental.autonomous_agents.baby_agi.task_execution.TaskExecutionChain Chain to execute tasks. experimental.autonomous_agents.baby_agi.task_prioritization.TaskPrioritizationChain Chain to prioritize tasks. experimental.generative_agents.generative_agent.GenerativeAgent A character with memory and innate characteristics. experimental.generative_agents.memory.GenerativeAgentMemory
https://api.python.langchain.com/en/latest/api_reference.html
46c1298ceb12-33
A character with memory and innate characteristics. experimental.generative_agents.memory.GenerativeAgentMemory Create a new model by parsing and validating input data from keyword arguments. experimental.llms.jsonformer_decoder.JsonFormer Create a new model by parsing and validating input data from keyword arguments. experimental.llms.rellm_decoder.RELLM Create a new model by parsing and validating input data from keyword arguments. experimental.plan_and_execute.agent_executor.PlanAndExecute Create a new model by parsing and validating input data from keyword arguments. experimental.plan_and_execute.executors.base.BaseExecutor Create a new model by parsing and validating input data from keyword arguments. experimental.plan_and_execute.executors.base.ChainExecutor Create a new model by parsing and validating input data from keyword arguments. experimental.plan_and_execute.planners.base.BasePlanner Create a new model by parsing and validating input data from keyword arguments. experimental.plan_and_execute.planners.base.LLMPlanner Create a new model by parsing and validating input data from keyword arguments. experimental.plan_and_execute.planners.chat_planner.PlanningOutputParser Create a new model by parsing and validating input data from keyword arguments. experimental.plan_and_execute.schema.BaseStepContainer Create a new model by parsing and validating input data from keyword arguments. experimental.plan_and_execute.schema.ListStepContainer Create a new model by parsing and validating input data from keyword arguments. experimental.plan_and_execute.schema.Plan Create a new model by parsing and validating input data from keyword arguments. experimental.plan_and_execute.schema.PlanOutputParser Create a new model by parsing and validating input data from keyword arguments. experimental.plan_and_execute.schema.Step Create a new model by parsing and validating input data from keyword arguments. experimental.plan_and_execute.schema.StepResponse Create a new model by parsing and validating input data from keyword arguments. Functions¶
https://api.python.langchain.com/en/latest/api_reference.html
46c1298ceb12-34
Create a new model by parsing and validating input data from keyword arguments. Functions¶ experimental.autonomous_agents.autogpt.output_parser.preprocess_json_input(...) Preprocesses a string to be parsed as json. experimental.autonomous_agents.autogpt.prompt_generator.get_prompt(tools) This function generates a prompt string. experimental.llms.jsonformer_decoder.import_jsonformer() Lazily import jsonformer. experimental.llms.rellm_decoder.import_rellm() Lazily import rellm. experimental.plan_and_execute.executors.agent_executor.load_agent_executor(...) Load an agent executor. experimental.plan_and_execute.planners.chat_planner.load_chat_planner(llm) Load a chat planner. langchain.formatting: Formatting¶ Utilities for formatting strings. Classes¶ formatting.StrictFormatter() A subclass of formatter that checks for extra keys. langchain.graphs: Graphs¶ Graph implementations. Classes¶ graphs.networkx_graph.KnowledgeTriple(...) A triple in the graph. Functions¶ graphs.networkx_graph.get_entities(entity_str) Extract entities from entity string. graphs.networkx_graph.parse_triples(...) Parse knowledge triples from the knowledge string. langchain.indexes: Indexes¶ All index utils. Classes¶ indexes.graph.GraphIndexCreator Functionality to create graph index. indexes.vectorstore.VectorStoreIndexWrapper Wrapper around a vectorstore for easy access. indexes.vectorstore.VectorstoreIndexCreator Logic for creating indexes. langchain.input: Input¶ Handle chained inputs. Functions¶ input.get_bolded_text(text) Get bolded text. input.get_color_mapping(items[, excluded_colors]) Get mapping for items to a support color. input.get_colored_text(text, color) Get colored text. input.print_text(text[, color, end, file])
https://api.python.langchain.com/en/latest/api_reference.html
46c1298ceb12-35
Get colored text. input.print_text(text[, color, end, file]) Print text with highlighting and no end characters. langchain.llms: LLMs¶ Wrappers on top of large language models APIs. Classes¶ llms.ai21.AI21 Wrapper around AI21 large language models. llms.ai21.AI21PenaltyData Parameters for AI21 penalty data. llms.aleph_alpha.AlephAlpha Wrapper around Aleph Alpha large language models. llms.amazon_api_gateway.AmazonAPIGateway Wrapper around custom Amazon API Gateway llms.anthropic.Anthropic Wrapper around Anthropic's large language models. llms.anyscale.Anyscale Wrapper around Anyscale Services. llms.aviary.Aviary Allow you to use an Aviary. llms.azureml_endpoint.AzureMLEndpointClient(...) Wrapper around AzureML Managed Online Endpoint Client. llms.azureml_endpoint.AzureMLOnlineEndpoint Wrapper around Azure ML Hosted models using Managed Online Endpoints. llms.azureml_endpoint.DollyContentFormatter() Content handler for the Dolly-v2-12b model llms.azureml_endpoint.HFContentFormatter() Content handler for LLMs from the HuggingFace catalog. llms.azureml_endpoint.OSSContentFormatter() Content handler for LLMs from the OSS catalog. llms.bananadev.Banana Wrapper around Banana large language models. llms.base.BaseLLM LLM wrapper should take in a prompt and return a string. llms.base.LLM LLM class that expect subclasses to implement a simpler call method. llms.baseten.Baseten Use your Baseten models in Langchain llms.beam.Beam Wrapper around Beam API for gpt2 large language model.
https://api.python.langchain.com/en/latest/api_reference.html
46c1298ceb12-36
llms.beam.Beam Wrapper around Beam API for gpt2 large language model. llms.bedrock.Bedrock LLM provider to invoke Bedrock models. llms.cerebriumai.CerebriumAI Wrapper around CerebriumAI large language models. llms.clarifai.Clarifai Wrapper around Clarifai's large language models. llms.cohere.Cohere Wrapper around Cohere large language models. llms.ctransformers.CTransformers Wrapper around the C Transformers LLM interface. llms.databricks.Databricks LLM wrapper around a Databricks serving endpoint or a cluster driver proxy app. llms.deepinfra.DeepInfra Wrapper around DeepInfra deployed models. llms.fake.FakeListLLM Fake LLM wrapper for testing purposes. llms.forefrontai.ForefrontAI Wrapper around ForefrontAI large language models. llms.google_palm.GooglePalm Create a new model by parsing and validating input data from keyword arguments. llms.gooseai.GooseAI Wrapper around OpenAI large language models. llms.gpt4all.GPT4All Wrapper around GPT4All language models. llms.huggingface_endpoint.HuggingFaceEndpoint Wrapper around HuggingFaceHub Inference Endpoints. llms.huggingface_hub.HuggingFaceHub Wrapper around HuggingFaceHub models. llms.huggingface_pipeline.HuggingFacePipeline Wrapper around HuggingFace Pipeline API. llms.huggingface_text_gen_inference.HuggingFaceTextGenInference HuggingFace text generation inference API. llms.human.HumanInputLLM A LLM wrapper which returns user input as the response. llms.llamacpp.LlamaCpp Wrapper around the llama.cpp model.
https://api.python.langchain.com/en/latest/api_reference.html
46c1298ceb12-37
llms.llamacpp.LlamaCpp Wrapper around the llama.cpp model. llms.manifest.ManifestWrapper Wrapper around HazyResearch's Manifest library. llms.modal.Modal Wrapper around Modal large language models. llms.mosaicml.MosaicML Wrapper around MosaicML's LLM inference service. llms.nlpcloud.NLPCloud Wrapper around NLPCloud large language models. llms.octoai_endpoint.OctoAIEndpoint Wrapper around OctoAI Inference Endpoints. llms.openai.AzureOpenAI Wrapper around Azure-specific OpenAI large language models. llms.openai.BaseOpenAI Wrapper around OpenAI large language models. llms.openai.OpenAI Wrapper around OpenAI large language models. llms.openai.OpenAIChat Wrapper around OpenAI Chat large language models. llms.openllm.IdentifyingParams llms.openllm.OpenLLM Wrapper for accessing OpenLLM, supporting both in-process model instance and remote OpenLLM servers. llms.openlm.OpenLM Create a new model by parsing and validating input data from keyword arguments. llms.petals.Petals Wrapper around Petals Bloom models. llms.pipelineai.PipelineAI Wrapper around PipelineAI large language models. llms.predictionguard.PredictionGuard Wrapper around Prediction Guard large language models. llms.promptlayer_openai.PromptLayerOpenAI Wrapper around OpenAI large language models. llms.promptlayer_openai.PromptLayerOpenAIChat Wrapper around OpenAI large language models. llms.replicate.Replicate Wrapper around Replicate models. llms.rwkv.RWKV Wrapper around RWKV language models. llms.sagemaker_endpoint.ContentHandlerBase()
https://api.python.langchain.com/en/latest/api_reference.html
46c1298ceb12-38
Wrapper around RWKV language models. llms.sagemaker_endpoint.ContentHandlerBase() A handler class to transform input from LLM to a format that SageMaker endpoint expects. llms.sagemaker_endpoint.LLMContentHandler() Content handler for LLM class. llms.sagemaker_endpoint.SagemakerEndpoint Wrapper around custom Sagemaker Inference Endpoints. llms.self_hosted.SelfHostedPipeline Run model inference on self-hosted remote hardware. llms.self_hosted_hugging_face.SelfHostedHuggingFaceLLM Wrapper around HuggingFace Pipeline API to run on self-hosted remote hardware. llms.stochasticai.StochasticAI Wrapper around StochasticAI large language models. llms.textgen.TextGen Wrapper around the text-generation-webui model. llms.vertexai.VertexAI Wrapper around Google Vertex AI large language models. llms.writer.Writer Wrapper around Writer large language models. Functions¶ llms.aviary.get_completions(model, prompt[, ...]) Get completions from Aviary models. llms.aviary.get_models() List available models llms.base.get_prompts(params, prompts) Get prompts that are already cached. llms.base.update_cache(existing_prompts, ...) Update the cache and get the LLM output. llms.cohere.completion_with_retry(llm, **kwargs) Use tenacity to retry the completion call. llms.databricks.get_default_api_token() Gets the default Databricks personal access token. llms.databricks.get_default_host() Gets the default Databricks workspace hostname. llms.databricks.get_repl_context() Gets the notebook REPL context if running inside a Databricks notebook. llms.google_palm.generate_with_retry(llm, ...)
