Datasets:
File size: 19,972 Bytes
1bd8bbc 2f5bf7b 1bd8bbc 309e169 1bd8bbc ae35763 1bd8bbc 9c7bd75 1bd8bbc ae35763 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 |
---
language:
- ar
- bn
- en
- es
- fa
- fi
- fr
- hi
- id
- ja
- ko
- ru
- sw
- te
- th
- zh
- de
- yo
multilinguality:
- multilingual
license:
- cc-by-sa-4.0
task_ids:
- document-retrieval
tags:
- text
- image
configs:
- config_name: queries-ar
data_files:
- split: default
path: "ar/queries.parquet"
- config_name: corpus-ar
data_files:
- split: default
path: "ar/corpus.parquet"
- config_name: qrels-ar
data_files:
- split: default
path: "ar/qrels.parquet"
- config_name: images-ar
data_files:
- split: default
path: "ar/images.parquet"
- config_name: queries-bn
data_files:
- split: default
path: "bn/queries.parquet"
- config_name: corpus-bn
data_files:
- split: default
path: "bn/corpus.parquet"
- config_name: qrels-bn
data_files:
- split: default
path: "bn/qrels.parquet"
- config_name: images-bn
data_files:
- split: default
path: "bn/images.parquet"
- config_name: queries-de
data_files:
- split: default
path: "de/queries.parquet"
- config_name: corpus-de
data_files:
- split: default
path: "de/corpus.parquet"
- config_name: qrels-de
data_files:
- split: default
path: "de/qrels.parquet"
- config_name: images-de
data_files:
- split: default
path: "de/images.parquet"
- config_name: queries-en
data_files:
- split: default
path: "en/queries.parquet"
- config_name: corpus-en
data_files:
- split: default
path: "en/corpus.parquet"
- config_name: qrels-en
data_files:
- split: default
path: "en/qrels.parquet"
- config_name: images-en
data_files:
- split: default
path: "en/images.parquet"
- config_name: queries-es
data_files:
- split: default
path: "es/queries.parquet"
- config_name: corpus-es
data_files:
- split: default
path: "es/corpus.parquet"
- config_name: qrels-es
data_files:
- split: default
path: "es/qrels.parquet"
- config_name: images-es
data_files:
- split: default
path: "es/images.parquet"
- config_name: queries-fa
data_files:
- split: default
path: "fa/queries.parquet"
- config_name: corpus-fa
data_files:
- split: default
path: "fa/corpus.parquet"
- config_name: qrels-fa
data_files:
- split: default
path: "fa/qrels.parquet"
- config_name: images-fa
data_files:
- split: default
path: "fa/images.parquet"
- config_name: queries-fi
data_files:
- split: default
path: "fi/queries.parquet"
- config_name: corpus-fi
data_files:
- split: default
path: "fi/corpus.parquet"
- config_name: qrels-fi
data_files:
- split: default
path: "fi/qrels.parquet"
- config_name: images-fi
data_files:
- split: default
path: "fi/images.parquet"
- config_name: queries-fr
data_files:
- split: default
path: "fr/queries.parquet"
- config_name: corpus-fr
data_files:
- split: default
path: "fr/corpus.parquet"
- config_name: qrels-fr
data_files:
- split: default
path: "fr/qrels.parquet"
- config_name: images-fr
data_files:
- split: default
path: "fr/images.parquet"
- config_name: queries-hi
data_files:
- split: default
path: "hi/queries.parquet"
- config_name: corpus-hi
data_files:
- split: default
path: "hi/corpus.parquet"
- config_name: qrels-hi
data_files:
- split: default
path: "hi/qrels.parquet"
- config_name: images-hi
data_files:
- split: default
path: "hi/images.parquet"
- config_name: queries-id
data_files:
- split: default
path: "id/queries.parquet"
- config_name: corpus-id
data_files:
- split: default
path: "id/corpus.parquet"
- config_name: qrels-id
data_files:
- split: default
path: "id/qrels.parquet"
- config_name: images-id
data_files:
- split: default
path: "id/images.parquet"
- config_name: queries-ja
data_files:
- split: default
path: "ja/queries.parquet"
- config_name: corpus-ja
data_files:
- split: default
path: "ja/corpus.parquet"
- config_name: qrels-ja
data_files:
- split: default
path: "ja/qrels.parquet"
- config_name: images-ja
data_files:
- split: default
path: "ja/images.parquet"
- config_name: queries-ko
data_files:
- split: default
path: "ko/queries.parquet"
- config_name: corpus-ko
data_files:
- split: default
path: "ko/corpus.parquet"
- config_name: qrels-ko
data_files:
