Mohit Singh
commited on
Commit
Β·
24609c5
1
Parent(s):
4a64d44
update README
Browse files- README.md +150 -3
- media/robot_exp.png +3 -0
README.md
CHANGED
@@ -1,3 +1,150 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Multi-Camera Underwater Visual-Inertial Dataset
|
2 |
+
|
3 |
+
[](https://opensource.org/licenses/BSD-3-Clause)
|
4 |
+
|
5 |
+
## About
|
6 |
+
This repository hosts the **Multi-Camera Underwater Visual-Inertial Dataset** collected by the [Autonomous Robots Lab, NTNU](https://www.autonomousrobotslab.com/).
|
7 |
+
The dataset features data from a variety of onboard sensors, including:
|
8 |
+
- 5 cameras
|
9 |
+
- 1 IMU (via the [Alphasense Core Research Development Kit](https://github.com/sevensense-robotics/core_research_manual))
|
10 |
+
- A barometer
|
11 |
+
- Actuator commands from the ROV
|
12 |
+
|
13 |
+
Data was collected across both controlled indoor facilities and natural outdoor underwater environments.
|
14 |
+
|
15 |
+
---
|
16 |
+
|
17 |
+
## Updates / News
|
18 |
+
- **April 28, 2025:**
|
19 |
+
We are uploading new datasets collected in the Trondheim Fjord and at the Marine Cybernetics Lab Pool.
|
20 |
+
Additionally, we are migrating the dataset repository from [github.com/ntnu-arl/underwater-datasets](https://github.com/ntnu-arl/underwater-datasets) to [huggingface.co/datasets/ntnu-arl/underwater-datasets](https://huggingface.co/datasets/ntnu-arl/underwater-datasets).
|
21 |
+
|
22 |
+
---
|
23 |
+
|
24 |
+
## Quick Start
|
25 |
+
|
26 |
+
You can quickly download the dataset using the `huggingface_hub` Python library.
|
27 |
+
|
28 |
+
### 1. Install `huggingface_hub`
|
29 |
+
```bash
|
30 |
+
pip install huggingface_hub
|
31 |
+
```
|
32 |
+
|
33 |
+
### 2. Download the Dataset
|
34 |
+
You can clone the entire dataset repository using:
|
35 |
+
|
36 |
+
```bash
|
37 |
+
from huggingface_hub import snapshot_download
|
38 |
+
|
39 |
+
# Download the dataset
|
40 |
+
snapshot_download(
|
41 |
+
repo_id="ntnu-arl/underwater-datasets",
|
42 |
+
repo_type="dataset",
|
43 |
+
local_dir="underwater-datasets",
|
44 |
+
local_dir_use_symlinks=False # Set to False to avoid symlinks
|
45 |
+
)
|
46 |
+
```
|
47 |
+
|
48 |
+
This will download the dataset to a local folder called `underwater-datasets/`.
|
49 |
+
|
50 |
+
> **Note:** The full dataset is large (many GBs), so ensure you have enough storage and a stable internet connection.
|
51 |
+
|
52 |
+
### Alternative: Using `git-lfs`
|
53 |
+
If you prefer, you can also clone it manually with `git-lfs`:
|
54 |
+
|
55 |
+
```bash
|
56 |
+
sudo apt install git-lfs # Install git lfs
|
57 |
+
git lfs install # Initialize git-lfs
|
58 |
+
git clone https://huggingface.co/datasets/ntnu-arl/underwater-datasets # Clone the dataset
|
59 |
+
```
|
60 |
+
### 3. Use data with underwater state estimation methods
|
61 |
+
You can try out the dataset on the following undewater state estimation methods:
|
62 |
+
- ReAqROVIO: Refractive Aquatic ROVIO [code](https://github.com/ntnu-arl/reaqrovio), [homepage](https://ntnu-arl.github.io/refractive-camera-model-in-vio/)
|
63 |
+
- DeepVL: Deep Velocity Learning [code](https://github.com/ntnu-arl/DeepVL), [homepage](https://ntnu-arl.github.io/deepvl-deep-velocity-learning/)
|
64 |
+
---
|
65 |
+
|
66 |
+
## Platform: *Ariel* β Underwater Robot with Multi-Camera, IMU, and Compute Suite
|
67 |
+
The data was gathered using a custom-built underwater robot based on the BlueROV2 Heavy Configuration.