https://api.python.langchain.com/en/latest/api_reference.html
46c1298ceb12-39
llms.google_palm.generate_with_retry(llm, ...) Use tenacity to retry the completion call. llms.loading.load_llm(file) Load LLM from file. llms.loading.load_llm_from_config(config) Load LLM from Config Dict. llms.openai.completion_with_retry(llm, **kwargs) Use tenacity to retry the completion call. llms.openai.update_token_usage(keys, ...) Update token usage. llms.utils.enforce_stop_tokens(text, stop) Cut off the text as soon as any stop words occur. llms.vertexai.is_codey_model(model_name) langchain.load: Load¶ Classes¶ load.serializable.BaseSerialized Base class for serialized objects. load.serializable.Serializable Serializable base class. load.serializable.SerializedConstructor Serialized constructor. load.serializable.SerializedNotImplemented Serialized not implemented. load.serializable.SerializedSecret Serialized secret. Functions¶ load.dump.default(obj) Return a default value for a Serializable object or a SerializedNotImplemented object. load.dump.dumpd(obj) Return a json dict representation of an object. load.dump.dumps(obj, *[, pretty]) Return a json string representation of an object. load.load.loads(text, *[, secrets_map]) load.serializable.to_json_not_implemented(obj) Serialize a "not implemented" object. langchain.math_utils: Math Utils¶ Math utils. Functions¶ math_utils.cosine_similarity(X, Y) Row-wise cosine similarity between two equal-width matrices. math_utils.cosine_similarity_top_k(X, Y[, ...]) Row-wise cosine similarity with optional top-k and score threshold filtering. langchain.memory: Memory¶ Classes¶ memory.buffer.ConversationBufferMemory Buffer for storing conversation memory.
https://api.python.langchain.com/en/latest/api_reference.html
46c1298ceb12-40
Classes¶ memory.buffer.ConversationBufferMemory Buffer for storing conversation memory. memory.buffer.ConversationStringBufferMemory Buffer for storing conversation memory. memory.buffer_window.ConversationBufferWindowMemory Buffer for storing conversation memory. memory.chat_memory.BaseChatMemory Create a new model by parsing and validating input data from keyword arguments. memory.chat_message_histories.cassandra.CassandraChatMessageHistory(...) Chat message history that stores history in Cassandra. memory.chat_message_histories.cosmos_db.CosmosDBChatMessageHistory(...) Chat history backed by Azure CosmosDB. memory.chat_message_histories.dynamodb.DynamoDBChatMessageHistory(...) Chat message history that stores history in AWS DynamoDB. memory.chat_message_histories.file.FileChatMessageHistory(...) Chat message history that stores history in a local file. memory.chat_message_histories.firestore.FirestoreChatMessageHistory(...) Chat history backed by Google Firestore. memory.chat_message_histories.in_memory.ChatMessageHistory Create a new model by parsing and validating input data from keyword arguments. memory.chat_message_histories.momento.MomentoChatMessageHistory(...) Chat message history cache that uses Momento as a backend. memory.chat_message_histories.mongodb.MongoDBChatMessageHistory(...) Chat message history that stores history in MongoDB. memory.chat_message_histories.postgres.PostgresChatMessageHistory(...) Chat message history stored in a Postgres database. memory.chat_message_histories.redis.RedisChatMessageHistory(...) Chat message history stored in a Redis database. memory.chat_message_histories.sql.SQLChatMessageHistory(...) Chat message history stored in an SQL database. memory.chat_message_histories.zep.ZepChatMessageHistory(...) A ChatMessageHistory implementation that uses Zep as a backend. memory.combined.CombinedMemory Class for combining multiple memories' data together. memory.entity.BaseEntityStore
https://api.python.langchain.com/en/latest/api_reference.html
46c1298ceb12-41
Class for combining multiple memories' data together. memory.entity.BaseEntityStore Create a new model by parsing and validating input data from keyword arguments. memory.entity.ConversationEntityMemory Entity extractor & summarizer memory. memory.entity.InMemoryEntityStore Basic in-memory entity store. memory.entity.RedisEntityStore Redis-backed Entity store. memory.entity.SQLiteEntityStore SQLite-backed Entity store memory.kg.ConversationKGMemory Knowledge graph memory for storing conversation memory. memory.motorhead_memory.MotorheadMemory Create a new model by parsing and validating input data from keyword arguments. memory.readonly.ReadOnlySharedMemory A memory wrapper that is read-only and cannot be changed. memory.simple.SimpleMemory Simple memory for storing context or other bits of information that shouldn't ever change between prompts. memory.summary.ConversationSummaryMemory Conversation summarizer to memory. memory.summary.SummarizerMixin Create a new model by parsing and validating input data from keyword arguments. memory.summary_buffer.ConversationSummaryBufferMemory Buffer with summarizer for storing conversation memory. memory.token_buffer.ConversationTokenBufferMemory Buffer for storing conversation memory. memory.vectorstore.VectorStoreRetrieverMemory Class for a VectorStore-backed memory object. Functions¶ memory.chat_message_histories.sql.create_message_model(...) Create a message model for a given table name. memory.utils.get_prompt_input_key(inputs, ...) Get the prompt input key. langchain.output_parsers: Output Parsers¶ Classes¶ output_parsers.boolean.BooleanOutputParser Create a new model by parsing and validating input data from keyword arguments. output_parsers.combining.CombiningOutputParser Class to combine multiple output parsers into one. output_parsers.datetime.DatetimeOutputParser Create a new model by parsing and validating input data from keyword arguments. output_parsers.enum.EnumOutputParser
https://api.python.langchain.com/en/latest/api_reference.html
46c1298ceb12-42
output_parsers.enum.EnumOutputParser Create a new model by parsing and validating input data from keyword arguments. output_parsers.fix.OutputFixingParser Wraps a parser and tries to fix parsing errors. output_parsers.list.CommaSeparatedListOutputParser Parse out comma separated lists. output_parsers.list.ListOutputParser Class to parse the output of an LLM call to a list. output_parsers.openai_functions.JsonKeyOutputFunctionsParser Create a new model by parsing and validating input data from keyword arguments. output_parsers.openai_functions.JsonOutputFunctionsParser Create a new model by parsing and validating input data from keyword arguments. output_parsers.openai_functions.OutputFunctionsParser Create a new model by parsing and validating input data from keyword arguments. output_parsers.openai_functions.PydanticAttrOutputFunctionsParser Create a new model by parsing and validating input data from keyword arguments. output_parsers.openai_functions.PydanticOutputFunctionsParser Create a new model by parsing and validating input data from keyword arguments. output_parsers.pydantic.PydanticOutputParser Create a new model by parsing and validating input data from keyword arguments. output_parsers.rail_parser.GuardrailsOutputParser Create a new model by parsing and validating input data from keyword arguments. output_parsers.regex.RegexParser Class to parse the output into a dictionary. output_parsers.regex_dict.RegexDictParser Class to parse the output into a dictionary. output_parsers.retry.RetryOutputParser Wraps a parser and tries to fix parsing errors. output_parsers.retry.RetryWithErrorOutputParser Wraps a parser and tries to fix parsing errors. output_parsers.structured.ResponseSchema Create a new model by parsing and validating input data from keyword arguments. output_parsers.structured.StructuredOutputParser
https://api.python.langchain.com/en/latest/api_reference.html
46c1298ceb12-43
output_parsers.structured.StructuredOutputParser Create a new model by parsing and validating input data from keyword arguments. Functions¶ output_parsers.json.parse_and_check_json_markdown(...) Parse a JSON string from a Markdown string and check that it contains the expected keys. output_parsers.json.parse_json_markdown(...) Parse a JSON string from a Markdown string. output_parsers.loading.load_output_parser(config) Load output parser. langchain.prompts: Prompts¶ Prompt template classes. Classes¶ prompts.base.BasePromptTemplate Base class for all prompt templates, returning a prompt. prompts.base.StringPromptTemplate String prompt should expose the format method, returning a prompt. prompts.base.StringPromptValue Create a new model by parsing and validating input data from keyword arguments. prompts.chat.AIMessagePromptTemplate Create a new model by parsing and validating input data from keyword arguments. prompts.chat.BaseChatPromptTemplate Create a new model by parsing and validating input data from keyword arguments. prompts.chat.BaseMessagePromptTemplate Create a new model by parsing and validating input data from keyword arguments. prompts.chat.BaseStringMessagePromptTemplate Create a new model by parsing and validating input data from keyword arguments. prompts.chat.ChatMessagePromptTemplate Create a new model by parsing and validating input data from keyword arguments. prompts.chat.ChatPromptTemplate Create a new model by parsing and validating input data from keyword arguments. prompts.chat.ChatPromptValue Create a new model by parsing and validating input data from keyword arguments. prompts.chat.HumanMessagePromptTemplate Create a new model by parsing and validating input data from keyword arguments. prompts.chat.MessagesPlaceholder Prompt template that assumes variable is already list of messages. prompts.chat.SystemMessagePromptTemplate Create a new model by parsing and validating input data from keyword arguments.
https://api.python.langchain.com/en/latest/api_reference.html
46c1298ceb12-44
Create a new model by parsing and validating input data from keyword arguments. prompts.example_selector.base.BaseExampleSelector() Interface for selecting examples to include in prompts. prompts.example_selector.length_based.LengthBasedExampleSelector Select examples based on length. prompts.example_selector.ngram_overlap.NGramOverlapExampleSelector Select and order examples based on ngram overlap score (sentence_bleu score). prompts.example_selector.semantic_similarity.MaxMarginalRelevanceExampleSelector ExampleSelector that selects examples based on Max Marginal Relevance. prompts.example_selector.semantic_similarity.SemanticSimilarityExampleSelector Example selector that selects examples based on SemanticSimilarity. prompts.few_shot.FewShotPromptTemplate Prompt template that contains few shot examples. prompts.few_shot_with_templates.FewShotPromptWithTemplates Prompt template that contains few shot examples. prompts.pipeline.PipelinePromptTemplate A prompt template for composing multiple prompts together. prompts.prompt.PromptTemplate Schema to represent a prompt for an LLM. Functions¶ prompts.base.check_valid_template(template, ...) Check that template string is valid. prompts.base.jinja2_formatter(template, **kwargs) Format a template using jinja2. prompts.base.validate_jinja2(template, ...) Validate that the input variables are valid for the template. prompts.example_selector.ngram_overlap.ngram_overlap_score(...) Compute ngram overlap score of source and example as sentence_bleu score. prompts.example_selector.semantic_similarity.sorted_values(values) Return a list of values in dict sorted by key. prompts.loading.load_prompt(path) Unified method for loading a prompt from LangChainHub or local fs. prompts.loading.load_prompt_from_config(config) Load prompt from Config Dict. langchain.requests: Requests¶ Lightweight wrapper around requests library, with async support. Classes¶
https://api.python.langchain.com/en/latest/api_reference.html
46c1298ceb12-45
Lightweight wrapper around requests library, with async support. Classes¶ requests.Requests Wrapper around requests to handle auth and async. requests.TextRequestsWrapper Lightweight wrapper around requests library. langchain.retrievers: Retrievers¶ Classes¶ retrievers.arxiv.ArxivRetriever It is effectively a wrapper for ArxivAPIWrapper. retrievers.azure_cognitive_search.AzureCognitiveSearchRetriever Wrapper around Azure Cognitive Search. retrievers.chatgpt_plugin_retriever.ChatGPTPluginRetriever Create a new model by parsing and validating input data from keyword arguments. retrievers.contextual_compression.ContextualCompressionRetriever Retriever that wraps a base retriever and compresses the results. retrievers.databerry.DataberryRetriever(...) Retriever that uses the Databerry API. retrievers.docarray.DocArrayRetriever Retriever class for DocArray Document Indices. retrievers.docarray.SearchType(value[, ...]) Enumerator of the types of search to perform. retrievers.document_compressors.base.BaseDocumentCompressor Base abstraction interface for document compression. retrievers.document_compressors.base.DocumentCompressorPipeline Document compressor that uses a pipeline of transformers. retrievers.document_compressors.chain_extract.LLMChainExtractor Create a new model by parsing and validating input data from keyword arguments. retrievers.document_compressors.chain_extract.NoOutputParser Parse outputs that could return a null string of some sort. retrievers.document_compressors.chain_filter.LLMChainFilter Filter that drops documents that aren't relevant to the query. retrievers.document_compressors.cohere_rerank.CohereRerank Create a new model by parsing and validating input data from keyword arguments.