- split: default
path: "ko/qrels.parquet"
- config_name: images-ko
data_files:
- split: default
path: "ko/images.parquet"
- config_name: queries-ru
data_files:
- split: default
path: "ru/queries.parquet"
- config_name: corpus-ru
data_files:
- split: default
path: "ru/corpus.parquet"
- config_name: qrels-ru
data_files:
- split: default
path: "ru/qrels.parquet"
- config_name: images-ru
data_files:
- split: default
path: "ru/images.parquet"
- config_name: queries-sw
data_files:
- split: default
path: "sw/queries.parquet"
- config_name: corpus-sw
data_files:
- split: default
path: "sw/corpus.parquet"
- config_name: qrels-sw
data_files:
- split: default
path: "sw/qrels.parquet"
- config_name: images-sw
data_files:
- split: default
path: "sw/images.parquet"
- config_name: queries-te
data_files:
- split: default
path: "te/queries.parquet"
- config_name: corpus-te
data_files:
- split: default
path: "te/corpus.parquet"
- config_name: qrels-te
data_files:
- split: default
path: "te/qrels.parquet"
- config_name: images-te
data_files:
- split: default
path: "te/images.parquet"
- config_name: queries-th
data_files:
- split: default
path: "th/queries.parquet"
- config_name: corpus-th
data_files:
- split: default
path: "th/corpus.parquet"
- config_name: qrels-th
data_files:
- split: default
path: "th/qrels.parquet"
- config_name: images-th
data_files:
- split: default
path: "th/images.parquet"
- config_name: queries-yo
data_files:
- split: default
path: "yo/queries.parquet"
- config_name: corpus-yo
data_files:
- split: default
path: "yo/corpus.parquet"
- config_name: qrels-yo
data_files:
- split: default
path: "yo/qrels.parquet"
- config_name: images-yo
data_files:
- split: default
path: "yo/images.parquet"
- config_name: queries-zh
data_files:
- split: default
path: "zh/queries.parquet"
- config_name: corpus-zh
data_files:
- split: default
path: "zh/corpus.parquet"
- config_name: qrels-zh
data_files:
- split: default
path: "zh/qrels.parquet"
- config_name: images-zh
data_files:
- split: default
path: "zh/images.parquet"
---
# MIRACL-VISION
MIRACL-VISION is a multilingual visual retrieval dataset for 18 different languages. It is an extension of MIRACL, a popular text-only multilingual retrieval dataset. The dataset contains user questions, images of Wikipedia articles and annotations, which article can answer a user question. There are 7898 questions and 338734 images. More details can be found in the paper [MIRACL-VISION: A Large, multilingual, visual document retrieval benchmark](https://arxiv.org/abs/2505.11651).
This dataset is ready for commercial usage for evaluation of the multilingual, multimodal retriever pipelines.
### Correspondence to
Benedikt Schifferer ([email protected])
### Dataset Creation Date:
31st January 2025
### License/Terms of Use:
This dataset is licensed under Creative Commons Attribution-ShareAlike 4.0 International. Additional Information: Apache License 2.0.
### Intended Usage:
Users can evaluate multilingual, multimodal retriever pipelines.
### Dataset Characterization
Dataset Collection Method: Automated
Labelling Method: Human
### Dataset Format
The images are stored Pillow (PIL) Images in HuggingFace Dataset format
The questions, corpus, questions-corpus pairs are stored in parquet/BEIR format
### Reference(s):
```
@misc{osmulsk2025miraclvisionlargemultilingualvisual,
title={MIRACL-VISION: A Large, multilingual, visual document retrieval benchmark},
author={Radek Osmulsk and Gabriel de Souza P. Moreira and Ronay Ak and Mengyao Xu and Benedikt Schifferer and Even Oldridge},
year={2025},
eprint={2505.11651},
archivePrefix={arXiv},
primaryClass={cs.IR},
url={https://arxiv.org/abs/2505.11651},
}
```
### Ethical Considerations:
NVIDIA believes Trustworthy AI is a shared responsibility and we have established policies and practices to enable development for a wide array of AI applications. When downloaded or used in accordance with our terms of service, developers should work with their internal model team to ensure this model meets requirements for the relevant industry and use case and addresses unforeseen product misuse.
