omersaidd commited on
Commit
d3d15ca
·
verified ·
1 Parent(s): 955459e

Add files using upload-large-folder tool

Browse files
Files changed (50) hide show
  1. checkpoint-1000/chat_template.jinja +93 -0
  2. checkpoint-1000/config.json +38 -0
  3. checkpoint-1000/generation_config.json +11 -0
  4. checkpoint-1000/model.safetensors.index.json +262 -0
  5. checkpoint-1000/scheduler.pt +3 -0
  6. checkpoint-1000/special_tokens_map.json +19 -0
  7. checkpoint-1000/tokenizer_config.json +0 -0
  8. checkpoint-1000/trainer_state.json +0 -0
  9. checkpoint-1000/training_args.bin +3 -0
  10. checkpoint-1500/chat_template.jinja +93 -0
  11. checkpoint-1500/config.json +38 -0
  12. checkpoint-1500/generation_config.json +11 -0
  13. checkpoint-1500/model.safetensors.index.json +262 -0
  14. checkpoint-1500/scheduler.pt +3 -0
  15. checkpoint-1500/special_tokens_map.json +19 -0
  16. checkpoint-1500/tokenizer_config.json +0 -0
  17. checkpoint-1500/trainer_state.json +0 -0
  18. checkpoint-2000/chat_template.jinja +93 -0
  19. checkpoint-2000/config.json +38 -0
  20. checkpoint-2000/generation_config.json +11 -0
  21. checkpoint-2000/model.safetensors.index.json +262 -0
  22. checkpoint-2000/special_tokens_map.json +19 -0
  23. checkpoint-2000/tokenizer_config.json +0 -0
  24. checkpoint-2000/trainer_state.json +0 -0
  25. checkpoint-2500/chat_template.jinja +93 -0
  26. checkpoint-2500/config.json +38 -0
  27. checkpoint-2500/generation_config.json +11 -0
  28. checkpoint-2500/model.safetensors.index.json +262 -0
  29. checkpoint-2500/special_tokens_map.json +19 -0
  30. checkpoint-2500/tokenizer_config.json +0 -0
  31. checkpoint-2500/trainer_state.json +0 -0
  32. checkpoint-3000/chat_template.jinja +93 -0
  33. checkpoint-3000/config.json +38 -0
  34. checkpoint-3000/generation_config.json +11 -0
  35. checkpoint-3000/model.safetensors.index.json +262 -0
  36. checkpoint-3000/special_tokens_map.json +19 -0
  37. checkpoint-3000/tokenizer_config.json +0 -0
  38. checkpoint-3000/trainer_state.json +0 -0
  39. checkpoint-3500/config.json +38 -0
  40. checkpoint-3500/generation_config.json +11 -0
  41. checkpoint-500/chat_template.jinja +93 -0
  42. checkpoint-500/config.json +38 -0
  43. checkpoint-500/generation_config.json +11 -0
  44. checkpoint-500/model.safetensors.index.json +262 -0
  45. checkpoint-500/rng_state.pth +3 -0
  46. checkpoint-500/scheduler.pt +3 -0
  47. checkpoint-500/special_tokens_map.json +19 -0
  48. checkpoint-500/tokenizer_config.json +0 -0
  49. checkpoint-500/trainer_state.json +3534 -0
  50. checkpoint-500/training_args.bin +3 -0
checkpoint-1000/chat_template.jinja ADDED
@@ -0,0 +1,93 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {{- bos_token }}
2
+ {%- if custom_tools is defined %}
3
+ {%- set tools = custom_tools %}
4
+ {%- endif %}
5
+ {%- if not tools_in_user_message is defined %}
6
+ {%- set tools_in_user_message = true %}
7
+ {%- endif %}
8
+ {%- if not date_string is defined %}
9
+ {%- if strftime_now is defined %}
10
+ {%- set date_string = strftime_now("%d %b %Y") %}
11
+ {%- else %}
12
+ {%- set date_string = "26 Jul 2024" %}
13
+ {%- endif %}
14
+ {%- endif %}
15
+ {%- if not tools is defined %}
16
+ {%- set tools = none %}
17
+ {%- endif %}
18
+
19
+ {#- This block extracts the system message, so we can slot it into the right place. #}
20
+ {%- if messages[0]['role'] == 'system' %}
21
+ {%- set system_message = messages[0]['content']|trim %}
22
+ {%- set messages = messages[1:] %}
23
+ {%- else %}
24
+ {%- set system_message = "" %}
25
+ {%- endif %}
26
+
27
+ {#- System message #}
28
+ {{- "<|start_header_id|>system<|end_header_id|>\n\n" }}
29
+ {%- if tools is not none %}
30
+ {{- "Environment: ipython\n" }}
31
+ {%- endif %}
32
+ {{- "Cutting Knowledge Date: December 2023\n" }}
33
+ {{- "Today Date: " + date_string + "\n\n" }}
34
+ {%- if tools is not none and not tools_in_user_message %}
35
+ {{- "You have access to the following functions. To call a function, please respond with JSON for a function call." }}
36
+ {{- 'Respond in the format {"name": function name, "parameters": dictionary of argument name and its value}.' }}
37
+ {{- "Do not use variables.\n\n" }}
38
+ {%- for t in tools %}
39
+ {{- t | tojson(indent=4) }}
40
+ {{- "\n\n" }}
41
+ {%- endfor %}
42
+ {%- endif %}
43
+ {{- system_message }}
44
+ {{- "<|eot_id|>" }}
45
+
46
+ {#- Custom tools are passed in a user message with some extra guidance #}
47
+ {%- if tools_in_user_message and not tools is none %}
48
+ {#- Extract the first user message so we can plug it in here #}
49
+ {%- if messages | length != 0 %}
50
+ {%- set first_user_message = messages[0]['content']|trim %}
51
+ {%- set messages = messages[1:] %}
52
+ {%- else %}
53
+ {{- raise_exception("Cannot put tools in the first user message when there's no first user message!") }}
54
+ {%- endif %}
55
+ {{- '<|start_header_id|>user<|end_header_id|>\n\n' -}}
56
+ {{- "Given the following functions, please respond with a JSON for a function call " }}
57
+ {{- "with its proper arguments that best answers the given prompt.\n\n" }}
58
+ {{- 'Respond in the format {"name": function name, "parameters": dictionary of argument name and its value}.' }}
59
+ {{- "Do not use variables.\n\n" }}
60
+ {%- for t in tools %}
61
+ {{- t | tojson(indent=4) }}
62
+ {{- "\n\n" }}
63
+ {%- endfor %}
64
+ {{- first_user_message + "<|eot_id|>"}}
65
+ {%- endif %}
66
+
67
+ {%- for message in messages %}
68
+ {%- if not (message.role == 'ipython' or message.role == 'tool' or 'tool_calls' in message) %}
69
+ {{- '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n'+ message['content'] | trim + '<|eot_id|>' }}
70
+ {%- elif 'tool_calls' in message %}
71
+ {%- if not message.tool_calls|length == 1 %}
72
+ {{- raise_exception("This model only supports single tool-calls at once!") }}
73
+ {%- endif %}
74
+ {%- set tool_call = message.tool_calls[0].function %}
75
+ {{- '<|start_header_id|>assistant<|end_header_id|>\n\n' -}}
76
+ {{- '{"name": "' + tool_call.name + '", ' }}
77
+ {{- '"parameters": ' }}
78
+ {{- tool_call.arguments | tojson }}
79
+ {{- "}" }}
80
+ {{- "<|eot_id|>" }}
81
+ {%- elif message.role == "tool" or message.role == "ipython" %}
82
+ {{- "<|start_header_id|>ipython<|end_header_id|>\n\n" }}
83
+ {%- if message.content is mapping or message.content is iterable %}
84
+ {{- message.content | tojson }}
85
+ {%- else %}
86
+ {{- message.content }}
87
+ {%- endif %}
88
+ {{- "<|eot_id|>" }}
89
+ {%- endif %}
90
+ {%- endfor %}
91
+ {%- if add_generation_prompt %}
92
+ {{- '<|start_header_id|>assistant<|end_header_id|>\n\n' }}
93
+ {%- endif %}
checkpoint-1000/config.json ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "LlamaForCausalLM"
4
+ ],
5
+ "attention_bias": false,
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 128000,
8
+ "eos_token_id": 128009,
9
+ "head_dim": 128,
10
+ "hidden_act": "silu",
11
+ "hidden_size": 3072,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 8192,
14
+ "max_position_embeddings": 131072,
15
+ "mlp_bias": false,
16
+ "model_type": "llama",
17
+ "num_attention_heads": 24,
18
+ "num_hidden_layers": 28,
19
+ "num_key_value_heads": 8,
20
+ "pad_token_id": 128004,
21
+ "pretraining_tp": 1,
22
+ "rms_norm_eps": 1e-05,
23
+ "rope_scaling": {
24
+ "factor": 32.0,
25
+ "high_freq_factor": 4.0,
26
+ "low_freq_factor": 1.0,
27
+ "original_max_position_embeddings": 8192,
28
+ "rope_type": "llama3"
29
+ },
30
+ "rope_theta": 500000.0,
31
+ "tie_word_embeddings": true,
32
+ "torch_dtype": "bfloat16",
33
+ "transformers_version": "4.53.3",
34
+ "unsloth_fixed": true,
35
+ "unsloth_version": "2025.7.8",
36
+ "use_cache": true,
37
+ "vocab_size": 156939
38
+ }
checkpoint-1000/generation_config.json ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 128000,
4
+ "do_sample": true,
5
+ "eos_token_id": 128009,
6
+ "max_length": 131072,
7
+ "pad_token_id": 128004,
8
+ "temperature": 0.6,
9
+ "top_p": 0.9,
10
+ "transformers_version": "4.53.3"
11
+ }
checkpoint-1000/model.safetensors.index.json ADDED
@@ -0,0 +1,262 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_parameters": 3300864000,
4
+ "total_size": 6601728000
5
+ },
6
+ "weight_map": {
7
+ "model.embed_tokens.weight": "model-00001-of-00002.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
13
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
14
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
15
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
16
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
17
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
18
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
19
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
20
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
21
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
22
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
23
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
24
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
25
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
26
+ "model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
27
+ "model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
28
+ "model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
29
+ "model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
30
+ "model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
31
+ "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
32
+ "model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
33
+ "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
34
+ "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
35
+ "model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
36
+ "model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
37
+ "model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
38
+ "model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
39
+ "model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
40
+ "model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
41
+ "model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
42
+ "model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
43
+ "model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
44
+ "model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
45
+ "model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
46
+ "model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
47
+ "model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
48
+ "model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
49
+ "model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
50
+ "model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
51
+ "model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
52
+ "model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
53
+ "model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
54
+ "model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
55
+ "model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
56
+ "model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
57
+ "model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
58
+ "model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
59
+ "model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
60
+ "model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
61
+ "model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
62
+ "model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
63
+ "model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
64
+ "model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
65
+ "model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
66
+ "model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
67
+ "model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
68
+ "model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
69
+ "model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
70
+ "model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
71
+ "model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
72
+ "model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
73
+ "model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
74
+ "model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
75
+ "model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
76
+ "model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
77
+ "model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
78
+ "model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
79
+ "model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
80
+ "model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
81
+ "model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
82
+ "model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
83
+ "model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
84
+ "model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
85
+ "model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
86
+ "model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
87
+ "model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
88
+ "model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
89
+ "model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
90
+ "model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
91
+ "model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
92
+ "model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
93
+ "model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
94
+ "model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
95
+ "model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
96
+ "model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
97
+ "model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
98
+ "model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
99
+ "model.layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
100
+ "model.layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
101
+ "model.layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
102
+ "model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
103
+ "model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
104
+ "model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
105
+ "model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
106
+ "model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
107
+ "model.layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors",
108
+ "model.layers.19.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
109
+ "model.layers.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
110
+ "model.layers.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
111
+ "model.layers.19.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
112
+ "model.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
113
+ "model.layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
114
+ "model.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
115
+ "model.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
116
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
117
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
118
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
119
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
120
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
121
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
122
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
123
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
124
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
125
+ "model.layers.20.input_layernorm.weight": "model-00002-of-00002.safetensors",
126
+ "model.layers.20.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
127
+ "model.layers.20.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
128
+ "model.layers.20.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
129
+ "model.layers.20.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
130
+ "model.layers.20.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
131
+ "model.layers.20.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
132
+ "model.layers.20.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
133
+ "model.layers.20.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
134
+ "model.layers.21.input_layernorm.weight": "model-00002-of-00002.safetensors",
135
+ "model.layers.21.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
136
+ "model.layers.21.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
137
+ "model.layers.21.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
138
+ "model.layers.21.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
139
+ "model.layers.21.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
140
+ "model.layers.21.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
141
+ "model.layers.21.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
142
+ "model.layers.21.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
143
+ "model.layers.22.input_layernorm.weight": "model-00002-of-00002.safetensors",
144
+ "model.layers.22.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
145
+ "model.layers.22.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
146
+ "model.layers.22.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
147
+ "model.layers.22.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
148
+ "model.layers.22.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
149
+ "model.layers.22.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
150
+ "model.layers.22.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
151
+ "model.layers.22.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
152
+ "model.layers.23.input_layernorm.weight": "model-00002-of-00002.safetensors",
153
+ "model.layers.23.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
154
+ "model.layers.23.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
155
+ "model.layers.23.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
156
+ "model.layers.23.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
157
+ "model.layers.23.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
158
+ "model.layers.23.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
159
+ "model.layers.23.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
160
