Datasets:

Formats:
parquet
ArXiv:
Libraries:
Datasets
pandas
License:
File size: 19,972 Bytes
1bd8bbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2f5bf7b
1bd8bbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
309e169
1bd8bbc
ae35763
1bd8bbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c7bd75
 
 
 
 
 
 
 
 
 
 
1bd8bbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ae35763
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
---
language:
  - ar
  - bn
  - en
  - es
  - fa
  - fi
  - fr
  - hi
  - id
  - ja
  - ko
  - ru
  - sw
  - te
  - th
  - zh
  - de
  - yo
multilinguality:
  - multilingual
license:
  - cc-by-sa-4.0
task_ids:
  - document-retrieval
tags:
  - text
  - image
configs:
- config_name: queries-ar
  data_files:
  - split: default
    path: "ar/queries.parquet" 
- config_name: corpus-ar
  data_files:
  - split: default
    path: "ar/corpus.parquet" 
- config_name: qrels-ar
  data_files:
  - split: default
    path: "ar/qrels.parquet" 
- config_name: images-ar
  data_files:
  - split: default
    path: "ar/images.parquet" 
- config_name: queries-bn
  data_files:
  - split: default
    path: "bn/queries.parquet" 
- config_name: corpus-bn
  data_files:
  - split: default
    path: "bn/corpus.parquet" 
- config_name: qrels-bn
  data_files:
  - split: default
    path: "bn/qrels.parquet" 
- config_name: images-bn
  data_files:
  - split: default
    path: "bn/images.parquet" 
- config_name: queries-de
  data_files:
  - split: default
    path: "de/queries.parquet" 
- config_name: corpus-de
  data_files:
  - split: default
    path: "de/corpus.parquet" 
- config_name: qrels-de
  data_files:
  - split: default
    path: "de/qrels.parquet" 
- config_name: images-de
  data_files:
  - split: default
    path: "de/images.parquet" 
- config_name: queries-en
  data_files:
  - split: default
    path: "en/queries.parquet" 
- config_name: corpus-en
  data_files:
  - split: default
    path: "en/corpus.parquet" 
- config_name: qrels-en
  data_files:
  - split: default
    path: "en/qrels.parquet" 
- config_name: images-en
  data_files:
  - split: default
    path: "en/images.parquet" 
- config_name: queries-es
  data_files:
  - split: default
    path: "es/queries.parquet" 
- config_name: corpus-es
  data_files:
  - split: default
    path: "es/corpus.parquet" 
- config_name: qrels-es
  data_files:
  - split: default
    path: "es/qrels.parquet" 
- config_name: images-es
  data_files:
  - split: default
    path: "es/images.parquet" 
- config_name: queries-fa
  data_files:
  - split: default
    path: "fa/queries.parquet" 
- config_name: corpus-fa
  data_files:
  - split: default
    path: "fa/corpus.parquet" 
- config_name: qrels-fa
  data_files:
  - split: default
    path: "fa/qrels.parquet" 
- config_name: images-fa
  data_files:
  - split: default
    path: "fa/images.parquet" 
- config_name: queries-fi
  data_files:
  - split: default
    path: "fi/queries.parquet" 
- config_name: corpus-fi
  data_files:
  - split: default
    path: "fi/corpus.parquet" 
- config_name: qrels-fi
  data_files:
  - split: default
    path: "fi/qrels.parquet" 
- config_name: images-fi
  data_files:
  - split: default
    path: "fi/images.parquet" 
- config_name: queries-fr
  data_files:
  - split: default
    path: "fr/queries.parquet" 
- config_name: corpus-fr
  data_files:
  - split: default
    path: "fr/corpus.parquet" 
- config_name: qrels-fr
  data_files:
  - split: default
    path: "fr/qrels.parquet" 
- config_name: images-fr
  data_files:
  - split: default
    path: "fr/images.parquet" 
- config_name: queries-hi
  data_files:
  - split: default
    path: "hi/queries.parquet" 
- config_name: corpus-hi
  data_files:
  - split: default
    path: "hi/corpus.parquet" 
- config_name: qrels-hi
  data_files:
  - split: default
    path: "hi/qrels.parquet" 
- config_name: images-hi
  data_files:
  - split: default
    path: "hi/images.parquet" 
- config_name: queries-id
  data_files:
  - split: default
    path: "id/queries.parquet" 
- config_name: corpus-id
  data_files:
  - split: default
    path: "id/corpus.parquet" 
- config_name: qrels-id
  data_files:
  - split: default
    path: "id/qrels.parquet" 
- config_name: images-id
  data_files:
  - split: default
    path: "id/images.parquet" 
- config_name: queries-ja
  data_files:
  - split: default
    path: "ja/queries.parquet" 
- config_name: corpus-ja
  data_files:
  - split: default
    path: "ja/corpus.parquet" 
- config_name: qrels-ja
  data_files:
  - split: default
    path: "ja/qrels.parquet" 
- config_name: images-ja
  data_files:
  - split: default
    path: "ja/images.parquet" 
- config_name: queries-ko
  data_files:
  - split: default
    path: "ko/queries.parquet" 
- config_name: corpus-ko
  data_files:
  - split: default
    path: "ko/corpus.parquet" 
- config_name: qrels-ko
  data_files:
  - split: default
    path: "ko/qrels.parquet" 
- config_name: images-ko
  data_files:
  - split: default
    path: "ko/images.parquet" 
- config_name: queries-ru
  data_files:
  - split: default
    path: "ru/queries.parquet" 
- config_name: corpus-ru
  data_files:
  - split: default
    path: "ru/corpus.parquet" 
- config_name: qrels-ru
  data_files:
  - split: default
    path: "ru/qrels.parquet" 
- config_name: images-ru
  data_files:
  - split: default
    path: "ru/images.parquet" 
- config_name: queries-sw
  data_files:
  - split: default
    path: "sw/queries.parquet" 
- config_name: corpus-sw
  data_files:
  - split: default
    path: "sw/corpus.parquet" 
- config_name: qrels-sw
  data_files:
  - split: default
    path: "sw/qrels.parquet" 
- config_name: images-sw
  data_files:
  - split: default
    path: "sw/images.parquet" 
- config_name: queries-te
  data_files:
  - split: default
    path: "te/queries.parquet" 
- config_name: corpus-te
  data_files:
  - split: default
    path: "te/corpus.parquet" 
- config_name: qrels-te
  data_files:
  - split: default
    path: "te/qrels.parquet" 
- config_name: images-te
  data_files:
  - split: default
    path: "te/images.parquet" 
- config_name: queries-th
  data_files:
  - split: default
    path: "th/queries.parquet" 
- config_name: corpus-th
  data_files:
  - split: default
    path: "th/corpus.parquet" 
- config_name: qrels-th
  data_files:
  - split: default
    path: "th/qrels.parquet" 
- config_name: images-th
  data_files:
  - split: default
    path: "th/images.parquet" 
- config_name: queries-yo
  data_files:
  - split: default
    path: "yo/queries.parquet" 
- config_name: corpus-yo
  data_files:
  - split: default
    path: "yo/corpus.parquet" 
- config_name: qrels-yo
  data_files:
  - split: default
    path: "yo/qrels.parquet" 
- config_name: images-yo
  data_files:
  - split: default
    path: "yo/images.parquet" 
- config_name: queries-zh
  data_files:
  - split: default
    path: "zh/queries.parquet" 
- config_name: corpus-zh
  data_files:
  - split: default
    path: "zh/corpus.parquet" 
- config_name: qrels-zh
  data_files:
  - split: default
    path: "zh/qrels.parquet" 
- config_name: images-zh
  data_files:
  - split: default
    path: "zh/images.parquet" 
---