https://api.python.langchain.com/en/latest/api_reference.html
46c1298ceb12-46
Create a new model by parsing and validating input data from keyword arguments. retrievers.document_compressors.embeddings_filter.EmbeddingsFilter Create a new model by parsing and validating input data from keyword arguments. retrievers.elastic_search_bm25.ElasticSearchBM25Retriever(...) Wrapper around Elasticsearch using BM25 as a retrieval method. retrievers.kendra.AdditionalResultAttribute Create a new model by parsing and validating input data from keyword arguments. retrievers.kendra.AdditionalResultAttributeValue Create a new model by parsing and validating input data from keyword arguments. retrievers.kendra.AmazonKendraRetriever(index_id) Retriever class to query documents from Amazon Kendra Index. retrievers.kendra.DocumentAttribute Create a new model by parsing and validating input data from keyword arguments. retrievers.kendra.DocumentAttributeValue Create a new model by parsing and validating input data from keyword arguments. retrievers.kendra.Highlight Create a new model by parsing and validating input data from keyword arguments. retrievers.kendra.QueryResult Create a new model by parsing and validating input data from keyword arguments. retrievers.kendra.QueryResultItem Create a new model by parsing and validating input data from keyword arguments. retrievers.kendra.RetrieveResult Create a new model by parsing and validating input data from keyword arguments. retrievers.kendra.RetrieveResultItem Create a new model by parsing and validating input data from keyword arguments. retrievers.kendra.TextWithHighLights Create a new model by parsing and validating input data from keyword arguments. retrievers.knn.KNNRetriever KNN Retriever. retrievers.llama_index.LlamaIndexGraphRetriever Question-answering with sources over an LlamaIndex graph data structure.
https://api.python.langchain.com/en/latest/api_reference.html
46c1298ceb12-47
Question-answering with sources over an LlamaIndex graph data structure. retrievers.llama_index.LlamaIndexRetriever Question-answering with sources over an LlamaIndex data structure. retrievers.merger_retriever.MergerRetriever(...) This class merges the results of multiple retrievers. retrievers.metal.MetalRetriever(client[, params]) Retriever that uses the Metal API. retrievers.milvus.MilvusRetriever(...[, ...]) Retriever that uses the Milvus API. retrievers.multi_query.LineList Create a new model by parsing and validating input data from keyword arguments. retrievers.multi_query.LineListOutputParser Create a new model by parsing and validating input data from keyword arguments. retrievers.multi_query.MultiQueryRetriever(...) Given a user query, use an LLM to write a set of queries. retrievers.pinecone_hybrid_search.PineconeHybridSearchRetriever Create a new model by parsing and validating input data from keyword arguments. retrievers.pubmed.PubMedRetriever It is effectively a wrapper for PubMedAPIWrapper. retrievers.remote_retriever.RemoteLangChainRetriever Create a new model by parsing and validating input data from keyword arguments. retrievers.self_query.base.SelfQueryRetriever Retriever that wraps around a vector store and uses an LLM to generate the vector store queries. retrievers.self_query.chroma.ChromaTranslator() Logic for converting internal query language elements to valid filters. retrievers.self_query.myscale.MyScaleTranslator([...]) Logic for converting internal query language elements to valid filters. retrievers.self_query.pinecone.PineconeTranslator()
https://api.python.langchain.com/en/latest/api_reference.html
46c1298ceb12-48
retrievers.self_query.pinecone.PineconeTranslator() Logic for converting internal query language elements to valid filters. retrievers.self_query.qdrant.QdrantTranslator(...) Logic for converting internal query language elements to valid filters. retrievers.self_query.weaviate.WeaviateTranslator() Logic for converting internal query language elements to valid filters. retrievers.svm.SVMRetriever SVM Retriever. retrievers.tfidf.TFIDFRetriever Create a new model by parsing and validating input data from keyword arguments. retrievers.time_weighted_retriever.TimeWeightedVectorStoreRetriever Retriever combining embedding similarity with recency. retrievers.vespa_retriever.VespaRetriever(...) Retriever that uses the Vespa. retrievers.weaviate_hybrid_search.WeaviateHybridSearchRetriever(...) retrievers.wikipedia.WikipediaRetriever It is effectively a wrapper for WikipediaAPIWrapper. retrievers.zep.ZepRetriever(session_id, url) A Retriever implementation for the Zep long-term memory store. retrievers.zilliz.ZillizRetriever(...[, ...]) Retriever that uses the Zilliz API. Functions¶ retrievers.document_compressors.chain_extract.default_get_input(...) Return the compression chain input. retrievers.document_compressors.chain_filter.default_get_input(...) Return the compression chain input. retrievers.kendra.clean_excerpt(excerpt) retrievers.kendra.combined_text(title, excerpt) retrievers.knn.create_index(contexts, embeddings) Create an index of embeddings for a list of contexts. retrievers.milvus.MilvusRetreiver(*args, ...)
https://api.python.langchain.com/en/latest/api_reference.html
46c1298ceb12-49
retrievers.milvus.MilvusRetreiver(*args, ...) Deprecated MilvusRetreiver. retrievers.pinecone_hybrid_search.create_index(...) Create a Pinecone index from a list of contexts. retrievers.pinecone_hybrid_search.hash_text(text) Hash a text using SHA256. retrievers.self_query.myscale.DEFAULT_COMPOSER(op_name) Default composer for logical operators. retrievers.self_query.myscale.FUNCTION_COMPOSER(op_name) Composer for functions. retrievers.svm.create_index(contexts, embeddings) Create an index of embeddings for a list of contexts. retrievers.zilliz.ZillizRetreiver(*args, ...) Deprecated ZillizRetreiver. langchain.schema: Schema¶ Common schema objects. Classes¶ schema.AIMessage Type of message that is spoken by the AI. schema.AgentFinish(return_values, log) Agent's return value. schema.BaseChatMessageHistory() Base interface for chat message history See ChatMessageHistory for default implementation. schema.BaseDocumentTransformer() Base interface for transforming documents. schema.BaseLLMOutputParser Create a new model by parsing and validating input data from keyword arguments. schema.BaseMemory Base interface for memory in chains. schema.BaseMessage Message object. schema.BaseOutputParser Class to parse the output of an LLM call. schema.BaseRetriever() Base interface for a retriever. schema.ChatGeneration Output of a single generation. schema.ChatMessage Type of message with arbitrary speaker. schema.ChatResult Class that contains all relevant information for a Chat Result. schema.Document Interface for interacting with a document. schema.FunctionMessage Create a new model by parsing and validating input data from keyword arguments.
https://api.python.langchain.com/en/latest/api_reference.html
46c1298ceb12-50
schema.FunctionMessage Create a new model by parsing and validating input data from keyword arguments. schema.Generation Output of a single generation. schema.HumanMessage Type of message that is spoken by the human. schema.LLMResult Class that contains all relevant information for an LLM Result. schema.NoOpOutputParser Output parser that just returns the text as is. schema.OutputParserException(error[, ...]) Exception that output parsers should raise to signify a parsing error. schema.PromptValue Create a new model by parsing and validating input data from keyword arguments. schema.RunInfo Class that contains all relevant metadata for a Run. schema.SystemMessage Type of message that is a system message. Functions¶ schema.get_buffer_string(messages[, ...]) Get buffer string of messages. schema.messages_from_dict(messages) Convert messages from dict. schema.messages_to_dict(messages) Convert messages to dict. langchain.server: Server¶ Script to run langchain-server locally using docker-compose. Functions¶ server.main() Run the langchain server locally. langchain.sql_database: Sql Database¶ SQLAlchemy wrapper around a database. Functions¶ sql_database.truncate_word(content, *, length) Truncate a string to a certain number of words, based on the max string length. langchain.text_splitter: Text Splitter¶ Functionality for splitting text. Classes¶ text_splitter.CharacterTextSplitter([separator]) Implementation of splitting text that looks at characters. text_splitter.HeaderType Header type as typed dict. text_splitter.Language(value[, names, ...]) text_splitter.LatexTextSplitter(**kwargs) Attempts to split the text along Latex-formatted layout elements. text_splitter.LineType Line type as typed dict.
https://api.python.langchain.com/en/latest/api_reference.html
46c1298ceb12-51
text_splitter.LineType Line type as typed dict. text_splitter.MarkdownTextSplitter(**kwargs) Attempts to split the text along Markdown-formatted headings. text_splitter.NLTKTextSplitter([separator]) Implementation of splitting text that looks at sentences using NLTK. text_splitter.PythonCodeTextSplitter(**kwargs) Attempts to split the text along Python syntax. text_splitter.RecursiveCharacterTextSplitter([...]) Implementation of splitting text that looks at characters. text_splitter.SentenceTransformersTokenTextSplitter([...]) Implementation of splitting text that looks at tokens. text_splitter.SpacyTextSplitter([separator, ...]) Implementation of splitting text that looks at sentences using Spacy. text_splitter.TextSplitter(chunk_size, ...) Interface for splitting text into chunks. text_splitter.TokenTextSplitter([...]) Implementation of splitting text that looks at tokens. Functions¶ text_splitter.split_text_on_tokens(*, text, ...) Split incoming text and return chunks. langchain.tools: Tools¶ Core toolkit implementations. Classes¶ tools.arxiv.tool.ArxivQueryRun Tool that adds the capability to search using the Arxiv API. tools.azure_cognitive_services.form_recognizer.AzureCogsFormRecognizerTool Tool that queries the Azure Cognitive Services Form Recognizer API. tools.azure_cognitive_services.image_analysis.AzureCogsImageAnalysisTool Tool that queries the Azure Cognitive Services Image Analysis API. tools.azure_cognitive_services.speech2text.AzureCogsSpeech2TextTool Tool that queries the Azure Cognitive Services Speech2Text API. tools.azure_cognitive_services.text2speech.AzureCogsText2SpeechTool Tool that queries the Azure Cognitive Services Text2Speech API. tools.base.BaseTool Interface LangChain tools must implement. tools.base.SchemaAnnotationError
https://api.python.langchain.com/en/latest/api_reference.html
46c1298ceb12-52
tools.base.BaseTool Interface LangChain tools must implement. tools.base.SchemaAnnotationError Raised when 'args_schema' is missing or has an incorrect type annotation. tools.base.StructuredTool Tool that can operate on any number of inputs. tools.base.Tool Tool that takes in function or coroutine directly. tools.base.ToolException An optional exception that tool throws when execution error occurs. tools.base.ToolMetaclass(name, bases, dct) Metaclass for BaseTool to ensure the provided args_schema tools.bing_search.tool.BingSearchResults Tool that has capability to query the Bing Search API and get back json. tools.bing_search.tool.BingSearchRun Tool that adds the capability to query the Bing search API. tools.brave_search.tool.BraveSearch Create a new model by parsing and validating input data from keyword arguments. tools.convert_to_openai.FunctionDescription Representation of a callable function to the OpenAI API. tools.ddg_search.tool.DuckDuckGoSearchResults Tool that queries the Duck Duck Go Search API and get back json. tools.ddg_search.tool.DuckDuckGoSearchRun Tool that adds the capability to query the DuckDuckGo search API. tools.file_management.copy.CopyFileTool Create a new model by parsing and validating input data from keyword arguments. tools.file_management.copy.FileCopyInput Input for CopyFileTool. tools.file_management.delete.DeleteFileTool Create a new model by parsing and validating input data from keyword arguments. tools.file_management.delete.FileDeleteInput Input for DeleteFileTool. tools.file_management.file_search.FileSearchInput Input for FileSearchTool. tools.file_management.file_search.FileSearchTool Create a new model by parsing and validating input data from keyword arguments. tools.file_management.list_dir.DirectoryListingInput Input for ListDirectoryTool.