+ "model.layers.23.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
161
+ "model.layers.24.input_layernorm.weight": "model-00002-of-00002.safetensors",
162
+ "model.layers.24.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
163
+ "model.layers.24.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
164
+ "model.layers.24.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
165
+ "model.layers.24.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
166
+ "model.layers.24.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
167
+ "model.layers.24.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
168
+ "model.layers.24.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
169
+ "model.layers.24.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
170
+ "model.layers.25.input_layernorm.weight": "model-00002-of-00002.safetensors",
171
+ "model.layers.25.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
172
+ "model.layers.25.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
173
+ "model.layers.25.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
174
+ "model.layers.25.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
175
+ "model.layers.25.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
176
+ "model.layers.25.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
177
+ "model.layers.25.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
178
+ "model.layers.25.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
179
+ "model.layers.26.input_layernorm.weight": "model-00002-of-00002.safetensors",
180
+ "model.layers.26.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
181
+ "model.layers.26.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
182
+ "model.layers.26.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
183
+ "model.layers.26.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
184
+ "model.layers.26.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
185
+ "model.layers.26.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
186
+ "model.layers.26.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
187
+ "model.layers.26.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
188
+ "model.layers.27.input_layernorm.weight": "model-00002-of-00002.safetensors",
189
+ "model.layers.27.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
190
+ "model.layers.27.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
191
+ "model.layers.27.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
192
+ "model.layers.27.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
193
+ "model.layers.27.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
194
+ "model.layers.27.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
195
+ "model.layers.27.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
196
+ "model.layers.27.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
197
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
198
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
199
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
200
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
201
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
202
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
203
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
204
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
205
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
206
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
207
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
208
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
209
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
210
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
211
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
212
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
213
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
214
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
215
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
216
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
217
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
218
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
219
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
220
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
221
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
222
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
223
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
224
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
225
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
226
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
227
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
228
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
229
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
230
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
231
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
232
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
233
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
234
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
235
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
236
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
237
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
238
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
239
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
240
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
241
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
242
+ "model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
243
+ "model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
244
+ "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
245
+ "model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
246
+ "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
247
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
248
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
249
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
250
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
251
+ "model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
252
+ "model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
253
+ "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
254
+ "model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
255
+ "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
256
+ "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
257
+ "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
258
+ "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
259
+ "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
260
+ "model.norm.weight": "model-00002-of-00002.safetensors"
261
+ }
262
+ }
checkpoint-1000/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e06080eae4c673facc3c10099f21afe9bf482a1fb08a98238dfeed689ae7727c
3
+ size 1465
checkpoint-1000/special_tokens_map.json ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|audio|>"
4
+ ],
5
+ "bos_token": {
6
+ "content": "<|begin_of_text|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false
11
+ },
12
+ "eos_token": {
13
+ "content": "<|eot_id|>",
14
+ "lstrip": false,
15
+ "normalized": false,
16
+ "rstrip": false,
17
+ "single_word": false
18
+ }
19
+ }
checkpoint-1000/tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-1000/trainer_state.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-1000/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b8040193c5b74e2442575cb75407cc1b7ae4e1c7c98400fab63e59606dc8a3f6
3
+ size 5713
checkpoint-1500/chat_template.jinja ADDED
@@ -0,0 +1,93 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {{- bos_token }}
2
+ {%- if custom_tools is defined %}
3
+ {%- set tools = custom_tools %}
4
+ {%- endif %}
5
+ {%- if not tools_in_user_message is defined %}
6
+ {%- set tools_in_user_message = true %}
7
+ {%- endif %}
8
+ {%- if not date_string is defined %}
9
+ {%- if strftime_now is defined %}
10
+ {%- set date_string = strftime_now("%d %b %Y") %}
11
+ {%- else %}
12
+ {%- set date_string = "26 Jul 2024" %}
13
+ {%- endif %}
14
+ {%- endif %}
15
+ {%- if not tools is defined %}
16
+ {%- set tools = none %}
17
+ {%- endif %}
18
+
19
+ {#- This block extracts the system message, so we can slot it into the right place. #}
20
+ {%- if messages[0]['role'] == 'system' %}
21
+ {%- set system_message = messages[0]['content']|trim %}
22
+ {%- set messages = messages[1:] %}
23
+ {%- else %}
24
+ {%- set system_message = "" %}
25
+ {%- endif %}
26
+
27
+ {#- System message #}
28
+ {{- "<|start_header_id|>system<|end_header_id|>\n\n" }}
29
+ {%- if tools is not none %}
30
+ {{- "Environment: ipython\n" }}
31
+ {%- endif %}
32
+ {{- "Cutting Knowledge Date: December 2023\n" }}
33
+ {{- "Today Date: " + date_string + "\n\n" }}
34
+ {%- if tools is not none and not tools_in_user_message %}
35
+ {{- "You have access to the following functions. To call a function, please respond with JSON for a function call." }}
36
+ {{- 'Respond in the format {"name": function name, "parameters": dictionary of argument name and its value}.' }}
37
+ {{- "Do not use variables.\n\n" }}
38
+ {%- for t in tools %}
39
+ {{- t | tojson(indent=4) }}
40
+ {{- "\n\n" }}
41
+ {%- endfor %}
42
+ {%- endif %}
43
+ {{- system_message }}
44
+ {{- "<|eot_id|>" }}
45
+
46
+ {#- Custom tools are passed in a user message with some extra guidance #}
47
+ {%- if tools_in_user_message and not tools is none %}
48
+ {#- Extract the first user message so we can plug it in here #}
49
+ {%- if messages | length != 0 %}
50
+ {%- set first_user_message = messages[0]['content']|trim %}
51
+ {%- set messages = messages[1:] %}
52
+ {%- else %}
53
+ {{- raise_exception("Cannot put tools in the first user message when there's no first user message!") }}
54
+ {%- endif %}
55
+ {{- '<|start_header_id|>user<|end_header_id|>\n\n' -}}
56
+ {{- "Given the following functions, please respond with a JSON for a function call " }}
57
+ {{- "with its proper arguments that best answers the given prompt.\n\n" }}
58
+ {{- 'Respond in the format {"name": function name, "parameters": dictionary of argument name and its value}.' }}
59
+ {{- "Do not use variables.\n\n" }}
60
+ {%- for t in tools %}
61
+ {{- t | tojson(indent=4) }}
62
+ {{- "\n\n" }}
63
+ {%- endfor %}
64
+ {{- first_user_message + "<|eot_id|>"}}
65
+ {%- endif %}
66
+
67
+ {%- for message in messages %}
68
+ {%- if not (message.role == 'ipython' or message.role == 'tool' or 'tool_calls' in message) %}
69
+ {{- '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n'+ message['content'] | trim + '<|eot_id|>' }}
70
+ {%- elif 'tool_calls' in message %}
71
+ {%- if not message.tool_calls|length == 1 %}
72
+ {{- raise_exception("This model only supports single tool-calls at once!") }}
73
+ {%- endif %}
74
+ {%- set tool_call = message.tool_calls[0].function %}
75
+ {{- '<|start_header_id|>assistant<|end_header_id|>\n\n' -}}
76
+ {{- '{"name": "' + tool_call.name + '", ' }}
77
+ {{- '"parameters": ' }}
78
+ {{- tool_call.arguments | tojson }}
79
+ {{- "}" }}
80
+ {{- "<|eot_id|>" }}
81
+ {%- elif message.role == "tool" or message.role == "ipython" %}
82
+ {{- "<|start_header_id|>ipython<|end_header_id|>\n\n" }}
83
+ {%- if message.content is mapping or message.content is iterable %}
84
+ {{- message.content | tojson }}
85
+ {%- else %}
86
+ {{- message.content }}
87
+ {%- endif %}
88
+ {{- "<|eot_id|>" }}
89
+ {%- endif %}
90
+ {%- endfor %}
91
+ {%- if add_generation_prompt %}
92
+ {{- '<|start_header_id|>assistant<|end_header_id|>\n\n' }}
93
+ {%- endif %}
checkpoint-1500/config.json ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "LlamaForCausalLM"
4
+ ],
5
+ "attention_bias": false,
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 128000,
8
+ "eos_token_id": 128009,
9
+ "head_dim": 128,
10
+ "hidden_act": "silu",
11
+ "hidden_size": 3072,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 8192,
14
+ "max_position_embeddings": 131072,
15
+ "mlp_bias": false,
16
+ "model_type": "llama",
17
+ "num_attention_heads": 24,
18
+ "num_hidden_layers": 28,
19
+ "num_key_value_heads": 8,
20
+ "pad_token_id": 128004,
21
+ "pretraining_tp": 1,
22
+ "rms_norm_eps": 1e-05,
23
+ "rope_scaling": {
24
+ "factor": 32.0,
25
+ "high_freq_factor": 4.0,
26
+ "low_freq_factor": 1.0,
27
+ "original_max_position_embeddings": 8192,
28
+ "rope_type": "llama3"
29
+ },
30
+ "rope_theta": 500000.0,
31
+ "tie_word_embeddings": true,
32
+ "torch_dtype": "bfloat16",
33
+ "transformers_version": "4.53.3",
34
+ "unsloth_fixed": true,
35
+ "unsloth_version": "2025.7.8",
36
+ "use_cache": true,
37
+ "vocab_size": 156939
38
+ }
checkpoint-1500/generation_config.json ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 128000,
4
+ "do_sample": true,
5
+ "eos_token_id": 128009,
6
+ "max_length": 131072,
7
+ "pad_token_id": 128004,
8
+ "temperature": 0.6,
9
+ "top_p": 0.9,
10
+ "transformers_version": "4.53.3"
11
+ }
checkpoint-1500/model.safetensors.index.json ADDED
@@ -0,0 +1,262 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_parameters": 3300864000,
4
+ "total_size": 6601728000
5
+ },
6
+ "weight_map": {
7
+ "model.embed_tokens.weight": "model-00001-of-00002.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
13
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
14
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
15
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
16
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
17
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
18
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
19
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
20
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
21
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
22
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
23
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
24
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
25
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
26
+ "model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
27
+ "model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
28
+ "model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
29
+ "model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
30
+ "model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
31
+ "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
32
+ "model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
33
+ "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
34
+ "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
35
+ "model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
36
+ "model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
37
+ "model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
38
+ "model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
39
+ "model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
40
+ "model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
41
+ "model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
42
+ "model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
43
+ "model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
44
+ "model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
45
+ "model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
46
+ "model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
47
+ "model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
48
+ "model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
49
+ "model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
50
+ "model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
51
+ "model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
52
+ "model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
53
+ "model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
54
+ "model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
55
+ "model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
56
+ "model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
57
+ "model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
58
+ "model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
59
+ "model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
60
+ "model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
61
+ "model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
62
+ "model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
63
+ "model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
64
+ "model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
65
+ "model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
66
+ "model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
67
+ "model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
68
+ "model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
69
+ "model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
70
+ "model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
71
+ "model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
72
+ "model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
73
+ "model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
74
+ "model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
75
+ "model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
76
+ "model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
77
+ "model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
78
+ "model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
79
+ "model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
80
+ "model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
81
+ "model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
82
+ "model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
83
+ "model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
84
+ "model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
85
+ "model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
86
+ "model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
87
+ "model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
88
+ "model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
89
+ "model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
90
+ "model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
91
+ "model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
92
+ "model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