Please report security vulnerabilities or NVIDIA AI Concerns [here](https://www.nvidia.com/en-us/support/submit-security-vulnerability/).
### Example
The requirements are
```
pip install qwen_vl_utils beir==2.0.0
```
The dataset contains an [eval_example](https://huggingface.co/datasets/nvidia/miracl-vision/tree/main/eval_example) using [MrLight/dse-qwen2-2b-mrl-v1](https://huggingface.co/MrLight/dse-qwen2-2b-mrl-v1)
```bash
python embedding_eval.py --dataset nvidia/miracl-vision --language en
```
### Loading the Dataset
```python
from datasets import load_dataset
def hf_beir_queries(queries):
queries_beir = {}
for query in queries:
queries_beir[query['_id']] = query['text']
return(queries_beir)
def hf_beir_corpus(corpus):
corpus_beir = {}
for doc in corpus:
corpus_beir[doc['_id']] = doc
return(corpus_beir)
def hf_beir_qrels(qrels):
qrels_beir = {}
for el in qrels:
if str(el['query-id']) in qrels_beir:
qrels_beir[str(el['query-id'])][str(el['corpus-id'])] = el['score']
else:
qrels_beir[str(el['query-id'])] = {str(el['corpus-id']): el['score']}
return(qrels_beir)
def load_data(
path,
lang
):
queries = load_dataset(path, 'queries-' + str(lang), split='default')
queries = hf_beir_queries(queries)
corpus = load_dataset(path, 'corpus-' + str(lang), split='default')
corpus = hf_beir_corpus(corpus)
qrels = load_dataset(path, 'qrels-' + str(lang), split='default')
qrels = hf_beir_qrels(qrels)
images = load_dataset(path, 'images-' + str(lang), split='default')
return(queries, corpus, qrels, images)
queries, corpus, qrels, images = load_data('nvidia/miracl-vision', 'en')
```
### Dataset Statistics
Number of Images: 338734
Number of questions: 7898
Total Data Storage: 95GB
| | | MIRACL (original) | MIRACL (original) | MIRACL-VISION | MIRACL-VISION |
|--------------|-------------------|:-----------------:|:------------------------:|:----------------:|:------------------:|
| **Language** | **Language Code** | **# of queries** | **# of document chunks** | **# of queries** | **# of documents** |
| Arabic | ar | 2896 | 2061414 | 2127 | 75444 |
| Bengali | bn | 411 | 297265 | 229 | 8495 |
| Chinese | zh | 393 | 4934368 | 189 | 8672 |
| English | en | 799 | 32893221 | 447 | 42971 |
| Farsi | fa | 632 | 2207172 | 342 | 15846 |
| Finnish | fi | 1271 | 1883509 | 791 | 33679 |
| French | fr | 343 | 14636953 | 142 | 6990 |
| German | de | 305 | 15866222 | 129 | 6302 |
| Hindi | hi | 350 | 506264 | 184 | 8004 |
| Indonesian | id | 960 | 1446315 | 603 | 23842 |
| Japanese | ja | 860 | 6953614 | 387 | 17909 |
| Korean | ko | 213 | 1486752 | 130 | 5700 |
| Russian | ru | 1252 | 9543918 | 564 | 25201 |
| Spanish | es | 648 | 10373953 | 369 | 17749 |
| Swahili | sw | 482 | 131924 | 239 | 7166 |
