Datasets:

Languages:
English
License:
Mohit Singh commited on
Commit
24609c5
Β·
1 Parent(s): 4a64d44

update README

Browse files
Files changed (2) hide show
  1. README.md +150 -3
  2. media/robot_exp.png +3 -0
README.md CHANGED
@@ -1,3 +1,150 @@
1
- ---
2
- license: bsd-3-clause
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Multi-Camera Underwater Visual-Inertial Dataset
2
+
3
+ [![License: BSD-3](https://img.shields.io/badge/License-BSD3-blue.svg)](https://opensource.org/licenses/BSD-3-Clause)
4
+
5
+ ## About
6
+ This repository hosts the **Multi-Camera Underwater Visual-Inertial Dataset** collected by the [Autonomous Robots Lab, NTNU](https://www.autonomousrobotslab.com/).
7
+ The dataset features data from a variety of onboard sensors, including:
8
+ - 5 cameras
9
+ - 1 IMU (via the [Alphasense Core Research Development Kit](https://github.com/sevensense-robotics/core_research_manual))
10
+ - A barometer
11
+ - Actuator commands from the ROV
12
+
13
+ Data was collected across both controlled indoor facilities and natural outdoor underwater environments.
14
+
15
+ ---
16
+
17
+ ## Updates / News
18
+ - **April 28, 2025:**
19
+ We are uploading new datasets collected in the Trondheim Fjord and at the Marine Cybernetics Lab Pool.
20
+ Additionally, we are migrating the dataset repository from [github.com/ntnu-arl/underwater-datasets](https://github.com/ntnu-arl/underwater-datasets) to [huggingface.co/datasets/ntnu-arl/underwater-datasets](https://huggingface.co/datasets/ntnu-arl/underwater-datasets).
21
+
22
+ ---
23
+
24
+ ## Quick Start
25
+
26
+ You can quickly download the dataset using the `huggingface_hub` Python library.
27
+
28
+ ### 1. Install `huggingface_hub`
29
+ ```bash
30
+ pip install huggingface_hub
31
+ ```
32
+
33
+ ### 2. Download the Dataset
34
+ You can clone the entire dataset repository using:
35
+
36
+ ```bash
37
+ from huggingface_hub import snapshot_download
38
+
39
+ # Download the dataset
40
+ snapshot_download(
41
+ repo_id="ntnu-arl/underwater-datasets",
42
+ repo_type="dataset",
43
+ local_dir="underwater-datasets",
44
+ local_dir_use_symlinks=False # Set to False to avoid symlinks
45
+ )
46
+ ```
47
+
48
+ This will download the dataset to a local folder called `underwater-datasets/`.
49
+
50
+ > **Note:** The full dataset is large (many GBs), so ensure you have enough storage and a stable internet connection.
51
+
52
+ ### Alternative: Using `git-lfs`
53
+ If you prefer, you can also clone it manually with `git-lfs`:
54
+
55
+ ```bash
56
+ sudo apt install git-lfs # Install git lfs
57
+ git lfs install # Initialize git-lfs
58
+ git clone https://huggingface.co/datasets/ntnu-arl/underwater-datasets # Clone the dataset
59
+ ```
60
+ ### 3. Use data with underwater state estimation methods
61
+ You can try out the dataset on the following undewater state estimation methods:
62
+ - ReAqROVIO: Refractive Aquatic ROVIO [code](https://github.com/ntnu-arl/reaqrovio), [homepage](https://ntnu-arl.github.io/refractive-camera-model-in-vio/)
63
+ - DeepVL: Deep Velocity Learning [code](https://github.com/ntnu-arl/DeepVL), [homepage](https://ntnu-arl.github.io/deepvl-deep-velocity-learning/)
64
+ ---
65
+
66
+ ## Platform: *Ariel* β€” Underwater Robot with Multi-Camera, IMU, and Compute Suite
67