93
+ "model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
94
+ "model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
95
+ "model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
96
+ "model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
97
+ "model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
98
+ "model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
99
+ "model.layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
100
+ "model.layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
101
+ "model.layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
102
+ "model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
103
+ "model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
104
+ "model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
105
+ "model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
106
+ "model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
107
+ "model.layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors",
108
+ "model.layers.19.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
109
+ "model.layers.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
110
+ "model.layers.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
111
+ "model.layers.19.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
112
+ "model.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
113
+ "model.layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
114
+ "model.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
115
+ "model.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
116
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
117
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
118
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
119
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
120
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
121
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
122
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
123
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
124
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
125
+ "model.layers.20.input_layernorm.weight": "model-00002-of-00002.safetensors",
126
+ "model.layers.20.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
127
+ "model.layers.20.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
128
+ "model.layers.20.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
129
+ "model.layers.20.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
130
+ "model.layers.20.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
131
+ "model.layers.20.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
132
+ "model.layers.20.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
133
+ "model.layers.20.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
134
+ "model.layers.21.input_layernorm.weight": "model-00002-of-00002.safetensors",
135
+ "model.layers.21.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
136
+ "model.layers.21.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
137
+ "model.layers.21.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
138
+ "model.layers.21.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
139
+ "model.layers.21.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
140
+ "model.layers.21.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
141
+ "model.layers.21.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
142
+ "model.layers.21.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
143
+ "model.layers.22.input_layernorm.weight": "model-00002-of-00002.safetensors",
144
+ "model.layers.22.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
145
+ "model.layers.22.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
146
+ "model.layers.22.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
147
+ "model.layers.22.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
148
+ "model.layers.22.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
149
+ "model.layers.22.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
150
+ "model.layers.22.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
151
+ "model.layers.22.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
152
+ "model.layers.23.input_layernorm.weight": "model-00002-of-00002.safetensors",
153
+ "model.layers.23.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
154
+ "model.layers.23.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
155
+ "model.layers.23.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
156
+ "model.layers.23.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
157
+ "model.layers.23.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
158
+ "model.layers.23.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
159
+ "model.layers.23.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
160
+ "model.layers.23.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
161
+ "model.layers.24.input_layernorm.weight": "model-00002-of-00002.safetensors",
162
+ "model.layers.24.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
163
+ "model.layers.24.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
164
+ "model.layers.24.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
165
+ "model.layers.24.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
166
+ "model.layers.24.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
167
+ "model.layers.24.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
168
+ "model.layers.24.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
169
+ "model.layers.24.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
170
+ "model.layers.25.input_layernorm.weight": "model-00002-of-00002.safetensors",
171
+ "model.layers.25.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
172
+ "model.layers.25.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
173
+ "model.layers.25.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
174
+ "model.layers.25.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
175
+ "model.layers.25.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
176
+ "model.layers.25.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
177
+ "model.layers.25.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
178
+ "model.layers.25.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
179
+ "model.layers.26.input_layernorm.weight": "model-00002-of-00002.safetensors",
180
+ "model.layers.26.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
181
+ "model.layers.26.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
182
+ "model.layers.26.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
183
+ "model.layers.26.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
184
+ "model.layers.26.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
185
+ "model.layers.26.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
186
+ "model.layers.26.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
187
+ "model.layers.26.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
188
+ "model.layers.27.input_layernorm.weight": "model-00002-of-00002.safetensors",
189
+ "model.layers.27.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
190
+ "model.layers.27.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
191
+ "model.layers.27.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
192
+ "model.layers.27.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
193
+ "model.layers.27.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
194
+ "model.layers.27.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
195
+ "model.layers.27.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
196
+ "model.layers.27.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
197
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
198
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
199
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
200
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
201
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
202
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
203
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
204
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
205
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
206
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
207
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
208
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
209
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
210
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
211
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
212
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
213
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
214
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
215
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
216
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
217
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
218
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
219
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
220
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
221
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
222
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
223
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
224
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
225
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
226
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
227
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
228
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
229
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
230
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
231
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
232
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
233
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
234
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
235
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
236
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
237
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
238
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
239
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
240
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
241
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
242
+ "model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
243
+ "model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
244
+ "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
245
+ "model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
246
+ "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
247
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
248
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
249
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
250
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
251
+ "model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
252
+ "model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
253
+ "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
254
+ "model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
255
+ "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
256
+ "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
257
+ "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
258
+ "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
259
+ "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
260
+ "model.norm.weight": "model-00002-of-00002.safetensors"
261
+ }
262
+ }
checkpoint-1500/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f486606c6e5007bdb6e15cb4313637c5eefb3e07cdff174afe1ea7eebd0bc996
3
+ size 1465
checkpoint-1500/special_tokens_map.json ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|audio|>"
4
+ ],
5
+ "bos_token": {
6
+ "content": "<|begin_of_text|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false
11
+ },
12
+ "eos_token": {
13
+ "content": "<|eot_id|>",
14
+ "lstrip": false,
15
+ "normalized": false,
16
+ "rstrip": false,
17
+ "single_word": false
18
+ }
19
+ }
checkpoint-1500/tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-1500/trainer_state.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-2000/chat_template.jinja ADDED
@@ -0,0 +1,93 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {{- bos_token }}
2
+ {%- if custom_tools is defined %}
3
+ {%- set tools = custom_tools %}
4
+ {%- endif %}
5
+ {%- if not tools_in_user_message is defined %}
6
+ {%- set tools_in_user_message = true %}
7
+ {%- endif %}
8
+ {%- if not date_string is defined %}
9
+ {%- if strftime_now is defined %}
10
+ {%- set date_string = strftime_now("%d %b %Y") %}
11
+ {%- else %}
12
+ {%- set date_string = "26 Jul 2024" %}
13
+ {%- endif %}
14
+ {%- endif %}
15
+ {%- if not tools is defined %}
16
+ {%- set tools = none %}
17
+ {%- endif %}
18
+
19
+ {#- This block extracts the system message, so we can slot it into the right place. #}
20
+ {%- if messages[0]['role'] == 'system' %}
21
+ {%- set system_message = messages[0]['content']|trim %}
22
+ {%- set messages = messages[1:] %}
23
+ {%- else %}
24
+ {%- set system_message = "" %}
25
+ {%- endif %}
26
+
27
+ {#- System message #}
28
+ {{- "<|start_header_id|>system<|end_header_id|>\n\n" }}
29
+ {%- if tools is not none %}
30
+ {{- "Environment: ipython\n" }}
31
+ {%- endif %}
32
+ {{- "Cutting Knowledge Date: December 2023\n" }}
33
+ {{- "Today Date: " + date_string + "\n\n" }}
34
+ {%- if tools is not none and not tools_in_user_message %}
35
+ {{- "You have access to the following functions. To call a function, please respond with JSON for a function call." }}
36
+ {{- 'Respond in the format {"name": function name, "parameters": dictionary of argument name and its value}.' }}
37
+ {{- "Do not use variables.\n\n" }}
38
+ {%- for t in tools %}
39
+ {{- t | tojson(indent=4) }}
40
+ {{- "\n\n" }}
41
+ {%- endfor %}
42
+ {%- endif %}
43
+ {{- system_message }}
44
+ {{- "<|eot_id|>" }}
45
+
46
+ {#- Custom tools are passed in a user message with some extra guidance #}
47
+ {%- if tools_in_user_message and not tools is none %}
48
+ {#- Extract the first user message so we can plug it in here #}
49
+ {%- if messages | length != 0 %}
50
+ {%- set first_user_message = messages[0]['content']|trim %}
51
+ {%- set messages = messages[1:] %}
52
+ {%- else %}
53
+ {{- raise_exception("Cannot put tools in the first user message when there's no first user message!") }}
54
+ {%- endif %}
55
+ {{- '<|start_header_id|>user<|end_header_id|>\n\n' -}}
56
+ {{- "Given the following functions, please respond with a JSON for a function call " }}
57
+ {{- "with its proper arguments that best answers the given prompt.\n\n" }}
58
+ {{- 'Respond in the format {"name": function name, "parameters": dictionary of argument name and its value}.' }}
59
+ {{- "Do not use variables.\n\n" }}
60
+ {%- for t in tools %}
61
+ {{- t | tojson(indent=4) }}
62
+ {{- "\n\n" }}
63
+ {%- endfor %}
64
+ {{- first_user_message + "<|eot_id|>"}}
65
+ {%- endif %}
66
+
67
+ {%- for message in messages %}
68
+ {%- if not (message.role == 'ipython' or message.role == 'tool' or 'tool_calls' in message) %}
69
+ {{- '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n'+ message['content'] | trim + '<|eot_id|>' }}
70
+ {%- elif 'tool_calls' in message %}
71
+ {%- if not message.tool_calls|length == 1 %}
72
+ {{- raise_exception("This model only supports single tool-calls at once!") }}
73
+ {%- endif %}
74
+ {%- set tool_call = message.tool_calls[0].function %}
75
+ {{- '<|start_header_id|>assistant<|end_header_id|>\n\n' -}}
76
+ {{- '{"name": "' + tool_call.name + '", ' }}
77
+ {{- '"parameters": ' }}
78
+ {{- tool_call.arguments | tojson }}
79
+ {{- "}" }}
80
+ {{- "<|eot_id|>" }}
81
+ {%- elif message.role == "tool" or message.role == "ipython" %}
82
+ {{- "<|start_header_id|>ipython<|end_header_id|>\n\n" }}
83
+ {%- if message.content is mapping or message.content is iterable %}
84
+ {{- message.content | tojson }}
85
+ {%- else %}
86
+ {{- message.content }}
87
+ {%- endif %}
88
+ {{- "<|eot_id|>" }}
89
+ {%- endif %}
90
+ {%- endfor %}
91
+ {%- if add_generation_prompt %}
92
+ {{- '<|start_header_id|>assistant<|end_header_id|>\n\n' }}
93
+ {%- endif %}
checkpoint-2000/config.json ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "LlamaForCausalLM"
4
+ ],
5
+ "attention_bias": false,
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 128000,
8
+ "eos_token_id": 128009,
9
+ "head_dim": 128,
10
+ "hidden_act": "silu",
11
+ "hidden_size": 3072,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 8192,
14
+ "max_position_embeddings": 131072,
15
+ "mlp_bias": false,
16
+ "model_type": "llama",
17
+ "num_attention_heads": 24,
18
+ "num_hidden_layers": 28,
19
+ "num_key_value_heads": 8,
20
+ "pad_token_id": 128004,
21
+ "pretraining_tp": 1,
22
+ "rms_norm_eps": 1e-05,
23
+ "rope_scaling": {
24
+ "factor": 32.0,
25
+ "high_freq_factor": 4.0,
26
+ "low_freq_factor": 1.0,
27
+ "original_max_position_embeddings": 8192,
28
+ "rope_type": "llama3"
29
+ },
30
+ "rope_theta": 500000.0,
31
+ "tie_word_embeddings": true,
32
+ "torch_dtype": "bfloat16",
33
+ "transformers_version": "4.53.3",
34
+ "unsloth_fixed": true,
35
+ "unsloth_version": "2025.7.8",
36
+ "use_cache": true,
37
+ "vocab_size": 156939
38
+ }
checkpoint-2000/generation_config.json ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 128000,
4
+ "do_sample": true,
5
+ "eos_token_id": 128009,
6
+ "max_length": 131072,
7
+ "pad_token_id": 128004,
8
+ "temperature": 0.6,
9
+ "top_p": 0.9,
10
+ "transformers_version": "4.53.3"
11
+ }
checkpoint-2000/model.safetensors.index.json ADDED
@@ -0,0 +1,262 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_parameters": 3300864000,
4
+ "total_size": 6601728000
5
+ },
6
+ "weight_map": {
7
+ "model.embed_tokens.weight": "model-00001-of-00002.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
13
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
14
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
15
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
16
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
17
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
18
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