# MIRACL-VISION

MIRACL-VISION is a multilingual visual retrieval dataset for 18 different languages. It is an extension of MIRACL, a popular text-only multilingual retrieval dataset. The dataset contains user questions, images of Wikipedia articles and annotations, which article can answer a user question. There are 7898 questions and 338734 images. More details can be found in the paper [MIRACL-VISION: A Large, multilingual, visual document retrieval benchmark](https://arxiv.org/abs/2505.11651).

This dataset is ready for commercial usage for evaluation of the multilingual, multimodal retriever pipelines.

### Correspondence to
Benedikt Schifferer ([email protected])

### Dataset Creation Date:
31st January 2025

### License/Terms of Use: 
This dataset is licensed under Creative Commons Attribution-ShareAlike 4.0 International. Additional Information: Apache License 2.0.

### Intended Usage:
Users can evaluate multilingual, multimodal retriever pipelines. 

### Dataset Characterization
Dataset Collection Method: Automated
Labelling Method: Human

### Dataset Format
The images are stored Pillow (PIL) Images in HuggingFace Dataset format
The questions, corpus, questions-corpus pairs are stored in parquet/BEIR format

### Reference(s):
```
@misc{osmulsk2025miraclvisionlargemultilingualvisual,
      title={MIRACL-VISION: A Large, multilingual, visual document retrieval benchmark}, 
      author={Radek Osmulsk and Gabriel de Souza P. Moreira and Ronay Ak and Mengyao Xu and Benedikt Schifferer and Even Oldridge},
      year={2025},
      eprint={2505.11651},
      archivePrefix={arXiv},
      primaryClass={cs.IR},
      url={https://arxiv.org/abs/2505.11651}, 
}
```

### Ethical Considerations:
NVIDIA believes Trustworthy AI is a shared responsibility and we have established policies and practices to enable development for a wide array of AI applications.  When downloaded or used in accordance with our terms of service, developers should work with their internal model team to ensure this model meets requirements for the relevant industry and use case and addresses unforeseen product misuse.   