https://api.python.langchain.com/en/latest/api_reference.html
46c1298ceb12-53
tools.file_management.list_dir.DirectoryListingInput Input for ListDirectoryTool. tools.file_management.list_dir.ListDirectoryTool Create a new model by parsing and validating input data from keyword arguments. tools.file_management.move.FileMoveInput Input for MoveFileTool. tools.file_management.move.MoveFileTool Create a new model by parsing and validating input data from keyword arguments. tools.file_management.read.ReadFileInput Input for ReadFileTool. tools.file_management.read.ReadFileTool Create a new model by parsing and validating input data from keyword arguments. tools.file_management.utils.BaseFileToolMixin Mixin for file system tools. tools.file_management.utils.FileValidationError Error for paths outside the root directory. tools.file_management.write.WriteFileInput Input for WriteFileTool. tools.file_management.write.WriteFileTool Create a new model by parsing and validating input data from keyword arguments. tools.gmail.base.GmailBaseTool Create a new model by parsing and validating input data from keyword arguments. tools.gmail.create_draft.CreateDraftSchema Create a new model by parsing and validating input data from keyword arguments. tools.gmail.create_draft.GmailCreateDraft Create a new model by parsing and validating input data from keyword arguments. tools.gmail.get_message.GmailGetMessage Create a new model by parsing and validating input data from keyword arguments. tools.gmail.get_message.SearchArgsSchema Create a new model by parsing and validating input data from keyword arguments. tools.gmail.get_thread.GetThreadSchema Create a new model by parsing and validating input data from keyword arguments. tools.gmail.get_thread.GmailGetThread Create a new model by parsing and validating input data from keyword arguments. tools.gmail.search.GmailSearch Create a new model by parsing and validating input data from keyword arguments. tools.gmail.search.Resource(value[, names, ...]) Enumerator of Resources to search. tools.gmail.search.SearchArgsSchema
https://api.python.langchain.com/en/latest/api_reference.html
46c1298ceb12-54
Enumerator of Resources to search. tools.gmail.search.SearchArgsSchema Create a new model by parsing and validating input data from keyword arguments. tools.gmail.send_message.GmailSendMessage Create a new model by parsing and validating input data from keyword arguments. tools.gmail.send_message.SendMessageSchema Create a new model by parsing and validating input data from keyword arguments. tools.google_places.tool.GooglePlacesSchema Create a new model by parsing and validating input data from keyword arguments. tools.google_places.tool.GooglePlacesTool Tool that adds the capability to query the Google places API. tools.google_search.tool.GoogleSearchResults Tool that has capability to query the Google Search API and get back json. tools.google_search.tool.GoogleSearchRun Tool that adds the capability to query the Google search API. tools.google_serper.tool.GoogleSerperResults Tool that has capability to query the Serper.dev Google Search API and get back json. tools.google_serper.tool.GoogleSerperRun Tool that adds the capability to query the Serper.dev Google search API. tools.graphql.tool.BaseGraphQLTool Base tool for querying a GraphQL API. tools.human.tool.HumanInputRun Tool that adds the capability to ask user for input. tools.ifttt.IFTTTWebhook IFTTT Webhook. tools.jira.tool.JiraAction Create a new model by parsing and validating input data from keyword arguments. tools.json.tool.JsonGetValueTool Tool for getting a value in a JSON spec. tools.json.tool.JsonListKeysTool Tool for listing keys in a JSON spec. tools.json.tool.JsonSpec Base class for JSON spec. tools.metaphor_search.tool.MetaphorSearchResults Tool that has capability to query the Metaphor Search API and get back json. tools.office365.base.O365BaseTool Create a new model by parsing and validating input data from keyword arguments.
https://api.python.langchain.com/en/latest/api_reference.html
46c1298ceb12-55
Create a new model by parsing and validating input data from keyword arguments. tools.office365.create_draft_message.CreateDraftMessageSchema Create a new model by parsing and validating input data from keyword arguments. tools.office365.create_draft_message.O365CreateDraftMessage Create a new model by parsing and validating input data from keyword arguments. tools.office365.events_search.O365SearchEvents Class for searching calendar events in Office 365 tools.office365.events_search.SearchEventsInput Input for SearchEmails Tool. tools.office365.messages_search.O365SearchEmails Class for searching email messages in Office 365 tools.office365.messages_search.SearchEmailsInput Input for SearchEmails Tool. tools.office365.send_event.O365SendEvent Create a new model by parsing and validating input data from keyword arguments. tools.office365.send_event.SendEventSchema Input for CreateEvent Tool. tools.office365.send_message.O365SendMessage Create a new model by parsing and validating input data from keyword arguments. tools.office365.send_message.SendMessageSchema Create a new model by parsing and validating input data from keyword arguments. tools.openapi.utils.api_models.APIOperation A model for a single API operation. tools.openapi.utils.api_models.APIProperty A model for a property in the query, path, header, or cookie params. tools.openapi.utils.api_models.APIPropertyBase Base model for an API property. tools.openapi.utils.api_models.APIPropertyLocation(value) The location of the property. tools.openapi.utils.api_models.APIRequestBody A model for a request body. tools.openapi.utils.api_models.APIRequestBodyProperty A model for a request body property. tools.openweathermap.tool.OpenWeatherMapQueryRun Tool that adds the capability to query using the OpenWeatherMap API. tools.playwright.base.BaseBrowserTool Base class for browser tools. tools.playwright.click.ClickTool
https://api.python.langchain.com/en/latest/api_reference.html
46c1298ceb12-56
Base class for browser tools. tools.playwright.click.ClickTool Create a new model by parsing and validating input data from keyword arguments. tools.playwright.click.ClickToolInput Input for ClickTool. tools.playwright.current_page.CurrentWebPageTool Create a new model by parsing and validating input data from keyword arguments. tools.playwright.extract_hyperlinks.ExtractHyperlinksTool Extract all hyperlinks on the page. tools.playwright.extract_hyperlinks.ExtractHyperlinksToolInput Input for ExtractHyperlinksTool. tools.playwright.extract_text.ExtractTextTool Create a new model by parsing and validating input data from keyword arguments. tools.playwright.get_elements.GetElementsTool Create a new model by parsing and validating input data from keyword arguments. tools.playwright.get_elements.GetElementsToolInput Input for GetElementsTool. tools.playwright.navigate.NavigateTool Create a new model by parsing and validating input data from keyword arguments. tools.playwright.navigate.NavigateToolInput Input for NavigateToolInput. tools.playwright.navigate_back.NavigateBackTool Navigate back to the previous page in the browser history. tools.plugin.AIPlugin AI Plugin Definition. tools.plugin.AIPluginTool Create a new model by parsing and validating input data from keyword arguments. tools.plugin.AIPluginToolSchema AIPLuginToolSchema. tools.plugin.ApiConfig Create a new model by parsing and validating input data from keyword arguments. tools.powerbi.tool.InfoPowerBITool Tool for getting metadata about a PowerBI Dataset. tools.powerbi.tool.ListPowerBITool Tool for getting tables names. tools.powerbi.tool.QueryPowerBITool Tool for querying a Power BI Dataset. tools.pubmed.tool.PubmedQueryRun Tool that adds the capability to search using the PubMed API. tools.python.tool.PythonAstREPLTool A tool for running python code in a REPL.
https://api.python.langchain.com/en/latest/api_reference.html
46c1298ceb12-57
A tool for running python code in a REPL. tools.python.tool.PythonREPLTool A tool for running python code in a REPL. tools.requests.tool.BaseRequestsTool Base class for requests tools. tools.requests.tool.RequestsDeleteTool Tool for making a DELETE request to an API endpoint. tools.requests.tool.RequestsGetTool Tool for making a GET request to an API endpoint. tools.requests.tool.RequestsPatchTool Tool for making a PATCH request to an API endpoint. tools.requests.tool.RequestsPostTool Tool for making a POST request to an API endpoint. tools.requests.tool.RequestsPutTool Tool for making a PUT request to an API endpoint. tools.scenexplain.tool.SceneXplainInput Input for SceneXplain. tools.scenexplain.tool.SceneXplainTool Tool that adds the capability to explain images. tools.searx_search.tool.SearxSearchResults Tool that has the capability to query a Searx instance and get back json. tools.searx_search.tool.SearxSearchRun Tool that adds the capability to query a Searx instance. tools.shell.tool.ShellInput Commands for the Bash Shell tool. tools.shell.tool.ShellTool Tool to run shell commands. tools.sleep.tool.SleepInput Input for CopyFileTool. tools.sleep.tool.SleepTool Tool that adds the capability to sleep. tools.spark_sql.tool.BaseSparkSQLTool Base tool for interacting with Spark SQL. tools.spark_sql.tool.InfoSparkSQLTool Tool for getting metadata about a Spark SQL. tools.spark_sql.tool.ListSparkSQLTool Tool for getting tables names. tools.spark_sql.tool.QueryCheckerTool Use an LLM to check if a query is correct. tools.spark_sql.tool.QuerySparkSQLTool Tool for querying a Spark SQL. tools.sql_database.tool.BaseSQLDatabaseTool
https://api.python.langchain.com/en/latest/api_reference.html
46c1298ceb12-58
Tool for querying a Spark SQL. tools.sql_database.tool.BaseSQLDatabaseTool Base tool for interacting with a SQL database. tools.sql_database.tool.InfoSQLDatabaseTool Tool for getting metadata about a SQL database. tools.sql_database.tool.ListSQLDatabaseTool Tool for getting tables names. tools.sql_database.tool.QuerySQLCheckerTool Use an LLM to check if a query is correct. tools.sql_database.tool.QuerySQLDataBaseTool Tool for querying a SQL database. tools.steamship_image_generation.tool.ModelName(value) Supported Image Models for generation. tools.steamship_image_generation.tool.SteamshipImageGenerationTool Create a new model by parsing and validating input data from keyword arguments. tools.vectorstore.tool.BaseVectorStoreTool Base class for tools that use a VectorStore. tools.vectorstore.tool.VectorStoreQATool Tool for the VectorDBQA chain. tools.vectorstore.tool.VectorStoreQAWithSourcesTool Tool for the VectorDBQAWithSources chain. tools.wikipedia.tool.WikipediaQueryRun Tool that adds the capability to search using the Wikipedia API. tools.wolfram_alpha.tool.WolframAlphaQueryRun Tool that adds the capability to query using the Wolfram Alpha SDK. tools.youtube.search.YouTubeSearchTool Create a new model by parsing and validating input data from keyword arguments. tools.zapier.tool.ZapierNLAListActions Returns a list of all exposed (enabled) actions associated with tools.zapier.tool.ZapierNLARunAction Executes an action that is identified by action_id, must be exposed Functions¶ tools.azure_cognitive_services.utils.detect_file_src_type(...) Detect if the file is local or remote. tools.azure_cognitive_services.utils.download_audio_from_url(...) Download audio from url to local. tools.base.create_schema_from_function(...)