|
68 |
+
|
69 |
+
<p align="center">
|
70 |
+
<img src="media/robot_exp.png" alt="Ariel Underwater Robot" width="600"/>
|
71 |
+
</p>
|
72 |
+
|
73 |
+
---
|
74 |
+
|
75 |
+
## Trajectories with Visual-Inertial Data
|
76 |
+
|
77 |
+
### General Structure
|
78 |
+
The dataset is organized into multiple subsets, each corresponding to a different environment.
|
79 |
+
Each subset directory (e.g., `subset-fjord`) contains several trajectory directories (`traj_<X>`), each containing:
|
80 |
+
- A `.bag` file with raw sensor data
|
81 |
+
- A `.tum` file with the reference trajectory obtained by running [ReAqROVIO](https://github.com/ntnu-arl/reaqrovio) using four cameras and the IMU.
|
82 |
+
|
83 |
+
Directory structure overview:
|
84 |
+
```
|
85 |
+
underwater-datasets/
|
86 |
+
βββ subset-<environment>/
|
87 |
+
β βββ traj_1/
|
88 |
+
β β βββ <trajectory>.bag # Main ROS bag file
|
89 |
+
β β βββ <trajectory>_baseline.tum # Reference trajectory (ReAqROVIO output)
|
90 |
+
β βββ traj_2/
|
91 |
+
β β βββ <trajectory>.bag
|
92 |
+
β β βββ <trajectory>_baseline.tum
|
93 |
+
β βββ ...
|
94 |
+
```
|
95 |
+
|
96 |
+
---
|
97 |
+
|
98 |
+
## Available Subsets
|
99 |
+
|
100 |
+
### Subset: Trondheim Fjord (`subset-fjord`)
|
101 |
+
This subset includes six trajectories collected by manually piloting *Ariel* in the Trondheim Fjord.
|
102 |
+
|
103 |
+
| No. | Length (m) | Duration (s) | Size (GB) |
|
104 |
+
|:---:|:----------:|:------------:|:---------:|
|
105 |
+
| 1 | 142 | 312 | 12.5 |
|
106 |
+
| 2 | 206 | 499 | 23.4 |
|
107 |
+
| 3 | 122 | 272 | 13.9 |
|
108 |
+
| 4 | 165 | 411 | 23.4 |
|
109 |
+
| 5 | 234 | 440 | 18.6 |
|
110 |
+
| 6 | 305 | 638 | 26.6 |
|
111 |
+
|
112 |
+
---
|
113 |
+
|
114 |
+
### Subset: Marine Cybernetics Lab (`subset-mclab`)
|
115 |
+
This subset includes two trajectories collected by manually piloting *Ariel* in the Marine Cybernetics Laboratory at NTNU.
|
116 |
+
|
117 |
+
| No. | Length (m) | Duration (s) | Size (GB) |
|
118 |
+
|:---:|:----------:|:------------:|:---------:|
|
119 |
+
| 1 | 135 | 390 | 15.4 |
|
120 |
+
| 2 | 125 | 304 | 15.0 |
|
121 |
+
|
122 |
+
---
|
123 |
+
|
124 |
+
## Reference
|
125 |
+
If you use this dataset in your research, please cite the following publication:
|
126 |
+
|
127 |
+
> [**An Online Self-Calibrating Refractive Camera Model with Application to Underwater Odometry**](https://ieeexplore.ieee.org/document/10610643)
|
128 |
+
> Mohit Singh, Mihir Dharmadhikari, Kostas Alexis
|
129 |
+
> *IEEE International Conference on Robotics and Automation (ICRA), 2024*
|
130 |
+
|
131 |
+
```bibtex
|
132 |
+
@INPROCEEDINGS{10610643,
|
133 |
+
author={Singh, Mohit and Dharmadhikari, Mihir and Alexis, Kostas},
|
134 |
+
booktitle={2024 IEEE International Conference on Robotics and Automation (ICRA)},
|
135 |
+
title={An Online Self-calibrating Refractive Camera Model with Application to Underwater Odometry},
|
136 |
+
year={2024},
|
137 |
+
pages={10005-10011},
|
138 |
+
doi={10.1109/ICRA57147.2024.10610643}
|
139 |
+
}
|
140 |
+
```
|
141 |
+
|
142 |
+
|
143 |
+
|
144 |
+
---
|
145 |
+
|
146 |
+
## Contact
|
147 |
+
For questions or further information, feel free to reach out:
|
148 |
+
|
149 |
+
- [Mohit Singh](mailto:[email protected])
|
150 |
+
- [Kostas Alexis](mailto:[email protected])
|
media/robot_exp.png
ADDED
![]() |
Git LFS Details
|