Please report security vulnerabilities or NVIDIA AI Concerns [here](https://www.nvidia.com/en-us/support/submit-security-vulnerability/).

### Example

The requirements are
```
pip install qwen_vl_utils beir==2.0.0
```

The dataset contains an [eval_example](https://huggingface.co/datasets/nvidia/miracl-vision/tree/main/eval_example) using [MrLight/dse-qwen2-2b-mrl-v1](https://huggingface.co/MrLight/dse-qwen2-2b-mrl-v1)​​

```bash
python embedding_eval.py --dataset nvidia/miracl-vision --language en
```

### Loading the Dataset

```python
from datasets import load_dataset

def hf_beir_queries(queries):
    queries_beir = {}
    for query in queries:
        queries_beir[query['_id']] = query['text']
    return(queries_beir)

def hf_beir_corpus(corpus):
    corpus_beir = {}
    for doc in corpus:
        corpus_beir[doc['_id']] = doc
    return(corpus_beir)

def hf_beir_qrels(qrels):
    qrels_beir = {}
    for el in qrels:
        if str(el['query-id']) in qrels_beir:
            qrels_beir[str(el['query-id'])][str(el['corpus-id'])] = el['score']
        else:
            qrels_beir[str(el['query-id'])] = {str(el['corpus-id']): el['score']}
    return(qrels_beir)

def load_data(
    path,
    lang
):
    queries = load_dataset(path, 'queries-' + str(lang), split='default')
    queries = hf_beir_queries(queries)
    corpus = load_dataset(path, 'corpus-' + str(lang), split='default')
    corpus = hf_beir_corpus(corpus)
    qrels = load_dataset(path, 'qrels-' + str(lang), split='default')
    qrels = hf_beir_qrels(qrels)
    images = load_dataset(path, 'images-' + str(lang), split='default')
    return(queries, corpus, qrels, images)

queries, corpus, qrels, images = load_data('nvidia/miracl-vision', 'en')
```

### Dataset Statistics

Number of Images: 338734

Number of questions: 7898

Total Data Storage: 95GB

|              |                   | MIRACL (original) |     MIRACL (original)    |   MIRACL-VISION  |    MIRACL-VISION   |
|--------------|-------------------|:-----------------:|:------------------------:|:----------------:|:------------------:|
| **Language** | **Language Code** | **# of queries**  | **# of document chunks** | **# of queries** | **# of documents** |
| Arabic       | ar                | 2896              | 2061414                  | 2127             | 75444              |
| Bengali      | bn                | 411               | 297265                   | 229              | 8495               |
| Chinese      | zh                | 393               | 4934368                  | 189              | 8672               |
| English      | en                | 799               | 32893221                 | 447              | 42971              |
| Farsi        | fa                | 632               | 2207172                  | 342              | 15846              |
| Finnish      | fi                | 1271              | 1883509                  | 791              | 33679              |
| French       | fr                | 343               | 14636953                 | 142              | 6990               |
| German       | de                | 305               | 15866222                 | 129              | 6302               |
| Hindi        | hi                | 350               | 506264                   | 184              | 8004               |
| Indonesian   | id                | 960               | 1446315                  | 603              | 23842              |
| Japanese     | ja                | 860               | 6953614                  | 387              | 17909              |
| Korean       | ko                | 213               | 1486752                  | 130              | 5700               |
| Russian      | ru                | 1252              | 9543918                  | 564              | 25201              |
| Spanish      | es                | 648               | 10373953                 | 369              | 17749              |
| Swahili      | sw                | 482               | 131924                   | 239              | 7166               |
| Telugu       | te                | 828               | 518079                   | 480              | 15429              |
| Thai         | th                | 733               | 542166                   | 451              | 16313              |
| Yoruba       | yo                | 119               | 49043                    | 95               | 3022               |
|              |                   |                   |                          |                  |                    |
| **Avereage** |                   |           **750** |              **5907342** |          **439** |          **18819** |