https://api.python.langchain.com/en/latest/api_reference.html
46c1298ceb12-59
Download audio from url to local. tools.base.create_schema_from_function(...) Create a pydantic schema from a function's signature. tools.base.tool(*args[, return_direct, ...]) Make tools out of functions, can be used with or without arguments. tools.convert_to_openai.format_tool_to_openai_function(tool) Format tool into the OpenAI function API. tools.ddg_search.tool.DuckDuckGoSearchTool(...) Deprecated. tools.file_management.utils.get_validated_relative_path(...) Resolve a relative path, raising an error if not within the root directory. tools.file_management.utils.is_relative_to(...) Check if path is relative to root. tools.gmail.utils.build_resource_service([...]) Build a Gmail service. tools.gmail.utils.clean_email_body(body) Clean email body. tools.gmail.utils.get_gmail_credentials([...]) Get credentials. tools.gmail.utils.import_google() Import google libraries. tools.gmail.utils.import_googleapiclient_resource_builder() Import googleapiclient.discovery.build function. tools.gmail.utils.import_installed_app_flow() Import InstalledAppFlow class. tools.interaction.tool.StdInInquireTool(...) Tool for asking the user for input. tools.office365.utils.authenticate() Authenticate using the Microsoft Grah API tools.office365.utils.clean_body(body) Clean body of a message or event. tools.playwright.base.lazy_import_playwright_browsers() Lazy import playwright browsers. tools.playwright.utils.create_async_playwright_browser([...]) Create a async playwright browser. tools.playwright.utils.create_sync_playwright_browser([...]) Create a playwright browser. tools.playwright.utils.get_current_page(browser) Get the current page of the browser. tools.playwright.utils.run_async(coro) param coro The coroutine to run. Coroutine[Any, Any, T] tools.plugin.marshal_spec(txt)
https://api.python.langchain.com/en/latest/api_reference.html
46c1298ceb12-60
tools.plugin.marshal_spec(txt) Convert the yaml or json serialized spec to a dict. tools.python.tool.sanitize_input(query) Sanitize input to the python REPL. tools.steamship_image_generation.utils.make_image_public(...) Upload a block to a signed URL and return the public URL. langchain.utilities: Utilities¶ General utilities. Classes¶ utilities.apify.ApifyWrapper Wrapper around Apify. utilities.arxiv.ArxivAPIWrapper Wrapper around ArxivAPI. utilities.awslambda.LambdaWrapper Wrapper for AWS Lambda SDK. utilities.bibtex.BibtexparserWrapper Wrapper around bibtexparser. utilities.bing_search.BingSearchAPIWrapper Wrapper for Bing Search API. utilities.brave_search.BraveSearchWrapper Create a new model by parsing and validating input data from keyword arguments. utilities.duckduckgo_search.DuckDuckGoSearchAPIWrapper Wrapper for DuckDuckGo Search API. utilities.google_places_api.GooglePlacesAPIWrapper Wrapper around Google Places API. utilities.google_search.GoogleSearchAPIWrapper Wrapper for Google Search API. utilities.google_serper.GoogleSerperAPIWrapper Wrapper around the Serper.dev Google Search API. utilities.graphql.GraphQLAPIWrapper Wrapper around GraphQL API. utilities.jira.JiraAPIWrapper Wrapper for Jira API. utilities.metaphor_search.MetaphorSearchAPIWrapper Wrapper for Metaphor Search API. utilities.openapi.HTTPVerb(value[, names, ...]) HTTP verbs. utilities.openapi.OpenAPISpec OpenAPI Model that removes misformatted parts of the spec. utilities.openweathermap.OpenWeatherMapAPIWrapper Wrapper for OpenWeatherMap API using PyOWM. utilities.powerbi.PowerBIDataset Create PowerBI engine from dataset ID and credential or token. utilities.pupmed.PubMedAPIWrapper
https://api.python.langchain.com/en/latest/api_reference.html
46c1298ceb12-61
utilities.pupmed.PubMedAPIWrapper Wrapper around PubMed API. utilities.python.PythonREPL Simulates a standalone Python REPL. utilities.scenexplain.SceneXplainAPIWrapper Wrapper for SceneXplain API. utilities.searx_search.SearxResults(data) Dict like wrapper around search api results. utilities.searx_search.SearxSearchWrapper Wrapper for Searx API. utilities.serpapi.SerpAPIWrapper Wrapper around SerpAPI. utilities.twilio.TwilioAPIWrapper Messaging Client using Twilio. utilities.wikipedia.WikipediaAPIWrapper Wrapper around WikipediaAPI. utilities.wolfram_alpha.WolframAlphaAPIWrapper Wrapper for Wolfram Alpha. utilities.zapier.ZapierNLAWrapper Wrapper for Zapier NLA. Functions¶ utilities.loading.try_load_from_hub(path, ...) Load configuration from hub. utilities.powerbi.fix_table_name(table) Add single quotes around table names that contain spaces. utilities.powerbi.json_to_md(json_contents) Converts a JSON object to a markdown table. utilities.vertexai.init_vertexai([project, ...]) Init vertexai. utilities.vertexai.raise_vertex_import_error() Raise ImportError related to Vertex SDK being not available. langchain.utils: Utils¶ Generic utility functions. Functions¶ utils.comma_list(items) utils.get_from_dict_or_env(data, key, env_key) Get a value from a dictionary or an environment variable. utils.get_from_env(key, env_key[, default]) Get a value from a dictionary or an environment variable. utils.guard_import(module_name, *[, ...]) Dynamically imports a module and raises a helpful exception if the module is not installed. utils.mock_now(dt_value)
https://api.python.langchain.com/en/latest/api_reference.html
46c1298ceb12-62
utils.mock_now(dt_value) Context manager for mocking out datetime.now() in unit tests. Example: with mock_now(datetime.datetime(2011, 2, 3, 10, 11)): assert datetime.datetime.now() == datetime.datetime(2011, 2, 3, 10, 11). utils.raise_for_status_with_text(response) Raise an error with the response text. utils.stringify_dict(data) Stringify a dictionary. utils.stringify_value(val) Stringify a value. utils.xor_args(*arg_groups) Validate specified keyword args are mutually exclusive. langchain.vectorstores: Vectorstores¶ Wrappers on top of vector stores. Classes¶ vectorstores.alibabacloud_opensearch.AlibabaCloudOpenSearch(...) Alibaba Cloud OpenSearch Vector Store vectorstores.analyticdb.AnalyticDB(...[, ...]) VectorStore implementation using AnalyticDB. vectorstores.annoy.Annoy(embedding_function, ...) Wrapper around Annoy vector database. vectorstores.atlas.AtlasDB(name[, ...]) Wrapper around Atlas: Nomic's neural database and rhizomatic instrument. vectorstores.awadb.AwaDB([table_name, ...]) Interface implemented by AwaDB vector stores. vectorstores.azuresearch.AzureSearch(...[, ...]) Initialize with necessary components. vectorstores.azuresearch.AzureSearchVectorStoreRetriever Create a new model by parsing and validating input data from keyword arguments. vectorstores.base.VectorStore() Interface for vector stores. vectorstores.base.VectorStoreRetriever Create a new model by parsing and validating input data from keyword arguments. vectorstores.cassandra.Cassandra(embedding, ...) Wrapper around Cassandra embeddings platform. vectorstores.chroma.Chroma([...]) Wrapper around ChromaDB embeddings platform.