19
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
20
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
21
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
22
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
23
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
24
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
25
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
26
+ "model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
27
+ "model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
28
+ "model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
29
+ "model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
30
+ "model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
31
+ "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
32
+ "model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
33
+ "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
34
+ "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
35
+ "model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
36
+ "model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
37
+ "model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
38
+ "model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
39
+ "model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
40
+ "model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
41
+ "model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
42
+ "model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
43
+ "model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
44
+ "model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
45
+ "model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
46
+ "model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
47
+ "model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
48
+ "model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
49
+ "model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
50
+ "model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
51
+ "model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
52
+ "model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
53
+ "model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
54
+ "model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
55
+ "model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
56
+ "model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
57
+ "model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
58
+ "model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
59
+ "model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
60
+ "model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
61
+ "model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
62
+ "model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
63
+ "model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
64
+ "model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
65
+ "model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
66
+ "model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
67
+ "model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
68
+ "model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
69
+ "model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
70
+ "model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
71
+ "model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
72
+ "model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
73
+ "model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
74
+ "model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
75
+ "model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
76
+ "model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
77
+ "model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
78
+ "model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
79
+ "model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
80
+ "model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
81
+ "model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
82
+ "model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
83
+ "model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
84
+ "model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
85
+ "model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
86
+ "model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
87
+ "model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
88
+ "model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
89
+ "model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
90
+ "model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
91
+ "model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
92
+ "model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
93
+ "model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
94
+ "model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
95
+ "model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
96
+ "model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
97
+ "model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
98
+ "model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
99
+ "model.layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
100
+ "model.layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
101
+ "model.layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
102
+ "model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
103
+ "model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
104
+ "model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
105
+ "model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
106
+ "model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
107
+ "model.layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors",
108
+ "model.layers.19.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
109
+ "model.layers.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
110
+ "model.layers.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
111
+ "model.layers.19.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
112
+ "model.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
113
+ "model.layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
114
+ "model.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
115
+ "model.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
116
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
117
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
118
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
119
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
120
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
121
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
122
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
123
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
124
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
125
+ "model.layers.20.input_layernorm.weight": "model-00002-of-00002.safetensors",
126
+ "model.layers.20.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
127
+ "model.layers.20.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
128
+ "model.layers.20.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
129
+ "model.layers.20.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
130
+ "model.layers.20.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
131
+ "model.layers.20.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
132
+ "model.layers.20.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
133
+ "model.layers.20.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
134
+ "model.layers.21.input_layernorm.weight": "model-00002-of-00002.safetensors",
135
+ "model.layers.21.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
136
+ "model.layers.21.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
137
+ "model.layers.21.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
138
+ "model.layers.21.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
139
+ "model.layers.21.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
140
+ "model.layers.21.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
141
+ "model.layers.21.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
142
+ "model.layers.21.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
143
+ "model.layers.22.input_layernorm.weight": "model-00002-of-00002.safetensors",
144
+ "model.layers.22.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
145
+ "model.layers.22.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
146
+ "model.layers.22.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
147
+ "model.layers.22.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
148
+ "model.layers.22.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
149
+ "model.layers.22.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
150
+ "model.layers.22.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
151
+ "model.layers.22.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
152
+ "model.layers.23.input_layernorm.weight": "model-00002-of-00002.safetensors",
153
+ "model.layers.23.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
154
+ "model.layers.23.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
155
+ "model.layers.23.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
156
+ "model.layers.23.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
157
+ "model.layers.23.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
158
+ "model.layers.23.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
159
+ "model.layers.23.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
160
+ "model.layers.23.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
161
+ "model.layers.24.input_layernorm.weight": "model-00002-of-00002.safetensors",
162
+ "model.layers.24.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
163
+ "model.layers.24.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
164
+ "model.layers.24.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
165
+ "model.layers.24.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
166
+ "model.layers.24.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
167
+ "model.layers.24.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
168
+ "model.layers.24.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
169
+ "model.layers.24.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
170
+ "model.layers.25.input_layernorm.weight": "model-00002-of-00002.safetensors",
171
+ "model.layers.25.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
172
+ "model.layers.25.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
173
+ "model.layers.25.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
174
+ "model.layers.25.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
175
+ "model.layers.25.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
176
+ "model.layers.25.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
177
+ "model.layers.25.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
178
+ "model.layers.25.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
179
+ "model.layers.26.input_layernorm.weight": "model-00002-of-00002.safetensors",
180
+ "model.layers.26.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
181
+ "model.layers.26.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
182
+ "model.layers.26.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
183
+ "model.layers.26.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
184
+ "model.layers.26.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
185
+ "model.layers.26.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
186
+ "model.layers.26.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
187
+ "model.layers.26.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
188
+ "model.layers.27.input_layernorm.weight": "model-00002-of-00002.safetensors",
189
+ "model.layers.27.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
190
+ "model.layers.27.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
191
+ "model.layers.27.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
192
+ "model.layers.27.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
193
+ "model.layers.27.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
194
+ "model.layers.27.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
195
+ "model.layers.27.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
196
+ "model.layers.27.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
197
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
198
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
199
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
200
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
201
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
202
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
203
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
204
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
205
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
206
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
207
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
208
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
209
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
210
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
211
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
212
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
213
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
214
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
215
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
216
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
217
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
218
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
219
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
220
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
221
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
222
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
223
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
224
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
225
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
226
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
227
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
228
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
229
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
230
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
231
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
232
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
233
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
234
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
235
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
236
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
237
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
238
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
239
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
240
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
241
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
242
+ "model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
243
+ "model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
244
+ "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
245
+ "model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
246
+ "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
247
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
248
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
249
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
250
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
251
+ "model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
252
+ "model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
253
+ "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
254
+ "model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
255
+ "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
256
+ "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
257
+ "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
258
+ "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
259
+ "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
260
+ "model.norm.weight": "model-00002-of-00002.safetensors"
261
+ }
262
+ }
checkpoint-2000/special_tokens_map.json ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|audio|>"
4
+ ],
5
+ "bos_token": {
6
+ "content": "<|begin_of_text|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false
11
+ },
12
+ "eos_token": {
13
+ "content": "<|eot_id|>",
14
+ "lstrip": false,
15
+ "normalized": false,
16
+ "rstrip": false,
17
+ "single_word": false
18
+ }
19
+ }
checkpoint-2000/tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-2000/trainer_state.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-2500/chat_template.jinja ADDED
@@ -0,0 +1,93 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {{- bos_token }}
2
+ {%- if custom_tools is defined %}
3
+ {%- set tools = custom_tools %}
4
+ {%- endif %}
5
+ {%- if not tools_in_user_message is defined %}
6
+ {%- set tools_in_user_message = true %}
7
+ {%- endif %}
8
+ {%- if not date_string is defined %}
9
+ {%- if strftime_now is defined %}
10
+ {%- set date_string = strftime_now("%d %b %Y") %}
11
+ {%- else %}
12
+ {%- set date_string = "26 Jul 2024" %}
13
+ {%- endif %}
14
+ {%- endif %}
15
+ {%- if not tools is defined %}
16
+ {%- set tools = none %}
17
+ {%- endif %}
18
+
19
+ {#- This block extracts the system message, so we can slot it into the right place. #}
20
+ {%- if messages[0]['role'] == 'system' %}
21
+ {%- set system_message = messages[0]['content']|trim %}
22
+ {%- set messages = messages[1:] %}
23
+ {%- else %}
24
+ {%- set system_message = "" %}
25
+ {%- endif %}
26
+
27
+ {#- System message #}
28
+ {{- "<|start_header_id|>system<|end_header_id|>\n\n" }}
29
+ {%- if tools is not none %}
30
+ {{- "Environment: ipython\n" }}
31
+ {%- endif %}
32
+ {{- "Cutting Knowledge Date: December 2023\n" }}
33
+ {{- "Today Date: " + date_string + "\n\n" }}
34
+ {%- if tools is not none and not tools_in_user_message %}
35
+ {{- "You have access to the following functions. To call a function, please respond with JSON for a function call." }}
36