+ The data was gathered using a custom-built underwater robot based on the BlueROV2 Heavy Configuration.
68
+
69
+ <p align="center">
70
+ <img src="media/robot_exp.png" alt="Ariel Underwater Robot" width="600"/>
71
+ </p>
72
+
73
+ ---
74
+
75
+ ## Trajectories with Visual-Inertial Data
76
+
77
+ ### General Structure
78
+ The dataset is organized into multiple subsets, each corresponding to a different environment.
79
+ Each subset directory (e.g., `subset-fjord`) contains several trajectory directories (`traj_<X>`), each containing:
80
+ - A `.bag` file with raw sensor data
81
+ - A `.tum` file with the reference trajectory obtained by running [ReAqROVIO](https://github.com/ntnu-arl/reaqrovio) using four cameras and the IMU.
82
+
83
+ Directory structure overview:
84
+ ```
85
+ underwater-datasets/
86
+ β”œβ”€β”€ subset-<environment>/
87
+ β”‚ β”œβ”€β”€ traj_1/
88
+ β”‚ β”‚ β”œβ”€β”€ <trajectory>.bag # Main ROS bag file
89
+ β”‚ β”‚ β”œβ”€β”€ <trajectory>_baseline.tum # Reference trajectory (ReAqROVIO output)
90
+ β”‚ β”œβ”€β”€ traj_2/
91
+ β”‚ β”‚ β”œβ”€β”€ <trajectory>.bag
92
+ β”‚ β”‚ β”œβ”€β”€ <trajectory>_baseline.tum
93
+ β”‚ └── ...
94
+ ```
95
+
96
+ ---
97
+
98
+ ## Available Subsets
99
+
100
+ ### Subset: Trondheim Fjord (`subset-fjord`)
101
+ This subset includes six trajectories collected by manually piloting *Ariel* in the Trondheim Fjord.
102
+
103
+ | No. | Length (m) | Duration (s) | Size (GB) |
104
+ |:---:|:----------:|:------------:|:---------:|
105
+ | 1 | 142 | 312 | 12.5 |
106
+ | 2 | 206 | 499 | 23.4 |
107
+ | 3 | 122 | 272 | 13.9 |
108
+ | 4 | 165 | 411 | 23.4 |
109
+ | 5 | 234 | 440 | 18.6 |
110
+ | 6 | 305 | 638 | 26.6 |
111
+
112
+ ---
113
+
114
+ ### Subset: Marine Cybernetics Lab (`subset-mclab`)
115
+ This subset includes two trajectories collected by manually piloting *Ariel* in the Marine Cybernetics Laboratory at NTNU.
116
+
117
+ | No. | Length (m) | Duration (s) | Size (GB) |
118
+ |:---:|:----------:|:------------:|:---------:|
119
+ | 1 | 135 | 390 | 15.4 |
120
+ | 2 | 125 | 304 | 15.0 |
121
+
122
+ ---
123
+
124
+ ## Reference
125
+ If you use this dataset in your research, please cite the following publication:
126
+
127
+ > [**An Online Self-Calibrating Refractive Camera Model with Application to Underwater Odometry**](https://ieeexplore.ieee.org/document/10610643)
128
+ > Mohit Singh, Mihir Dharmadhikari, Kostas Alexis
129
+ > *IEEE International Conference on Robotics and Automation (ICRA), 2024*
130
+
131
+ ```bibtex
132
+ @INPROCEEDINGS{10610643,
133
+ author={Singh, Mohit and Dharmadhikari, Mihir and Alexis, Kostas},
134
+ booktitle={2024 IEEE International Conference on Robotics and Automation (ICRA)},
135
+ title={An Online Self-calibrating Refractive Camera Model with Application to Underwater Odometry},
136
+ year={2024},
137
+ pages={10005-10011},
138
+ doi={10.1109/ICRA57147.2024.10610643}
139
+ }
140
+ ```
141
+
142
+
143
+
144
+ ---
145
+
146
+ ## Contact
147
+ For questions or further information, feel free to reach out:
148
+
149
+ - [Mohit Singh](mailto:[email protected])
150
+ - [Kostas Alexis](mailto:[email protected])
media/robot_exp.png ADDED

Git LFS Details

  • SHA256: 4b410566b1df21e929d3b1cf750c0ec2712e6bb0e1f51c47674a441377610b50
  • Pointer size: 131 Bytes
  • Size of remote file: 203 kB