https://api.python.langchain.com/en/latest/api_reference.html
46c1298ceb12-63
vectorstores.chroma.Chroma([...]) Wrapper around ChromaDB embeddings platform. vectorstores.clarifai.Clarifai([user_id, ...]) Wrapper around Clarifai AI platform's vector store. vectorstores.clickhouse.Clickhouse(embedding) Wrapper around ClickHouse vector database vectorstores.clickhouse.ClickhouseSettings ClickHouse Client Configuration vectorstores.deeplake.DeepLake([...]) Wrapper around Deep Lake, a data lake for deep learning applications. vectorstores.docarray.base.DocArrayIndex(...) Initialize a vector store from DocArray's DocIndex. vectorstores.docarray.hnsw.DocArrayHnswSearch(...) Wrapper around HnswLib storage. vectorstores.docarray.in_memory.DocArrayInMemorySearch(...) Wrapper around in-memory storage for exact search. vectorstores.elastic_vector_search.ElasticKnnSearch(...) A class for performing k-Nearest Neighbors (k-NN) search on an Elasticsearch index. vectorstores.elastic_vector_search.ElasticVectorSearch(...) Wrapper around Elasticsearch as a vector database. vectorstores.faiss.FAISS(embedding_function, ...) Wrapper around FAISS vector database. vectorstores.hologres.Hologres(...[, ndims, ...]) VectorStore implementation using Hologres. vectorstores.lancedb.LanceDB(connection, ...) Wrapper around LanceDB vector database. vectorstores.matching_engine.MatchingEngine(...) Vertex Matching Engine implementation of the vector store. vectorstores.milvus.Milvus(embedding_function) Wrapper around the Milvus vector database. vectorstores.mongodb_atlas.MongoDBAtlasVectorSearch(...) Wrapper around MongoDB Atlas Vector Search. vectorstores.myscale.MyScale(embedding[, config]) Wrapper around MyScale vector database vectorstores.myscale.MyScaleSettings MyScale Client Configuration
https://api.python.langchain.com/en/latest/api_reference.html
46c1298ceb12-64
Wrapper around MyScale vector database vectorstores.myscale.MyScaleSettings MyScale Client Configuration vectorstores.opensearch_vector_search.OpenSearchVectorSearch(...) Wrapper around OpenSearch as a vector database. vectorstores.pinecone.Pinecone(index, ...[, ...]) Wrapper around Pinecone vector database. vectorstores.qdrant.Qdrant(client, ...[, ...]) Wrapper around Qdrant vector database. vectorstores.redis.Redis(redis_url, ...) Wrapper around Redis vector database. vectorstores.redis.RedisVectorStoreRetriever Create a new model by parsing and validating input data from keyword arguments. vectorstores.rocksetdb.Rockset(client, ...) Wrapper arpund Rockset vector database. vectorstores.singlestoredb.DistanceStrategy(value) Enumerator of the Distance strategies for SingleStoreDB. vectorstores.singlestoredb.SingleStoreDB(...) This class serves as a Pythonic interface to the SingleStore DB database. vectorstores.singlestoredb.SingleStoreDBRetriever Retriever for SingleStoreDB vector stores. vectorstores.sklearn.BaseSerializer(persist_path) Abstract base class for saving and loading data. vectorstores.sklearn.BsonSerializer(persist_path) Serializes data in binary json using the bson python package. vectorstores.sklearn.JsonSerializer(persist_path) Serializes data in json using the json package from python standard library. vectorstores.sklearn.ParquetSerializer(...) Serializes data in Apache Parquet format using the pyarrow package. vectorstores.sklearn.SKLearnVectorStore(...) A simple in-memory vector store based on the scikit-learn library NearestNeighbors implementation. vectorstores.sklearn.SKLearnVectorStoreException Exception raised by SKLearnVectorStore. vectorstores.starrocks.StarRocks(embedding) Wrapper around StarRocks vector database
https://api.python.langchain.com/en/latest/api_reference.html
46c1298ceb12-65
Wrapper around StarRocks vector database vectorstores.starrocks.StarRocksSettings StarRocks Client Configuration vectorstores.supabase.SupabaseVectorStore(...) VectorStore for a Supabase postgres database. vectorstores.tair.Tair(embedding_function, ...) Wrapper around Tair Vector store. vectorstores.tigris.Tigris(client, ...) Initialize Tigris vector store vectorstores.typesense.Typesense(...[, ...]) Wrapper around Typesense vector search. vectorstores.vectara.Vectara([...]) Implementation of Vector Store using Vectara (https://vectara.com). vectorstores.vectara.VectaraRetriever Create a new model by parsing and validating input data from keyword arguments. vectorstores.weaviate.Weaviate(client, ...) Wrapper around Weaviate vector database. vectorstores.zilliz.Zilliz(embedding_function) Initialize wrapper around the milvus vector database. Functions¶ vectorstores.alibabacloud_opensearch.create_metadata(fields) Create metadata from fields. vectorstores.annoy.dependable_annoy_import() Import annoy if available, otherwise raise error. vectorstores.clickhouse.has_mul_sub_str(s, *args) Check if a string contains multiple substrings. vectorstores.faiss.dependable_faiss_import([...]) Import faiss if available, otherwise raise error. vectorstores.myscale.has_mul_sub_str(s, *args) Check if a string contains multiple substrings. vectorstores.starrocks.debug_output(s) Print a debug message if DEBUG is True. vectorstores.starrocks.get_named_result(...) Get a named result from a query. vectorstores.starrocks.has_mul_sub_str(s, *args) Check if a string has multiple substrings.
https://api.python.langchain.com/en/latest/api_reference.html
46c1298ceb12-66
Check if a string has multiple substrings. vectorstores.utils.maximal_marginal_relevance(...) Calculate maximal marginal relevance.
https://api.python.langchain.com/en/latest/api_reference.html
033bc13cc1e1-0
langchain.retrievers.zep.ZepRetriever¶ class langchain.retrievers.zep.ZepRetriever(session_id: str, url: str, api_key: Optional[str] = None, top_k: Optional[int] = None)[source]¶ Bases: BaseRetriever A Retriever implementation for the Zep long-term memory store. Search your user’s long-term chat history with Zep. Note: You will need to provide the user’s session_id to use this retriever. More on Zep: Zep provides long-term conversation storage for LLM apps. The server stores, summarizes, embeds, indexes, and enriches conversational AI chat histories, and exposes them via simple, low-latency APIs. For server installation instructions, see: https://docs.getzep.com/deployment/quickstart/ Methods __init__(session_id, url[, api_key, top_k]) aget_relevant_documents(query, *[, callbacks]) Asynchronously get documents relevant to a query. get_relevant_documents(query, *[, callbacks]) Retrieve documents relevant to a query. async aget_relevant_documents(query: str, *, callbacks: Callbacks = None, **kwargs: Any) → List[Document]¶ Asynchronously get documents relevant to a query. :param query: string to find relevant documents for :param callbacks: Callback manager or list of callbacks Returns List of relevant documents get_relevant_documents(query: str, *, callbacks: Callbacks = None, **kwargs: Any) → List[Document]¶ Retrieve documents relevant to a query. :param query: string to find relevant documents for :param callbacks: Callback manager or list of callbacks Returns List of relevant documents
https://api.python.langchain.com/en/latest/retrievers/langchain.retrievers.zep.ZepRetriever.html
dffe0f61bab0-0
langchain.retrievers.metal.MetalRetriever¶ class langchain.retrievers.metal.MetalRetriever(client: Any, params: Optional[dict] = None)[source]¶ Bases: BaseRetriever Retriever that uses the Metal API. Methods __init__(client[, params]) aget_relevant_documents(query, *[, callbacks]) Asynchronously get documents relevant to a query. get_relevant_documents(query, *[, callbacks]) Retrieve documents relevant to a query. async aget_relevant_documents(query: str, *, callbacks: Callbacks = None, **kwargs: Any) → List[Document]¶ Asynchronously get documents relevant to a query. :param query: string to find relevant documents for :param callbacks: Callback manager or list of callbacks Returns List of relevant documents get_relevant_documents(query: str, *, callbacks: Callbacks = None, **kwargs: Any) → List[Document]¶ Retrieve documents relevant to a query. :param query: string to find relevant documents for :param callbacks: Callback manager or list of callbacks Returns List of relevant documents
https://api.python.langchain.com/en/latest/retrievers/langchain.retrievers.metal.MetalRetriever.html
fe8c61d7c61a-0
langchain.retrievers.pinecone_hybrid_search.create_index¶ langchain.retrievers.pinecone_hybrid_search.create_index(contexts: List[str], index: Any, embeddings: Embeddings, sparse_encoder: Any, ids: Optional[List[str]] = None, metadatas: Optional[List[dict]] = None) → None[source]¶ Create a Pinecone index from a list of contexts. Modifies the index argument in-place. Parameters contexts – List of contexts to embed. index – Pinecone index to use. embeddings – Embeddings model to use. sparse_encoder – Sparse encoder to use. ids – List of ids to use for the documents. metadatas – List of metadata to use for the documents.
https://api.python.langchain.com/en/latest/retrievers/langchain.retrievers.pinecone_hybrid_search.create_index.html
78ed46442dca-0
langchain.retrievers.kendra.TextWithHighLights¶ class langchain.retrievers.kendra.TextWithHighLights(*, Text: str, Highlights: Optional[Any] = None, **extra_data: Any)[source]¶ Bases: BaseModel Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param Highlights: Optional[Any] = None¶ param Text: str [Required]¶
https://api.python.langchain.com/en/latest/retrievers/langchain.retrievers.kendra.TextWithHighLights.html
60c551c938a2-0
langchain.retrievers.zilliz.ZillizRetriever¶ class langchain.retrievers.zilliz.ZillizRetriever(embedding_function: Embeddings, collection_name: str = 'LangChainCollection', connection_args: Optional[Dict[str, Any]] = None, consistency_level: str = 'Session', search_params: Optional[dict] = None)[source]¶ Bases: BaseRetriever Retriever that uses the Zilliz API. Methods __init__(embedding_function[, ...]) add_texts(texts[, metadatas]) Add text to the Zilliz store aget_relevant_documents(query, *[, callbacks]) Asynchronously get documents relevant to a query. get_relevant_documents(query, *[, callbacks]) Retrieve documents relevant to a query. add_texts(texts: List[str], metadatas: Optional[List[dict]] = None) → None[source]¶ Add text to the Zilliz store Parameters texts (List[str]) – The text metadatas (List[dict]) – Metadata dicts, must line up with existing store async aget_relevant_documents(query: str, *, callbacks: Callbacks = None, **kwargs: Any) → List[Document]¶ Asynchronously get documents relevant to a query. :param query: string to find relevant documents for :param callbacks: Callback manager or list of callbacks Returns List of relevant documents get_relevant_documents(query: str, *, callbacks: Callbacks = None, **kwargs: Any) → List[Document]¶ Retrieve documents relevant to a query. :param query: string to find relevant documents for :param callbacks: Callback manager or list of callbacks Returns List of relevant documents
https://api.python.langchain.com/en/latest/retrievers/langchain.retrievers.zilliz.ZillizRetriever.html
98a6d88fc980-0
langchain.retrievers.kendra.AdditionalResultAttributeValue¶ class langchain.retrievers.kendra.AdditionalResultAttributeValue(*, TextWithHighlightsValue: TextWithHighLights, **extra_data: Any)[source]¶ Bases: BaseModel Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param TextWithHighlightsValue: langchain.retrievers.kendra.TextWithHighLights [Required]¶
https://api.python.langchain.com/en/latest/retrievers/langchain.retrievers.kendra.AdditionalResultAttributeValue.html
8a5b4dd6ce79-0
langchain.retrievers.document_compressors.chain_filter.default_get_input¶ langchain.retrievers.document_compressors.chain_filter.default_get_input(query: str, doc: Document) → Dict[str, Any][source]¶ Return the compression chain input.
https://api.python.langchain.com/en/latest/retrievers/langchain.retrievers.document_compressors.chain_filter.default_get_input.html
d761a975322e-0
langchain.retrievers.multi_query.LineListOutputParser¶ class langchain.retrievers.multi_query.LineListOutputParser[source]¶ Bases: PydanticOutputParser Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param pydantic_object: Type[langchain.output_parsers.pydantic.T] [Required]¶ dict(**kwargs: Any) → Dict¶ Return dictionary representation of output parser. get_format_instructions() → str¶ Instructions on how the LLM output should be formatted. parse(text: str) → LineList[source]¶ Parse the output of an LLM call. A method which takes in a string (assumed output of a language model ) and parses it into some structure. Parameters text – output of language model Returns structured output parse_result(result: List[Generation]) → T¶ Parse LLM Result. parse_with_prompt(completion: str, prompt: PromptValue) → Any¶ Optional method to parse the output of an LLM call with a prompt. The prompt is largely provided in the event the OutputParser wants to retry or fix the output in some way, and needs information from the prompt to do so. Parameters completion – output of language model prompt – prompt value Returns structured output to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ to_json_not_implemented() → SerializedNotImplemented¶ property lc_attributes: Dict¶ Return a list of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_namespace: List[str]¶ Return the namespace of the langchain object. eg. [“langchain”, “llms”, “openai”]
https://api.python.langchain.com/en/latest/retrievers/langchain.retrievers.multi_query.LineListOutputParser.html
d761a975322e-1
eg. [“langchain”, “llms”, “openai”] property lc_secrets: Dict[str, str]¶ Return a map of constructor argument names to secret ids. eg. {“openai_api_key”: “OPENAI_API_KEY”} property lc_serializable: bool¶ Return whether or not the class is serializable. model Config¶ Bases: object extra = 'ignore'¶
https://api.python.langchain.com/en/latest/retrievers/langchain.retrievers.multi_query.LineListOutputParser.html
af58d31273d5-0
langchain.retrievers.kendra.combined_text¶ langchain.retrievers.kendra.combined_text(title: str, excerpt: str) → str[source]¶
https://api.python.langchain.com/en/latest/retrievers/langchain.retrievers.kendra.combined_text.html
49977a5aedd9-0
langchain.retrievers.wikipedia.WikipediaRetriever¶ class langchain.retrievers.wikipedia.WikipediaRetriever(*, wiki_client: Any = None, top_k_results: int = 3, lang: str = 'en', load_all_available_meta: bool = False, doc_content_chars_max: int = 4000)[source]¶ Bases: BaseRetriever, WikipediaAPIWrapper It is effectively a wrapper for WikipediaAPIWrapper. It wraps load() to get_relevant_documents(). It uses all WikipediaAPIWrapper arguments without any change. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param doc_content_chars_max: int = 4000¶ param lang: str = 'en'¶ param load_all_available_meta: bool = False¶ param top_k_results: int = 3¶ async aget_relevant_documents(query: str, *, callbacks: Callbacks = None, **kwargs: Any) → List[Document]¶ Asynchronously get documents relevant to a query. :param query: string to find relevant documents for :param callbacks: Callback manager or list of callbacks Returns List of relevant documents get_relevant_documents(query: str, *, callbacks: Callbacks = None, **kwargs: Any) → List[Document]¶ Retrieve documents relevant to a query. :param query: string to find relevant documents for :param callbacks: Callback manager or list of callbacks Returns List of relevant documents load(query: str) → List[Document]¶ Run Wikipedia search and get the article text plus the meta information. See Returns: a list of documents. run(query: str) → str¶ Run Wikipedia search and get page summaries. validator validate_environment  »  all fields¶ Validate that the python package exists in environment.