+ {{- 'Respond in the format {"name": function name, "parameters": dictionary of argument name and its value}.' }}
37
+ {{- "Do not use variables.\n\n" }}
38
+ {%- for t in tools %}
39
+ {{- t | tojson(indent=4) }}
40
+ {{- "\n\n" }}
41
+ {%- endfor %}
42
+ {%- endif %}
43
+ {{- system_message }}
44
+ {{- "<|eot_id|>" }}
45
+
46
+ {#- Custom tools are passed in a user message with some extra guidance #}
47
+ {%- if tools_in_user_message and not tools is none %}
48
+ {#- Extract the first user message so we can plug it in here #}
49
+ {%- if messages | length != 0 %}
50
+ {%- set first_user_message = messages[0]['content']|trim %}
51
+ {%- set messages = messages[1:] %}
52
+ {%- else %}
53
+ {{- raise_exception("Cannot put tools in the first user message when there's no first user message!") }}
54
+ {%- endif %}
55
+ {{- '<|start_header_id|>user<|end_header_id|>\n\n' -}}
56
+ {{- "Given the following functions, please respond with a JSON for a function call " }}
57
+ {{- "with its proper arguments that best answers the given prompt.\n\n" }}
58
+ {{- 'Respond in the format {"name": function name, "parameters": dictionary of argument name and its value}.' }}
59
+ {{- "Do not use variables.\n\n" }}
60
+ {%- for t in tools %}
61
+ {{- t | tojson(indent=4) }}
62
+ {{- "\n\n" }}
63
+ {%- endfor %}
64
+ {{- first_user_message + "<|eot_id|>"}}
65
+ {%- endif %}
66
+
67
+ {%- for message in messages %}
68
+ {%- if not (message.role == 'ipython' or message.role == 'tool' or 'tool_calls' in message) %}
69
+ {{- '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n'+ message['content'] | trim + '<|eot_id|>' }}
70
+ {%- elif 'tool_calls' in message %}
71
+ {%- if not message.tool_calls|length == 1 %}
72
+ {{- raise_exception("This model only supports single tool-calls at once!") }}
73
+ {%- endif %}
74
+ {%- set tool_call = message.tool_calls[0].function %}
75
+ {{- '<|start_header_id|>assistant<|end_header_id|>\n\n' -}}
76
+ {{- '{"name": "' + tool_call.name + '", ' }}
77
+ {{- '"parameters": ' }}
78
+ {{- tool_call.arguments | tojson }}
79
+ {{- "}" }}
80
+ {{- "<|eot_id|>" }}
81
+ {%- elif message.role == "tool" or message.role == "ipython" %}
82
+ {{- "<|start_header_id|>ipython<|end_header_id|>\n\n" }}
83
+ {%- if message.content is mapping or message.content is iterable %}
84
+ {{- message.content | tojson }}
85
+ {%- else %}
86
+ {{- message.content }}
87
+ {%- endif %}
88
+ {{- "<|eot_id|>" }}
89
+ {%- endif %}
90
+ {%- endfor %}
91
+ {%- if add_generation_prompt %}
92
+ {{- '<|start_header_id|>assistant<|end_header_id|>\n\n' }}
93
+ {%- endif %}
checkpoint-2500/config.json ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "LlamaForCausalLM"
4
+ ],
5
+ "attention_bias": false,
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 128000,
8
+ "eos_token_id": 128009,
9
+ "head_dim": 128,
10
+ "hidden_act": "silu",
11
+ "hidden_size": 3072,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 8192,
14
+ "max_position_embeddings": 131072,
15
+ "mlp_bias": false,
16
+ "model_type": "llama",
17
+ "num_attention_heads": 24,
18
+ "num_hidden_layers": 28,
19
+ "num_key_value_heads": 8,
20
+ "pad_token_id": 128004,
21
+ "pretraining_tp": 1,
22
+ "rms_norm_eps": 1e-05,
23
+ "rope_scaling": {
24
+ "factor": 32.0,
25
+ "high_freq_factor": 4.0,
26
+ "low_freq_factor": 1.0,
27
+ "original_max_position_embeddings": 8192,
28
+ "rope_type": "llama3"
29
+ },
30
+ "rope_theta": 500000.0,
31
+ "tie_word_embeddings": true,
32
+ "torch_dtype": "bfloat16",
33
+ "transformers_version": "4.53.3",
34
+ "unsloth_fixed": true,
35
+ "unsloth_version": "2025.7.8",
36
+ "use_cache": true,
37
+ "vocab_size": 156939
38
+ }
checkpoint-2500/generation_config.json ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 128000,
4
+ "do_sample": true,
5
+ "eos_token_id": 128009,
6
+ "max_length": 131072,
7
+ "pad_token_id": 128004,
8
+ "temperature": 0.6,
9
+ "top_p": 0.9,
10
+ "transformers_version": "4.53.3"
11
+ }
checkpoint-2500/model.safetensors.index.json ADDED
@@ -0,0 +1,262 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_parameters": 3300864000,
4
+ "total_size": 6601728000
5
+ },
6
+ "weight_map": {
7
+ "model.embed_tokens.weight": "model-00001-of-00002.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
13
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
14
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
15
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
16
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
17
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
18
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
19
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
20
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
21
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
22
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
23
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
24
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
25
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
26
+ "model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
27
+ "model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
28
+ "model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
29
+ "model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
30
+ "model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
31
+ "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
32
+ "model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
33
+ "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
34
+ "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
35
+ "model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
36
+ "model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
37
+ "model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
38
+ "model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
39
+ "model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
40
+ "model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
41
+ "model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
42
+ "model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
43
+ "model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
44
+ "model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
45
+ "model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
46
+ "model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
47
+ "model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
48
+ "model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
49
+ "model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
50
+ "model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
51
+ "model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
52
+ "model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
53
+ "model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
54
+ "model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
55
+ "model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
56
+ "model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
57
+ "model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
58
+ "model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
59
+ "model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
60
+ "model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
61
+ "model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
62
+ "model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
63
+ "model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
64
+ "model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
65
+ "model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
66
+ "model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
67
+ "model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
68
+ "model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
69
+ "model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
70
+ "model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
71
+ "model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
72
+ "model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
73
+ "model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
74
+ "model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
75
+ "model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
76
+ "model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
77
+ "model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
78
+ "model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
79
+ "model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
80
+ "model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
81
+ "model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
82
+ "model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
83
+ "model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
84
+ "model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
85
+ "model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
86
+ "model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
87
+ "model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
88
+ "model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
89
+ "model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
90
+ "model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
91
+ "model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
92
+ "model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
93
+ "model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
94
+ "model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
95
+ "model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
96
+ "model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
97
+ "model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
98
+ "model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
99
+ "model.layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
100
+ "model.layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
101
+ "model.layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
102
+ "model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
103
+ "model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
104
+ "model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
105
+ "model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
106
+ "model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
107
+ "model.layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors",
108
+ "model.layers.19.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
109
+ "model.layers.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
110
+ "model.layers.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
111
+ "model.layers.19.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
112
+ "model.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
113
+ "model.layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
114
+ "model.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
115
+ "model.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
116
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
117
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
118
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
119
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
120
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
121
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
122
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
123
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
124
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
125
+ "model.layers.20.input_layernorm.weight": "model-00002-of-00002.safetensors",
126
+ "model.layers.20.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
127
+ "model.layers.20.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
128
+ "model.layers.20.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
129
+ "model.layers.20.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
130
+ "model.layers.20.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
131
+ "model.layers.20.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
132
+ "model.layers.20.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
133
+ "model.layers.20.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
134
+ "model.layers.21.input_layernorm.weight": "model-00002-of-00002.safetensors",
135
+ "model.layers.21.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
136
+ "model.layers.21.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
137
+ "model.layers.21.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
138
+ "model.layers.21.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
139
+ "model.layers.21.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
140
+ "model.layers.21.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
141
+ "model.layers.21.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
142
+ "model.layers.21.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
143
+ "model.layers.22.input_layernorm.weight": "model-00002-of-00002.safetensors",
144
+ "model.layers.22.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
145
+ "model.layers.22.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
146
+ "model.layers.22.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
147
+ "model.layers.22.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
148
+ "model.layers.22.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
149
+ "model.layers.22.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
150
+ "model.layers.22.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
151
+ "model.layers.22.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
152
+ "model.layers.23.input_layernorm.weight": "model-00002-of-00002.safetensors",
153
+ "model.layers.23.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
154
+ "model.layers.23.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
155
+ "model.layers.23.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
156
+ "model.layers.23.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
157
+ "model.layers.23.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
158
+ "model.layers.23.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
159
+ "model.layers.23.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
160
+ "model.layers.23.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
161
+ "model.layers.24.input_layernorm.weight": "model-00002-of-00002.safetensors",
162
+ "model.layers.24.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
163
+ "model.layers.24.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
164
+ "model.layers.24.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
165
+ "model.layers.24.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
166
+ "model.layers.24.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
167
+ "model.layers.24.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
168
+ "model.layers.24.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
169
+ "model.layers.24.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
170
+ "model.layers.25.input_layernorm.weight": "model-00002-of-00002.safetensors",
171
+ "model.layers.25.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
172
+ "model.layers.25.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
173
+ "model.layers.25.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
174
+ "model.layers.25.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
175
+ "model.layers.25.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
176
+ "model.layers.25.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
177
+ "model.layers.25.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
178
+ "model.layers.25.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
179
+ "model.layers.26.input_layernorm.weight": "model-00002-of-00002.safetensors",
180
+ "model.layers.26.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
181
+ "model.layers.26.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
182
+ "model.layers.26.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
183
+ "model.layers.26.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
184
+ "model.layers.26.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
185
+ "model.layers.26.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
186
+ "model.layers.26.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
187
+ "model.layers.26.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
188
+ "model.layers.27.input_layernorm.weight": "model-00002-of-00002.safetensors",
189
+ "model.layers.27.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
190
+ "model.layers.27.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
191
+ "model.layers.27.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
192
+ "model.layers.27.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
193
+ "model.layers.27.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
194
+ "model.layers.27.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
195
+ "model.layers.27.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
196
+ "model.layers.27.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
197
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
198
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
199
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
200
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
201
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
202
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
203
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
204
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
205
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
206
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
207
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
208
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
209
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
210
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
211
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
212
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
213
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
214
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
215
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
216
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
217
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