| Telugu | te | 828 | 518079 | 480 | 15429 |
| Thai | th | 733 | 542166 | 451 | 16313 |
| Yoruba | yo | 119 | 49043 | 95 | 3022 |
| | | | | | |
| **Avereage** | | **750** | **5907342** | **439** | **18819** |
### Results
| | MIRACL-VISION (Text) | MIRACL-VISION (Text) | MIRACL-VISION (Text) | MIRACL-VISION (Text) | MIRACL-VISION (Image) | MIRACL-VISION (Image) | MIRACL-VISION (Image) | MIRACL-VISION (Image) |
|-------------------------|:-------------------------:|:---------------------------------:|:-------------------------:|:--------------------:|:-----------------------:|:----------------------------:|:---------------------:|:---------------------:|
| | **multilingual-e5-large** | **snowflake-arctic-embed-l-v2.0** | **gte-multilingual-base** | **bge-m3** | **dse-qwen2-2b-mrl-v1** | **gme-Qwen2-VL-2B-Instruct** | **vdr-2b-multi-v1** | **colqwen2-v1.0** |
| LLM Parameters (in M) | 560 | 567 | 305 | 567 | 1543 | 1543 | 1543 | 1543 |
| Language | | | | | | | | |
| Arabic | 0.8557 | 0.8754 | 0.8503 | 0.8883 | 0.3893 | 0.4888 | 0.4379 | 0.4129 |
| Bengali | 0.8421 | 0.8325 | 0.8211 | 0.8585 | 0.2352 | 0.3755 | 0.2473 | 0.2888 |
| Chinese | 0.6900 | 0.7179 | 0.7167 | 0.7458 | 0.5962 | 0.6314 | 0.5963 | 0.4926 |
| English | 0.7029 | 0.7437 | 0.7345 | 0.7348 | 0.6605 | 0.6784 | 0.6784 | 0.6417 |
| Farsi | 0.6793 | 0.7001 | 0.6984 | 0.7297 | 0.2250 | 0.3085 | 0.2398 | 0.2616 |
| Finnish | 0.8974 | 0.9014 | 0.8957 | 0.9071 | 0.4162 | 0.6863 | 0.5283 | 0.6604 |
| French | 0.7208 | 0.8236 | 0.7771 | 0.8158 | 0.7160 | 0.6851 | 0.7194 | 0.6876 |
| German | 0.7622 | 0.7774 | 0.7498 | 0.7695 | 0.6267 | 0.6345 | 0.6205 | 0.5995 |
| Hindi | 0.7595 | 0.7255 | 0.6916 | 0.7581 | 0.1740 | 0.3127 | 0.2058 | 0.2209 |
| Indonesian | 0.6793 | 0.6906 | 0.6757 | 0.7049 | 0.4866 | 0.5416 | 0.5254 | 0.5320 |
| Japanese | 0.8378 | 0.8484 | 0.8442 | 0.8720 | 0.6232 | 0.7305 | 0.6553 | 0.6970 |
| Korean | 0.7327 | 0.7545 | 0.7397 | 0.7934 | 0.4446 | 0.6202 | 0.4952 | 0.4419 |
| Russian | 0.7857 | 0.8242 | 0.8023 | 0.8363 | 0.6505 | 0.7202 | 0.6995 | 0.6811 |
| Spanish | 0.6596 | 0.7250 | 0.7029 | 0.7268 | 0.5927 | 0.6277 | 0.6274 | 0.6224 |
| Swahili | 0.8157 | 0.8089 | 0.7987 | 0.8337 | 0.4156 | 0.5348 | 0.4509 | 0.4931 |
| Telugu | 0.8948 | 0.9201 | 0.9076 | 0.9090 | 0.0274 | 0.0893 | 0.0318 | 0.0264 |
| Thai | 0.8424 | 0.8485 | 0.8509 | 0.8682 | 0.2692 | 0.3563 | 0.3177 | 0.2389 |
| Yoruba | 0.5655 | 0.5332 | 0.5698 | 0.5842 | 0.4178 | 0.4884 | 0.4577 | 0.5120 |
| | | | | | | | | |
| **Average** | **0.7624** | **0.7806** | **0.7682** | **0.7964** | **0.4426** | **0.5283** | **0.4741** | **0.4728** |
| **Average w/o Telugu** | **0.7546** | **0.7724** | **0.7600** | **0.7898** | **0.4670** | **0.5542** | **0.5002** | **0.4991** | |