https://api.python.langchain.com/en/latest/retrievers/langchain.retrievers.wikipedia.WikipediaRetriever.html
49977a5aedd9-1
validator validate_environment  »  all fields¶ Validate that the python package exists in environment. model Config¶ Bases: object Configuration for this pydantic object. extra = 'forbid'¶
https://api.python.langchain.com/en/latest/retrievers/langchain.retrievers.wikipedia.WikipediaRetriever.html
da8839b51bc7-0
langchain.retrievers.self_query.myscale.MyScaleTranslator¶ class langchain.retrievers.self_query.myscale.MyScaleTranslator(metadata_key: str = 'metadata')[source]¶ Bases: Visitor Logic for converting internal query language elements to valid filters. Methods __init__([metadata_key]) visit_comparison(comparison) Translate a Comparison. visit_operation(operation) Translate an Operation. visit_structured_query(structured_query) Translate a StructuredQuery. Attributes allowed_comparators allowed_operators Subset of allowed logical operators. map_dict visit_comparison(comparison: Comparison) → Dict[source]¶ Translate a Comparison. visit_operation(operation: Operation) → Dict[source]¶ Translate an Operation. visit_structured_query(structured_query: StructuredQuery) → Tuple[str, dict][source]¶ Translate a StructuredQuery. allowed_comparators: Optional[Sequence[Comparator]] = [<Comparator.EQ: 'eq'>, <Comparator.GT: 'gt'>, <Comparator.GTE: 'gte'>, <Comparator.LT: 'lt'>, <Comparator.LTE: 'lte'>, <Comparator.CONTAIN: 'contain'>, <Comparator.LIKE: 'like'>]¶ allowed_operators: Optional[Sequence[Operator]] = [<Operator.AND: 'and'>, <Operator.OR: 'or'>, <Operator.NOT: 'not'>]¶ Subset of allowed logical operators.
https://api.python.langchain.com/en/latest/retrievers/langchain.retrievers.self_query.myscale.MyScaleTranslator.html
da8839b51bc7-1
Subset of allowed logical operators. map_dict = {Operator.AND: <function DEFAULT_COMPOSER.<locals>.f>, Comparator.CONTAIN: <function FUNCTION_COMPOSER.<locals>.f>, Comparator.EQ: <function DEFAULT_COMPOSER.<locals>.f>, Comparator.GT: <function DEFAULT_COMPOSER.<locals>.f>, Comparator.GTE: <function DEFAULT_COMPOSER.<locals>.f>, Comparator.LIKE: <function DEFAULT_COMPOSER.<locals>.f>, Comparator.LT: <function DEFAULT_COMPOSER.<locals>.f>, Comparator.LTE: <function DEFAULT_COMPOSER.<locals>.f>, Operator.NOT: <function DEFAULT_COMPOSER.<locals>.f>, Operator.OR: <function DEFAULT_COMPOSER.<locals>.f>}¶
https://api.python.langchain.com/en/latest/retrievers/langchain.retrievers.self_query.myscale.MyScaleTranslator.html
88aea8d52f88-0
langchain.retrievers.document_compressors.chain_extract.default_get_input¶ langchain.retrievers.document_compressors.chain_extract.default_get_input(query: str, doc: Document) → Dict[str, Any][source]¶ Return the compression chain input.
https://api.python.langchain.com/en/latest/retrievers/langchain.retrievers.document_compressors.chain_extract.default_get_input.html
b85564480ee8-0
langchain.retrievers.kendra.DocumentAttribute¶ class langchain.retrievers.kendra.DocumentAttribute(*, Key: str, Value: DocumentAttributeValue, **extra_data: Any)[source]¶ Bases: BaseModel Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param Key: str [Required]¶ param Value: langchain.retrievers.kendra.DocumentAttributeValue [Required]¶
https://api.python.langchain.com/en/latest/retrievers/langchain.retrievers.kendra.DocumentAttribute.html
9255e1bc67f3-0
langchain.retrievers.pinecone_hybrid_search.hash_text¶ langchain.retrievers.pinecone_hybrid_search.hash_text(text: str) → str[source]¶ Hash a text using SHA256. Parameters text – Text to hash. Returns Hashed text.
https://api.python.langchain.com/en/latest/retrievers/langchain.retrievers.pinecone_hybrid_search.hash_text.html
e462668005d8-0
langchain.retrievers.self_query.base.SelfQueryRetriever¶ class langchain.retrievers.self_query.base.SelfQueryRetriever(*, vectorstore: VectorStore, llm_chain: LLMChain, search_type: str = 'similarity', search_kwargs: dict = None, structured_query_translator: Visitor, verbose: bool = False, use_original_query: bool = False)[source]¶ Bases: BaseRetriever, BaseModel Retriever that wraps around a vector store and uses an LLM to generate the vector store queries. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param llm_chain: langchain.chains.llm.LLMChain [Required]¶ The LLMChain for generating the vector store queries. param search_kwargs: dict [Optional]¶ Keyword arguments to pass in to the vector store search. param search_type: str = 'similarity'¶ The search type to perform on the vector store. param structured_query_translator: langchain.chains.query_constructor.ir.Visitor [Required]¶ Translator for turning internal query language into vectorstore search params. param use_original_query: bool = False¶ param vectorstore: langchain.vectorstores.base.VectorStore [Required]¶ The underlying vector store from which documents will be retrieved. param verbose: bool = False¶ Use original query instead of the revised new query from LLM async aget_relevant_documents(query: str, *, callbacks: Callbacks = None, **kwargs: Any) → List[Document]¶ Asynchronously get documents relevant to a query. :param query: string to find relevant documents for :param callbacks: Callback manager or list of callbacks Returns List of relevant documents
https://api.python.langchain.com/en/latest/retrievers/langchain.retrievers.self_query.base.SelfQueryRetriever.html
e462668005d8-1
:param callbacks: Callback manager or list of callbacks Returns List of relevant documents classmethod from_llm(llm: BaseLanguageModel, vectorstore: VectorStore, document_contents: str, metadata_field_info: List[AttributeInfo], structured_query_translator: Optional[Visitor] = None, chain_kwargs: Optional[Dict] = None, enable_limit: bool = False, use_original_query: bool = False, **kwargs: Any) → SelfQueryRetriever[source]¶ get_relevant_documents(query: str, *, callbacks: Callbacks = None, **kwargs: Any) → List[Document]¶ Retrieve documents relevant to a query. :param query: string to find relevant documents for :param callbacks: Callback manager or list of callbacks Returns List of relevant documents validator validate_translator  »  all fields[source]¶ Validate translator. model Config[source]¶ Bases: object Configuration for this pydantic object. arbitrary_types_allowed = True¶
https://api.python.langchain.com/en/latest/retrievers/langchain.retrievers.self_query.base.SelfQueryRetriever.html
48ad06069c50-0
langchain.retrievers.llama_index.LlamaIndexRetriever¶ class langchain.retrievers.llama_index.LlamaIndexRetriever(*, index: Any = None, query_kwargs: Dict = None)[source]¶ Bases: BaseRetriever, BaseModel Question-answering with sources over an LlamaIndex data structure. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param index: Any = None¶ param query_kwargs: Dict [Optional]¶ async aget_relevant_documents(query: str, *, callbacks: Callbacks = None, **kwargs: Any) → List[Document]¶ Asynchronously get documents relevant to a query. :param query: string to find relevant documents for :param callbacks: Callback manager or list of callbacks Returns List of relevant documents get_relevant_documents(query: str, *, callbacks: Callbacks = None, **kwargs: Any) → List[Document]¶ Retrieve documents relevant to a query. :param query: string to find relevant documents for :param callbacks: Callback manager or list of callbacks Returns List of relevant documents
https://api.python.langchain.com/en/latest/retrievers/langchain.retrievers.llama_index.LlamaIndexRetriever.html
558ae69c3ec0-0
langchain.retrievers.contextual_compression.ContextualCompressionRetriever¶ class langchain.retrievers.contextual_compression.ContextualCompressionRetriever(*, base_compressor: BaseDocumentCompressor, base_retriever: BaseRetriever)[source]¶ Bases: BaseRetriever, BaseModel Retriever that wraps a base retriever and compresses the results. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param base_compressor: langchain.retrievers.document_compressors.base.BaseDocumentCompressor [Required]¶ Compressor for compressing retrieved documents. param base_retriever: langchain.schema.BaseRetriever [Required]¶ Base Retriever to use for getting relevant documents. async aget_relevant_documents(query: str, *, callbacks: Callbacks = None, **kwargs: Any) → List[Document]¶ Asynchronously get documents relevant to a query. :param query: string to find relevant documents for :param callbacks: Callback manager or list of callbacks Returns List of relevant documents get_relevant_documents(query: str, *, callbacks: Callbacks = None, **kwargs: Any) → List[Document]¶ Retrieve documents relevant to a query. :param query: string to find relevant documents for :param callbacks: Callback manager or list of callbacks Returns List of relevant documents model Config[source]¶ Bases: object Configuration for this pydantic object. arbitrary_types_allowed = True¶ extra = 'forbid'¶
https://api.python.langchain.com/en/latest/retrievers/langchain.retrievers.contextual_compression.ContextualCompressionRetriever.html
125e7076a599-0
langchain.retrievers.llama_index.LlamaIndexGraphRetriever¶ class langchain.retrievers.llama_index.LlamaIndexGraphRetriever(*, graph: Any = None, query_configs: List[Dict] = None)[source]¶ Bases: BaseRetriever, BaseModel Question-answering with sources over an LlamaIndex graph data structure. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param graph: Any = None¶ param query_configs: List[Dict] [Optional]¶ async aget_relevant_documents(query: str, *, callbacks: Callbacks = None, **kwargs: Any) → List[Document]¶ Asynchronously get documents relevant to a query. :param query: string to find relevant documents for :param callbacks: Callback manager or list of callbacks Returns List of relevant documents get_relevant_documents(query: str, *, callbacks: Callbacks = None, **kwargs: Any) → List[Document]¶ Retrieve documents relevant to a query. :param query: string to find relevant documents for :param callbacks: Callback manager or list of callbacks Returns List of relevant documents
https://api.python.langchain.com/en/latest/retrievers/langchain.retrievers.llama_index.LlamaIndexGraphRetriever.html
404d78df8fc6-0