218
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
219
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
220
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
221
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
222
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
223
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
224
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
225
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
226
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
227
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
228
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
229
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
230
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
231
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
232
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
233
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
234
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
235
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
236
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
237
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
238
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
239
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
240
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
241
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
242
+ "model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
243
+ "model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
244
+ "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
245
+ "model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
246
+ "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
247
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
248
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
249
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
250
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
251
+ "model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
252
+ "model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
253
+ "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
254
+ "model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
255
+ "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
256
+ "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
257
+ "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
258
+ "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
259
+ "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
260
+ "model.norm.weight": "model-00002-of-00002.safetensors"
261
+ }
262
+ }
checkpoint-2500/special_tokens_map.json ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|audio|>"
4
+ ],
5
+ "bos_token": {
6
+ "content": "<|begin_of_text|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false
11
+ },
12
+ "eos_token": {
13
+ "content": "<|eot_id|>",
14
+ "lstrip": false,
15
+ "normalized": false,
16
+ "rstrip": false,
17
+ "single_word": false
18
+ }
19
+ }
checkpoint-2500/tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-2500/trainer_state.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-3000/chat_template.jinja ADDED
@@ -0,0 +1,93 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {{- bos_token }}
2
+ {%- if custom_tools is defined %}
3
+ {%- set tools = custom_tools %}
4
+ {%- endif %}
5
+ {%- if not tools_in_user_message is defined %}
6
+ {%- set tools_in_user_message = true %}
7
+ {%- endif %}
8
+ {%- if not date_string is defined %}
9
+ {%- if strftime_now is defined %}
10
+ {%- set date_string = strftime_now("%d %b %Y") %}
11
+ {%- else %}
12
+ {%- set date_string = "26 Jul 2024" %}
13
+ {%- endif %}
14
+ {%- endif %}
15
+ {%- if not tools is defined %}
16
+ {%- set tools = none %}
17
+ {%- endif %}
18
+
19
+ {#- This block extracts the system message, so we can slot it into the right place. #}
20
+ {%- if messages[0]['role'] == 'system' %}
21
+ {%- set system_message = messages[0]['content']|trim %}
22
+ {%- set messages = messages[1:] %}
23
+ {%- else %}
24
+ {%- set system_message = "" %}
25
+ {%- endif %}
26
+
27
+ {#- System message #}
28
+ {{- "<|start_header_id|>system<|end_header_id|>\n\n" }}
29
+ {%- if tools is not none %}
30
+ {{- "Environment: ipython\n" }}
31
+ {%- endif %}
32
+ {{- "Cutting Knowledge Date: December 2023\n" }}
33
+ {{- "Today Date: " + date_string + "\n\n" }}
34
+ {%- if tools is not none and not tools_in_user_message %}
35
+ {{- "You have access to the following functions. To call a function, please respond with JSON for a function call." }}
36
+ {{- 'Respond in the format {"name": function name, "parameters": dictionary of argument name and its value}.' }}
37
+ {{- "Do not use variables.\n\n" }}
38
+ {%- for t in tools %}
39
+ {{- t | tojson(indent=4) }}
40
+ {{- "\n\n" }}
41
+ {%- endfor %}
42
+ {%- endif %}
43
+ {{- system_message }}
44
+ {{- "<|eot_id|>" }}
45
+
46
+ {#- Custom tools are passed in a user message with some extra guidance #}
47
+ {%- if tools_in_user_message and not tools is none %}
48
+ {#- Extract the first user message so we can plug it in here #}
49
+ {%- if messages | length != 0 %}
50
+ {%- set first_user_message = messages[0]['content']|trim %}
51
+ {%- set messages = messages[1:] %}
52
+ {%- else %}
53
+ {{- raise_exception("Cannot put tools in the first user message when there's no first user message!") }}
54
+ {%- endif %}
55
+ {{- '<|start_header_id|>user<|end_header_id|>\n\n' -}}
56
+ {{- "Given the following functions, please respond with a JSON for a function call " }}
57
+ {{- "with its proper arguments that best answers the given prompt.\n\n" }}
58
+ {{- 'Respond in the format {"name": function name, "parameters": dictionary of argument name and its value}.' }}
59
+ {{- "Do not use variables.\n\n" }}
60
+ {%- for t in tools %}
61
+ {{- t | tojson(indent=4) }}
62
+ {{- "\n\n" }}
63
+ {%- endfor %}
64
+ {{- first_user_message + "<|eot_id|>"}}
65
+ {%- endif %}
66
+
67
+ {%- for message in messages %}
68
+ {%- if not (message.role == 'ipython' or message.role == 'tool' or 'tool_calls' in message) %}
69
+ {{- '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n'+ message['content'] | trim + '<|eot_id|>' }}
70
+ {%- elif 'tool_calls' in message %}
71
+ {%- if not message.tool_calls|length == 1 %}
72
+ {{- raise_exception("This model only supports single tool-calls at once!") }}
73
+ {%- endif %}
74
+ {%- set tool_call = message.tool_calls[0].function %}
75
+ {{- '<|start_header_id|>assistant<|end_header_id|>\n\n' -}}
76
+ {{- '{"name": "' + tool_call.name + '", ' }}
77
+ {{- '"parameters": ' }}
78
+ {{- tool_call.arguments | tojson }}
79
+ {{- "}" }}
80
+ {{- "<|eot_id|>" }}
81
+ {%- elif message.role == "tool" or message.role == "ipython" %}
82
+ {{- "<|start_header_id|>ipython<|end_header_id|>\n\n" }}
83
+ {%- if message.content is mapping or message.content is iterable %}
84
+ {{- message.content | tojson }}
85
+ {%- else %}
86
+ {{- message.content }}
87
+ {%- endif %}
88
+ {{- "<|eot_id|>" }}
89
+ {%- endif %}
90
+ {%- endfor %}
91
+ {%- if add_generation_prompt %}
92
+ {{- '<|start_header_id|>assistant<|end_header_id|>\n\n' }}
93
+ {%- endif %}
checkpoint-3000/config.json ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "LlamaForCausalLM"
4
+ ],
5
+ "attention_bias": false,
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 128000,
8
+ "eos_token_id": 128009,
9
+ "head_dim": 128,
10
+ "hidden_act": "silu",
11
+ "hidden_size": 3072,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 8192,
14
+ "max_position_embeddings": 131072,
15
+ "mlp_bias": false,
16
+ "model_type": "llama",
17
+ "num_attention_heads": 24,
18
+ "num_hidden_layers": 28,
19
+ "num_key_value_heads": 8,
20
+ "pad_token_id": 128004,
21
+ "pretraining_tp": 1,
22
+ "rms_norm_eps": 1e-05,
23
+ "rope_scaling": {
24
+ "factor": 32.0,
25
+ "high_freq_factor": 4.0,
26
+ "low_freq_factor": 1.0,
27
+ "original_max_position_embeddings": 8192,
28
+ "rope_type": "llama3"
29
+ },
30
+ "rope_theta": 500000.0,
31
+ "tie_word_embeddings": true,
32
+ "torch_dtype": "bfloat16",
33
+ "transformers_version": "4.53.3",
34
+ "unsloth_fixed": true,
35
+ "unsloth_version": "2025.7.8",
36
+ "use_cache": true,
37
+ "vocab_size": 156939
38
+ }
checkpoint-3000/generation_config.json ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 128000,
4
+ "do_sample": true,
5
+ "eos_token_id": 128009,
6
+ "max_length": 131072,
7
+ "pad_token_id": 128004,
8
+ "temperature": 0.6,
9
+ "top_p": 0.9,
10
+ "transformers_version": "4.53.3"
11
+ }
checkpoint-3000/model.safetensors.index.json ADDED
@@ -0,0 +1,262 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_parameters": 3300864000,
4
+ "total_size": 6601728000
5
+ },
6
+ "weight_map": {
7
+ "model.embed_tokens.weight": "model-00001-of-00002.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
13
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
14
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
15
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
16
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
17
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
18
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
19
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
20
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
21
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
22
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
23
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
24
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
25
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
26
+ "model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
27
+ "model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
28
+ "model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
29
+ "model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
30
+ "model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
31
+ "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
32
+ "model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
33
+ "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
34
+ "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
35
+ "model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
36
+ "model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
37
+ "model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
38
+ "model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
39
+ "model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
40
+ "model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
41
+ "model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
42
+ "model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
43
+ "model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
44
+ "model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
45
+ "model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
46
+ "model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
47
+ "model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
48
+ "model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
49
+ "model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
50
+ "model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
51
+ "model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
52
+ "model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
53
+ "model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
54
+ "model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
55
+ "model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
56
+ "model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
57
+ "model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
58
+ "model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
59
+ "model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
60
+ "model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
61
+ "model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
62
+ "model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
63
+ "model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
64
+ "model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
65
+ "model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
66
+ "model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
67
+ "model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
68
+ "model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
69
+ "model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
70
+ "model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
71
+ "model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
72
+ "model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
73
+ "model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
74
+ "model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
75
+ "model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
76
+ "model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
77
+ "model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
78
+ "model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
79
+ "model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
80
+ "model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
81
+ "model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
82
+ "model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
83
+ "model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
84
+ "model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
85
+ "model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
86
+ "model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
87
+ "model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
88
+ "model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
89
+ "model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
90
+ "model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
91
+ "model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
92
+ "model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
93
+ "model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
94
+ "model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
95
+ "model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
96
+ "model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
97
+ "model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
98
+ "model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
99
+ "model.layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
100
+ "model.layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
101
+ "model.layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
102
+ "model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
103
+ "model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
104
+ "model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
105
+ "model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
106
+ "model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
107
+ "model.layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors",
108
+ "model.layers.19.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
109
+ "model.layers.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
110
+ "model.layers.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
111
+ "model.layers.19.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
112
+ "model.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
113
+ "model.layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
114
+ "model.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
115
+ "model.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
116
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
117
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
118
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
119
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
120
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
121
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
122
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
123
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
124
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
125
+ "model.layers.20.input_layernorm.weight": "model-00002-of-00002.safetensors",
126
+ "model.layers.20.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
127
+ "model.layers.20.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
128
+ "model.layers.20.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
129
+ "model.layers.20.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
130
+ "model.layers.20.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
131
+ "model.layers.20.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
132
+ "model.layers.20.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
133
+ "model.layers.20.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
134
+ "model.layers.21.input_layernorm.weight": "model-00002-of-00002.safetensors",
135
+ "model.layers.21.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
136
+ "model.layers.21.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
137
+ "model.layers.21.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
138
+ "model.layers.21.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
139
+ "model.layers.21.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
140
+ "model.layers.21.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
141
+ "model.layers.21.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
142
+ "model.layers.21.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
143
+ "model.layers.22.input_layernorm.weight": "model-00002-of-00002.safetensors",
144
+ "model.layers.22.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
145
+ "model.layers.22.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
146
+ "model.layers.22.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
147
+ "model.layers.22.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
148
+ "model.layers.22.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
149
+ "model.layers.22.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
150
+ "model.layers.22.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
151
+ "model.layers.22.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
152
+ "model.layers.23.input_layernorm.weight": "model-00002-of-00002.safetensors",
153
+ "model.layers.23.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