### Results

|                         |    MIRACL-VISION (Text)   |        MIRACL-VISION (Text)       |    MIRACL-VISION (Text)   | MIRACL-VISION (Text) |  MIRACL-VISION (Image)  |     MIRACL-VISION (Image)    | MIRACL-VISION (Image) | MIRACL-VISION (Image) |
|-------------------------|:-------------------------:|:---------------------------------:|:-------------------------:|:--------------------:|:-----------------------:|:----------------------------:|:---------------------:|:---------------------:|
|                         | **multilingual-e5-large** | **snowflake-arctic-embed-l-v2.0** | **gte-multilingual-base** | **bge-m3**           | **dse-qwen2-2b-mrl-v1** | **gme-Qwen2-VL-2B-Instruct** | **vdr-2b-multi-v1**   | **colqwen2-v1.0**     |
| LLM Parameters (in M)   |                       560 |                               567 |                       305 |                  567 |                    1543 |                         1543 |                  1543 |                  1543 |
| Language                |                           |                                   |                           |                      |                         |                              |                       |                       |
| Arabic                  |                    0.8557 |                            0.8754 |                    0.8503 |               0.8883 |                  0.3893 |                       0.4888 |                0.4379 |                0.4129 |
| Bengali                 |                    0.8421 |                            0.8325 |                    0.8211 |               0.8585 |                  0.2352 |                       0.3755 |                0.2473 |                0.2888 |
| Chinese                 |                    0.6900 |                            0.7179 |                    0.7167 |               0.7458 |                  0.5962 |                       0.6314 |                0.5963 |                0.4926 |
| English                 |                    0.7029 |                            0.7437 |                    0.7345 |               0.7348 |                  0.6605 |                       0.6784 |                0.6784 |                0.6417 |
| Farsi                   |                    0.6793 |                            0.7001 |                    0.6984 |               0.7297 |                  0.2250 |                       0.3085 |                0.2398 |                0.2616 |
| Finnish                 |                    0.8974 |                            0.9014 |                    0.8957 |               0.9071 |                  0.4162 |                       0.6863 |                0.5283 |                0.6604 |
| French                  |                    0.7208 |                            0.8236 |                    0.7771 |               0.8158 |                  0.7160 |                       0.6851 |                0.7194 |                0.6876 |
| German                  |                    0.7622 |                            0.7774 |                    0.7498 |               0.7695 |                  0.6267 |                       0.6345 |                0.6205 |                0.5995 |
| Hindi                   |                    0.7595 |                            0.7255 |                    0.6916 |               0.7581 |                  0.1740 |                       0.3127 |                0.2058 |                0.2209 |
| Indonesian              |                    0.6793 |                            0.6906 |                    0.6757 |               0.7049 |                  0.4866 |                       0.5416 |                0.5254 |                0.5320 |
| Japanese                |                    0.8378 |                            0.8484 |                    0.8442 |               0.8720 |                  0.6232 |                       0.7305 |                0.6553 |                0.6970 |
| Korean                  |                    0.7327 |                            0.7545 |                    0.7397 |               0.7934 |                  0.4446 |                       0.6202 |                0.4952 |                0.4419 |
| Russian                 |                    0.7857 |                            0.8242 |                    0.8023 |               0.8363 |                  0.6505 |                       0.7202 |                0.6995 |                0.6811 |
| Spanish                 |                    0.6596 |                            0.7250 |                    0.7029 |               0.7268 |                  0.5927 |                       0.6277 |                0.6274 |                0.6224 |
| Swahili                 |                    0.8157 |                            0.8089 |                    0.7987 |               0.8337 |                  0.4156 |                       0.5348 |                0.4509 |                0.4931 |
| Telugu                  |                    0.8948 |                            0.9201 |                    0.9076 |               0.9090 |                  0.0274 |                       0.0893 |                0.0318 |                0.0264 |
| Thai                    |                    0.8424 |                            0.8485 |                    0.8509 |               0.8682 |                  0.2692 |                       0.3563 |                0.3177 |                0.2389 |
| Yoruba                  |                    0.5655 |                            0.5332 |                    0.5698 |               0.5842 |                  0.4178 |                       0.4884 |                0.4577 |                0.5120 |
|                         |                           |                                   |                           |                      |                         |                              |                       |                       |
| **Average**             |                **0.7624** |                        **0.7806** |                **0.7682** |           **0.7964** |              **0.4426** |                   **0.5283** |            **0.4741** |            **0.4728** |
| **Average w/o Telugu** |                **0.7546** |                        **0.7724** |                **0.7600** |           **0.7898** |              **0.4670** |                   **0.5542** |            **0.5002** |            **0.4991** |