langchain.retrievers.document_compressors.cohere_rerank.CohereRerank¶ class langchain.retrievers.document_compressors.cohere_rerank.CohereRerank(*, client: Client, top_n: int = 3, model: str = 'rerank-english-v2.0')[source]¶ Bases: BaseDocumentCompressor Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param client: Client [Required]¶ param model: str = 'rerank-english-v2.0'¶ param top_n: int = 3¶ async acompress_documents(documents: Sequence[Document], query: str, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None) → Sequence[Document][source]¶ Compress retrieved documents given the query context. compress_documents(documents: Sequence[Document], query: str, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None) → Sequence[Document][source]¶ Compress retrieved documents given the query context. validator validate_environment  »  all fields[source]¶ Validate that api key and python package exists in environment. model Config[source]¶ Bases: object Configuration for this pydantic object. arbitrary_types_allowed = True¶ extra = 'forbid'¶
https://api.python.langchain.com/en/latest/retrievers/langchain.retrievers.document_compressors.cohere_rerank.CohereRerank.html
da787aa2dcf8-0
langchain.retrievers.kendra.clean_excerpt¶ langchain.retrievers.kendra.clean_excerpt(excerpt: str) → str[source]¶
https://api.python.langchain.com/en/latest/retrievers/langchain.retrievers.kendra.clean_excerpt.html
16a3d5623ef9-0
langchain.retrievers.milvus.MilvusRetreiver¶ langchain.retrievers.milvus.MilvusRetreiver(*args: Any, **kwargs: Any) → MilvusRetriever[source]¶ Deprecated MilvusRetreiver. Please use MilvusRetriever (‘i’ before ‘e’) instead. Parameters *args – **kwargs – Returns MilvusRetriever
https://api.python.langchain.com/en/latest/retrievers/langchain.retrievers.milvus.MilvusRetreiver.html
d2d24f71525f-0
langchain.retrievers.docarray.DocArrayRetriever¶ class langchain.retrievers.docarray.DocArrayRetriever(*, index: Any = None, embeddings: Embeddings, search_field: str, content_field: str, search_type: SearchType = SearchType.similarity, top_k: int = 1, filters: Optional[Any] = None)[source]¶ Bases: BaseRetriever, BaseModel Retriever class for DocArray Document Indices. Currently, supports 5 backends: InMemoryExactNNIndex, HnswDocumentIndex, QdrantDocumentIndex, ElasticDocIndex, and WeaviateDocumentIndex. Parameters index – One of the above-mentioned index instances embeddings – Embedding model to represent text as vectors search_field – Field to consider for searching in the documents. Should be an embedding/vector/tensor. content_field – Field that represents the main content in your document schema. Will be used as a page_content. Everything else will go into metadata. search_type – Type of search to perform (similarity / mmr) filters – Filters applied for document retrieval. top_k – Number of documents to return Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param content_field: str [Required]¶ param embeddings: langchain.embeddings.base.Embeddings [Required]¶ param filters: Optional[Any] = None¶ param index: Any = None¶ param search_field: str [Required]¶ param search_type: langchain.retrievers.docarray.SearchType = SearchType.similarity¶ param top_k: int = 1¶ async aget_relevant_documents(query: str, *, callbacks: Callbacks = None, **kwargs: Any) → List[Document]¶
https://api.python.langchain.com/en/latest/retrievers/langchain.retrievers.docarray.DocArrayRetriever.html
d2d24f71525f-1
Asynchronously get documents relevant to a query. :param query: string to find relevant documents for :param callbacks: Callback manager or list of callbacks Returns List of relevant documents get_relevant_documents(query: str, *, callbacks: Callbacks = None, **kwargs: Any) → List[Document]¶ Retrieve documents relevant to a query. :param query: string to find relevant documents for :param callbacks: Callback manager or list of callbacks Returns List of relevant documents model Config[source]¶ Bases: object Configuration for this pydantic object. arbitrary_types_allowed = True¶
https://api.python.langchain.com/en/latest/retrievers/langchain.retrievers.docarray.DocArrayRetriever.html
da876d2c1e2e-0
langchain.retrievers.document_compressors.chain_extract.NoOutputParser¶ class langchain.retrievers.document_compressors.chain_extract.NoOutputParser(*, no_output_str: str = 'NO_OUTPUT')[source]¶ Bases: BaseOutputParser[str] Parse outputs that could return a null string of some sort. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param no_output_str: str = 'NO_OUTPUT'¶ dict(**kwargs: Any) → Dict¶ Return dictionary representation of output parser. get_format_instructions() → str¶ Instructions on how the LLM output should be formatted. parse(text: str) → str[source]¶ Parse the output of an LLM call. A method which takes in a string (assumed output of a language model ) and parses it into some structure. Parameters text – output of language model Returns structured output parse_result(result: List[Generation]) → T¶ Parse LLM Result. parse_with_prompt(completion: str, prompt: PromptValue) → Any¶ Optional method to parse the output of an LLM call with a prompt. The prompt is largely provided in the event the OutputParser wants to retry or fix the output in some way, and needs information from the prompt to do so. Parameters completion – output of language model prompt – prompt value Returns structured output to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ to_json_not_implemented() → SerializedNotImplemented¶ property lc_attributes: Dict¶ Return a list of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_namespace: List[str]¶ Return the namespace of the langchain object.
https://api.python.langchain.com/en/latest/retrievers/langchain.retrievers.document_compressors.chain_extract.NoOutputParser.html
da876d2c1e2e-1
property lc_namespace: List[str]¶ Return the namespace of the langchain object. eg. [“langchain”, “llms”, “openai”] property lc_secrets: Dict[str, str]¶ Return a map of constructor argument names to secret ids. eg. {“openai_api_key”: “OPENAI_API_KEY”} property lc_serializable: bool¶ Return whether or not the class is serializable. model Config¶ Bases: object extra = 'ignore'¶
https://api.python.langchain.com/en/latest/retrievers/langchain.retrievers.document_compressors.chain_extract.NoOutputParser.html
bfc4cec2b38e-0
langchain.retrievers.time_weighted_retriever.TimeWeightedVectorStoreRetriever¶ class langchain.retrievers.time_weighted_retriever.TimeWeightedVectorStoreRetriever(*, vectorstore: VectorStore, search_kwargs: dict = None, memory_stream: List[Document] = None, decay_rate: float = 0.01, k: int = 4, other_score_keys: List[str] = [], default_salience: Optional[float] = None)[source]¶ Bases: BaseRetriever, BaseModel Retriever combining embedding similarity with recency. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param decay_rate: float = 0.01¶ The exponential decay factor used as (1.0-decay_rate)**(hrs_passed). param default_salience: Optional[float] = None¶ The salience to assign memories not retrieved from the vector store. None assigns no salience to documents not fetched from the vector store. param k: int = 4¶ The maximum number of documents to retrieve in a given call. param memory_stream: List[langchain.schema.Document] [Optional]¶ The memory_stream of documents to search through. param other_score_keys: List[str] = []¶ Other keys in the metadata to factor into the score, e.g. ‘importance’. param search_kwargs: dict [Optional]¶ Keyword arguments to pass to the vectorstore similarity search. param vectorstore: langchain.vectorstores.base.VectorStore [Required]¶ The vectorstore to store documents and determine salience. async aadd_documents(documents: List[Document], **kwargs: Any) → List[str][source]¶ Add documents to vectorstore.
https://api.python.langchain.com/en/latest/retrievers/langchain.retrievers.time_weighted_retriever.TimeWeightedVectorStoreRetriever.html
bfc4cec2b38e-1
Add documents to vectorstore. add_documents(documents: List[Document], **kwargs: Any) → List[str][source]¶ Add documents to vectorstore. async aget_relevant_documents(query: str, *, callbacks: Callbacks = None, **kwargs: Any) → List[Document]¶ Asynchronously get documents relevant to a query. :param query: string to find relevant documents for :param callbacks: Callback manager or list of callbacks Returns List of relevant documents get_relevant_documents(query: str, *, callbacks: Callbacks = None, **kwargs: Any) → List[Document]¶ Retrieve documents relevant to a query. :param query: string to find relevant documents for :param callbacks: Callback manager or list of callbacks Returns List of relevant documents get_salient_docs(query: str) → Dict[int, Tuple[Document, float]][source]¶ Return documents that are salient to the query. model Config[source]¶ Bases: object Configuration for this pydantic object. arbitrary_types_allowed = True¶
https://api.python.langchain.com/en/latest/retrievers/langchain.retrievers.time_weighted_retriever.TimeWeightedVectorStoreRetriever.html
c5718729204a-0
langchain.retrievers.kendra.AdditionalResultAttribute¶ class langchain.retrievers.kendra.AdditionalResultAttribute(*, Key: str, ValueType: Literal['TEXT_WITH_HIGHLIGHTS_VALUE'], Value: AdditionalResultAttributeValue, **extra_data: Any)[source]¶ Bases: BaseModel Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param Key: str [Required]¶ param Value: langchain.retrievers.kendra.AdditionalResultAttributeValue [Required]¶ param ValueType: Literal['TEXT_WITH_HIGHLIGHTS_VALUE'] [Required]¶ get_value_text() → str[source]¶
https://api.python.langchain.com/en/latest/retrievers/langchain.retrievers.kendra.AdditionalResultAttribute.html
949998f3a1e4-0
langchain.retrievers.kendra.RetrieveResultItem¶ class langchain.retrievers.kendra.RetrieveResultItem(*, Content: Optional[str] = None, DocumentAttributes: Optional[List[DocumentAttribute]] = [], DocumentId: Optional[str] = None, DocumentTitle: Optional[str] = None, DocumentURI: Optional[str] = None, Id: Optional[str] = None, **extra_data: Any)[source]¶ Bases: BaseModel Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param Content: Optional[str] = None¶ param DocumentAttributes: Optional[List[langchain.retrievers.kendra.DocumentAttribute]] = []¶ param DocumentId: Optional[str] = None¶ param DocumentTitle: Optional[str] = None¶ param DocumentURI: Optional[str] = None¶ param Id: Optional[str] = None¶ get_excerpt() → str[source]¶ to_doc() → Document[source]¶
https://api.python.langchain.com/en/latest/retrievers/langchain.retrievers.kendra.RetrieveResultItem.html

No dataset card yet

Downloads last month
2