154
+ "model.layers.23.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
155
+ "model.layers.23.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
156
+ "model.layers.23.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
157
+ "model.layers.23.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
158
+ "model.layers.23.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
159
+ "model.layers.23.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
160
+ "model.layers.23.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
161
+ "model.layers.24.input_layernorm.weight": "model-00002-of-00002.safetensors",
162
+ "model.layers.24.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
163
+ "model.layers.24.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
164
+ "model.layers.24.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
165
+ "model.layers.24.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
166
+ "model.layers.24.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
167
+ "model.layers.24.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
168
+ "model.layers.24.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
169
+ "model.layers.24.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
170
+ "model.layers.25.input_layernorm.weight": "model-00002-of-00002.safetensors",
171
+ "model.layers.25.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
172
+ "model.layers.25.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
173
+ "model.layers.25.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
174
+ "model.layers.25.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
175
+ "model.layers.25.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
176
+ "model.layers.25.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
177
+ "model.layers.25.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
178
+ "model.layers.25.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
179
+ "model.layers.26.input_layernorm.weight": "model-00002-of-00002.safetensors",
180
+ "model.layers.26.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
181
+ "model.layers.26.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
182
+ "model.layers.26.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
183
+ "model.layers.26.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
184
+ "model.layers.26.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
185
+ "model.layers.26.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
186
+ "model.layers.26.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
187
+ "model.layers.26.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
188
+ "model.layers.27.input_layernorm.weight": "model-00002-of-00002.safetensors",
189
+ "model.layers.27.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
190
+ "model.layers.27.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
191
+ "model.layers.27.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
192
+ "model.layers.27.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
193
+ "model.layers.27.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
194
+ "model.layers.27.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
195
+ "model.layers.27.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
196
+ "model.layers.27.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
197
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
198
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
199
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
200
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
201
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
202
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
203
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
204
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
205
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
206
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
207
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
208
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
209
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
210
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
211
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
212
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
213
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
214
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
215
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
216
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
217
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
218
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
219
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
220
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
221
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
222
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
223
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
224
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
225
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
226
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
227
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
228
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
229
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
230
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
231
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
232
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
233
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
234
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
235
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
236
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
237
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
238
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
239
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
240
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
241
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
242
+ "model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
243
+ "model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
244
+ "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
245
+ "model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
246
+ "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
247
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
248
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
249
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
250
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
251
+ "model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
252
+ "model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
253
+ "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
254
+ "model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
255
+ "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
256
+ "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
257
+ "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
258
+ "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
259
+ "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
260
+ "model.norm.weight": "model-00002-of-00002.safetensors"
261
+ }
262
+ }
checkpoint-3000/special_tokens_map.json ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|audio|>"
4
+ ],
5
+ "bos_token": {
6
+ "content": "<|begin_of_text|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false
11
+ },
12
+ "eos_token": {
13
+ "content": "<|eot_id|>",
14
+ "lstrip": false,
15
+ "normalized": false,
16
+ "rstrip": false,
17
+ "single_word": false
18
+ }
19
+ }
checkpoint-3000/tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-3000/trainer_state.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-3500/config.json ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "LlamaForCausalLM"
4
+ ],
5
+ "attention_bias": false,
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 128000,
8
+ "eos_token_id": 128009,
9
+ "head_dim": 128,
10
+ "hidden_act": "silu",
11
+ "hidden_size": 3072,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 8192,
14
+ "max_position_embeddings": 131072,
15
+ "mlp_bias": false,
16
+ "model_type": "llama",
17
+ "num_attention_heads": 24,
18
+ "num_hidden_layers": 28,
19
+ "num_key_value_heads": 8,
20
+ "pad_token_id": 128004,
21
+ "pretraining_tp": 1,
22
+ "rms_norm_eps": 1e-05,
23
+ "rope_scaling": {
24
+ "factor": 32.0,
25
+ "high_freq_factor": 4.0,
26
+ "low_freq_factor": 1.0,
27
+ "original_max_position_embeddings": 8192,
28
+ "rope_type": "llama3"
29
+ },
30
+ "rope_theta": 500000.0,
31
+ "tie_word_embeddings": true,
32
+ "torch_dtype": "bfloat16",
33
+ "transformers_version": "4.53.3",
34
+ "unsloth_fixed": true,
35
+ "unsloth_version": "2025.7.8",
36
+ "use_cache": true,
37
+ "vocab_size": 156939
38
+ }
checkpoint-3500/generation_config.json ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 128000,
4
+ "do_sample": true,
5
+ "eos_token_id": 128009,
6
+ "max_length": 131072,
7
+ "pad_token_id": 128004,
8
+ "temperature": 0.6,
9
+ "top_p": 0.9,
10
+ "transformers_version": "4.53.3"
11
+ }
checkpoint-500/chat_template.jinja ADDED
@@ -0,0 +1,93 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {{- bos_token }}
2
+ {%- if custom_tools is defined %}
3
+ {%- set tools = custom_tools %}
4
+ {%- endif %}
5
+ {%- if not tools_in_user_message is defined %}
6
+ {%- set tools_in_user_message = true %}
7
+ {%- endif %}
8
+ {%- if not date_string is defined %}
9
+ {%- if strftime_now is defined %}
10
+ {%- set date_string = strftime_now("%d %b %Y") %}
11
+ {%- else %}
12
+ {%- set date_string = "26 Jul 2024" %}
13
+ {%- endif %}
14
+ {%- endif %}
15
+ {%- if not tools is defined %}
16
+ {%- set tools = none %}
17
+ {%- endif %}
18
+
19
+ {#- This block extracts the system message, so we can slot it into the right place. #}
20
+ {%- if messages[0]['role'] == 'system' %}
21
+ {%- set system_message = messages[0]['content']|trim %}
22
+ {%- set messages = messages[1:] %}
23
+ {%- else %}
24
+ {%- set system_message = "" %}
25
+ {%- endif %}
26
+
27
+ {#- System message #}
28
+ {{- "<|start_header_id|>system<|end_header_id|>\n\n" }}
29
+ {%- if tools is not none %}
30
+ {{- "Environment: ipython\n" }}
31
+ {%- endif %}
32
+ {{- "Cutting Knowledge Date: December 2023\n" }}
33
+ {{- "Today Date: " + date_string + "\n\n" }}
34
+ {%- if tools is not none and not tools_in_user_message %}
35
+ {{- "You have access to the following functions. To call a function, please respond with JSON for a function call." }}
36
+ {{- 'Respond in the format {"name": function name, "parameters": dictionary of argument name and its value}.' }}
37
+ {{- "Do not use variables.\n\n" }}
38
+ {%- for t in tools %}
39
+ {{- t | tojson(indent=4) }}
40
+ {{- "\n\n" }}
41
+ {%- endfor %}
42
+ {%- endif %}
43
+ {{- system_message }}
44
+ {{- "<|eot_id|>" }}
45
+
46
+ {#- Custom tools are passed in a user message with some extra guidance #}
47
+ {%- if tools_in_user_message and not tools is none %}
48
+ {#- Extract the first user message so we can plug it in here #}
49
+ {%- if messages | length != 0 %}
50
+ {%- set first_user_message = messages[0]['content']|trim %}
51
+ {%- set messages = messages[1:] %}
52
+ {%- else %}
53
+ {{- raise_exception("Cannot put tools in the first user message when there's no first user message!") }}
54
+ {%- endif %}
55
+ {{- '<|start_header_id|>user<|end_header_id|>\n\n' -}}
56
+ {{- "Given the following functions, please respond with a JSON for a function call " }}
57
+ {{- "with its proper arguments that best answers the given prompt.\n\n" }}
58
+ {{- 'Respond in the format {"name": function name, "parameters": dictionary of argument name and its value}.' }}
59
+ {{- "Do not use variables.\n\n" }}
60
+ {%- for t in tools %}
61
+ {{- t | tojson(indent=4) }}
62
+ {{- "\n\n" }}
63
+ {%- endfor %}
64
+ {{- first_user_message + "<|eot_id|>"}}
65
+ {%- endif %}
66
+
67
+ {%- for message in messages %}
68
+ {%- if not (message.role == 'ipython' or message.role == 'tool' or 'tool_calls' in message) %}
69
+ {{- '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n'+ message['content'] | trim + '<|eot_id|>' }}
70
+ {%- elif 'tool_calls' in message %}
71
+ {%- if not message.tool_calls|length == 1 %}
72
+ {{- raise_exception("This model only supports single tool-calls at once!") }}
73
+ {%- endif %}
74
+ {%- set tool_call = message.tool_calls[0].function %}
75
+ {{- '<|start_header_id|>assistant<|end_header_id|>\n\n' -}}
76
+ {{- '{"name": "' + tool_call.name + '", ' }}
77
+ {{- '"parameters": ' }}
78
+ {{- tool_call.arguments | tojson }}
79
+ {{- "}" }}
80
+ {{- "<|eot_id|>" }}
81
+ {%- elif message.role == "tool" or message.role == "ipython" %}
82
+ {{- "<|start_header_id|>ipython<|end_header_id|>\n\n" }}
83
+ {%- if message.content is mapping or message.content is iterable %}
84
+ {{- message.content | tojson }}
85
+ {%- else %}
86
+ {{- message.content }}
87
+ {%- endif %}
88
+ {{- "<|eot_id|>" }}
89
+ {%- endif %}
90
+ {%- endfor %}
91
+ {%- if add_generation_prompt %}
92
+ {{- '<|start_header_id|>assistant<|end_header_id|>\n\n' }}
93
+ {%- endif %}
checkpoint-500/config.json ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "LlamaForCausalLM"
4
+ ],
5
+ "attention_bias": false,
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 128000,
8
+ "eos_token_id": 128009,
9
+ "head_dim": 128,
10
+ "hidden_act": "silu",
11
+ "hidden_size": 3072,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 8192,
14
+ "max_position_embeddings": 131072,
15
+ "mlp_bias": false,
16
+ "model_type": "llama",
17
+ "num_attention_heads": 24,
18
+ "num_hidden_layers": 28,
19
+ "num_key_value_heads": 8,
20
+ "pad_token_id": 128004,
21
+ "pretraining_tp": 1,
22
+ "rms_norm_eps": 1e-05,
23
+ "rope_scaling": {
24
+ "factor": 32.0,
25
+ "high_freq_factor": 4.0,
26
+ "low_freq_factor": 1.0,
27
+ "original_max_position_embeddings": 8192,
28
+ "rope_type": "llama3"
29
+ },
30
+ "rope_theta": 500000.0,
31
+ "tie_word_embeddings": true,
32
+ "torch_dtype": "bfloat16",
33
+ "transformers_version": "4.53.3",
34
+ "unsloth_fixed": true,
35
+ "unsloth_version": "2025.7.8",
36
+ "use_cache": true,
37
+ "vocab_size": 156939
38
+ }
checkpoint-500/generation_config.json ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 128000,
4
+ "do_sample": true,
5
+ "eos_token_id": 128009,
6
+ "max_length": 131072,
7
+ "pad_token_id": 128004,
8
+ "temperature": 0.6,
9
+ "top_p": 0.9,
10
+ "transformers_version": "4.53.3"
11
+ }
checkpoint-500/model.safetensors.index.json ADDED
@@ -0,0 +1,262 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_parameters": 3300864000,
4
+ "total_size": 6601728000
5
+ },
6
+ "weight_map": {
7
+ "model.embed_tokens.weight": "model-00001-of-00002.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
13
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
14
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
15
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
16
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
17
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
18
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
19
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
20
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
21
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
22
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
23
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
24
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
25
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
26
+ "model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
27
+ "model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
28
+ "model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
29
+ "model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
30
+ "model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
31
+ "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
32
+ "model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
33
+ "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
34
+ "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
35
+ "model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
36
+ "model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
37
+ "model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
38
+ "model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
39
+ "model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
40
+ "model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
41
+ "model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
42
+ "model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
43
+ "model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
44
+ "model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
45
+ "model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
46
+ "model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
47
+ "model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
48
+ "model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
49
+ "model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
50
+ "model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
51
+ "model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
52
+ "model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
53
+ "model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
54
+ "model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
55
+ "model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
56
+ "model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
57
+ "model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
58
+ "model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
59
+ "model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
60
+ "model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
61
+ "model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
62
+ "model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
63
+ "model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
64
+ "model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
65
+ "model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
66
+ "model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
67
+ "model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
68
+ "model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
69
+ "model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
70
+ "model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
71
+ "model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
72
+ "model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
73
+ "model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
74
+ "model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
75
+ "model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
76
+ "model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
77
+ "model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
78
+ "model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
79
+ "model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
80
+ "model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
81
+ "model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
82
+ "model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
83
+ "model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
84
+ "model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
85
+ "model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
86
+ "model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
87
+ "model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
88
+ "model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
89
+ "model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
90
+ "model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
91
+ "model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
92
+ "model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
93
+ "model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
94
+ "model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
95
+ "model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
96
+ "model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
97
+ "model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
98
+ "model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
99
+ "model.layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
100
+ "model.layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
101
+ "model.layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
102
+ "model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
103
+ "model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
104
+ "model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
105
+ "model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
106
+ "model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
107
+ "model.layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors",
108
+ "model.layers.19.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
109
+ "model.layers.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
110
+ "model.layers.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
111
+ "model.layers.19.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
112
+ "model.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
113
+ "model.layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
114
+ "model.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
115
+ "model.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
116
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
117
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
118
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
119
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
120
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
121
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
122
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
123
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
124
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
125
+ "model.layers.20.input_layernorm.weight": "model-00002-of-00002.safetensors",
126
+ "model.layers.20.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
127
+ "model.layers.20.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
128
+ "model.layers.20.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
129
+ "model.layers.20.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
130
+ "model.layers.20.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
131
+ "model.layers.20.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
132
+ "model.layers.20.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
133
+ "model.layers.20.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
134
+ "model.layers.21.input_layernorm.weight": "model-00002-of-00002.safetensors",
135
+ "model.layers.21.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
136
+ "model.layers.21.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
137
+ "model.layers.21.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
138
+ "model.layers.21.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
139
+ "model.layers.21.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
140
+ "model.layers.21.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
141
+ "model.layers.21.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
142
+ "model.layers.21.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
143
+ "model.layers.22.input_layernorm.weight": "model-00002-of-00002.safetensors",
144
+ "model.layers.22.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
145
+ "model.layers.22.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
146
+ "model.layers.22.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
147
+ "model.layers.22.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
148
+ "model.layers.22.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
149
+ "model.layers.22.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
150
+ "model.layers.22.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
151
+ "model.layers.22.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
152
+ "model.layers.23.input_layernorm.weight": "model-00002-of-00002.safetensors",
153
+ "model.layers.23.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
154
+ "model.layers.23.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
155
+ "model.layers.23.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
156
+ "model.layers.23.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
157
+ "model.layers.23.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
158
+ "model.layers.23.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
159
+ "model.layers.23.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
160
+ "model.layers.23.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
161
+ "model.layers.24.input_layernorm.weight": "model-00002-of-00002.safetensors",
162
+ "model.layers.24.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
163
+ "model.layers.24.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
164
+ "model.layers.24.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
165
+ "model.layers.24.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
166
+ "model.layers.24.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
167
+ "model.layers.24.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
168
+ "model.layers.24.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
169
+ "model.layers.24.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
170
+ "model.layers.25.input_layernorm.weight": "model-00002-of-00002.safetensors",
171
+ "model.layers.25.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
172
+ "model.layers.25.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
173
+ "model.layers.25.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
174
+ "model.layers.25.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
175
+ "model.layers.25.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
176
+ "model.layers.25.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
177
+ "model.layers.25.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
178
+ "model.layers.25.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
179
+ "model.layers.26.input_layernorm.weight": "model-00002-of-00002.safetensors",
180
+ "model.layers.26.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
181
+ "model.layers.26.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
182
+ "model.layers.26.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
183
+ "model.layers.26.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
184
+ "model.layers.26.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
185
+ "model.layers.26.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
186
+ "model.layers.26.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
187
+ "model.layers.26.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
188
+ "model.layers.27.input_layernorm.weight": "model-00002-of-00002.safetensors",
189
+ "model.layers.27.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
190
+ "model.layers.27.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
191
+ "model.layers.27.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
192
+ "model.layers.27.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
193
+ "model.layers.27.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
194
+ "model.layers.27.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
195
+ "model.layers.27.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
196
+ "model.layers.27.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
197
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
198
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
199
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
200
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
201
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
202
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
203
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
204
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
205
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
206
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
207
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
208
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
209
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
210
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
211
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
212
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
213
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
214
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
215
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
216
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
217
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
218
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
219
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
220
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
221
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
222
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
223
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
224
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
225
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
226
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
227
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
228
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
229
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
230
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
231
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
232
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
233
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
234
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
235
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
236
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
237
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
238
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
239
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
240
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
241
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
242
+ "model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
243
+ "model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
244
+ "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
245
+ "model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
246
+ "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
247
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
248
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
249
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
250
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
251
+ "model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
252
+ "model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
253
+ "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
254
+ "model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
255
+ "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
256
+ "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
257
+ "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
258
+ "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
259
+ "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
260
+ "model.norm.weight": "model-00002-of-00002.safetensors"
261
+ }
262
+ }
checkpoint-500/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f1d565802a8e26c4e8a31328752b7a7fdc186d9401aa008e65697d0ad8c22e33
3
+ size 14645
checkpoint-500/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:40dbbfbcaca326a3e92b7a84faf3591ba3bf94e28dd82c827d18041e36b14562
3
+ size 1465
checkpoint-500/special_tokens_map.json ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|audio|>"
4
+ ],
5
+ "bos_token": {
6
+ "content": "<|begin_of_text|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false
11
+ },
12
+ "eos_token": {
13
+ "content": "<|eot_id|>",
14
+ "lstrip": false,
15
+ "normalized": false,
16
+ "rstrip": false,
17
+ "single_word": false
18
+ }
19
+ }
checkpoint-500/tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-500/trainer_state.json ADDED
@@ -0,0 +1,3534 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": null,
3
+ "best_metric": null,
4
+ "best_model_checkpoint": null,
5
+ "epoch": 0.20740433475059628,
6
+ "eval_steps": 500,
7
+ "global_step": 500,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "epoch": 0.00041480866950119257,
14
+ "grad_norm": 5.84375,
15
+ "learning_rate": 0.0,
16
+ "loss": 5.3678,
17
+ "step": 1
18
+ },
19
+ {
20
+ "epoch": 0.0008296173390023851,
21
+ "grad_norm": 5.15625,
22
+ "learning_rate": 4e-05,
23
+ "loss": 5.3815,
24
+ "step": 2
25
+ },
26
+ {
27
+ "epoch": 0.0012444260085035777,
28
+ "grad_norm": 8.0625,
29
+ "learning_rate": 8e-05,
30
+ "loss": 5.578,
31
+ "step": 3
32
+ },
33
+ {
34
+ "epoch": 0.0016592346780047703,
35
+ "grad_norm": 5.15625,
36
+ "learning_rate": 0.00012,
37
+ "loss": 5.1489,
38
+ "step": 4
39
+ },
40
+ {
41
+ "epoch": 0.002074043347505963,
42
+ "grad_norm": 4.96875,
43
+ "learning_rate": 0.00016,
44
+ "loss": 5.1569,
45
+ "step": 5
46
+ },
47
+ {
48
+ "epoch": 0.0024888520170071554,
49
+ "grad_norm": 4.3125,
50
+ "learning_rate": 0.0002,
51
+ "loss": 5.2508,
52
+ "step": 6
53
+ },
54
+ {
55
+ "epoch": 0.002903660686508348,
56
+ "grad_norm": 3.828125,
57
+ "learning_rate": 0.00019997998999499752,
58
+ "loss": 5.2444,
59
+ "step": 7
60
+ },
61
+ {
62
+ "epoch": 0.0033184693560095405,
63
+ "grad_norm": 3.453125,
64
+ "learning_rate": 0.000199959979989995,
65
+ "loss": 5.1866,
66
+ "step": 8
67
+ },
68
+ {
69
+ "epoch": 0.0037332780255107333,
70
+ "grad_norm": 4.5625,
71
+ "learning_rate": 0.00019993996998499253,
72
+ "loss": 4.7983,
73
+ "step": 9
74
+ },
75
+ {
76
+ "epoch": 0.004148086695011926,
77
+ "grad_norm": 4.0,
78
+ "learning_rate": 0.00019991995997999,
79
+ "loss": 5.2917,
80
+ "step": 10
81
+ },
82
+ {
83
+ "epoch": 0.0045628953645131184,
84
+ "grad_norm": 3.90625,
85
+ "learning_rate": 0.0001998999499749875,
86
+ "loss": 5.1454,
87
+ "step": 11
88
+ },
89
+ {
90
+ "epoch": 0.004977704034014311,
91
+ "grad_norm": 3.65625,
92
+ "learning_rate": 0.000199879939969985,
93
+ "loss": 5.2539,
94
+ "step": 12
95
+ },
96
+ {
97
+ "epoch": 0.005392512703515503,
98
+ "grad_norm": 3.671875,
99
+ "learning_rate": 0.0001998599299649825,
100
+ "loss": 5.2084,
101
+ "step": 13
102
+ },
103
+ {
104
+ "epoch": 0.005807321373016696,
105
+ "grad_norm": 3.65625,
106
+ "learning_rate": 0.00019983991995998,
107
+ "loss": 5.28,
108
+ "step": 14
109
+ },
110
+ {
111
+ "epoch": 0.006222130042517889,
112
+ "grad_norm": 3.359375,
113
+ "learning_rate": 0.0001998199099549775,
114
+ "loss": 5.2941,
115
+ "step": 15
116
+ },
117
+ {
118
+ "epoch": 0.006636938712019081,
119
+ "grad_norm": 3.328125,
120
+ "learning_rate": 0.000199799899949975,
121
+ "loss": 5.0754,
122
+ "step": 16
123
+ },
124
+ {
125
+ "epoch": 0.007051747381520273,
126
+ "grad_norm": 3.953125,
127
+ "learning_rate": 0.0001997798899449725,
128
+ "loss": 5.0806,
129
+ "step": 17
130
+ },
131
+ {
132
+ "epoch": 0.007466556051021467,
133
+ "grad_norm": 3.59375,
134
+ "learning_rate": 0.00019975987993997,
135
+ "loss": 5.303,
136
+ "step": 18
137
+ },
138
+ {
139
+ "epoch": 0.007881364720522659,
140
+ "grad_norm": 3.234375,
141
+ "learning_rate": 0.0001997398699349675,
142
+ "loss": 5.0535,
143
+ "step": 19
144
+ },
145
+ {
146
+ "epoch": 0.008296173390023852,
147
+ "grad_norm": 3.046875,
148
+ "learning_rate": 0.000199719859929965,
149
+ "loss": 5.0371,
150
+ "step": 20
151
+ },
152
+ {
153
+ "epoch": 0.008710982059525044,
154
+ "grad_norm": 2.90625,
155
+ "learning_rate": 0.00019969984992496248,
156
+ "loss": 4.9977,
157
+ "step": 21
158
+ },
159
+ {
160
+ "epoch": 0.009125790729026237,
161
+ "grad_norm": 3.0,
162
+ "learning_rate": 0.00019967983991996,
163
+ "loss": 5.3496,
164
+ "step": 22
165
+ },
166
+ {
167
+ "epoch": 0.009540599398527428,
168
+ "grad_norm": 2.5,
169
+ "learning_rate": 0.00019965982991495748,
170
+ "loss": 4.8964,
171
+ "step": 23
172
+ },
173
+ {
174
+ "epoch": 0.009955408068028622,
175
+ "grad_norm": 3.15625,
176
+ "learning_rate": 0.000199639819909955,
177
+ "loss": 5.0368,
178
+ "step": 24
179
+ },
180
+ {
181
+ "epoch": 0.010370216737529815,
182
+ "grad_norm": 2.875,
183
+ "learning_rate": 0.00019961980990495248,
184
+ "loss": 5.5296,
185
+ "step": 25
186
+ },
187
+ {
188
+ "epoch": 0.010785025407031006,
189
+ "grad_norm": 2.46875,
190
+ "learning_rate": 0.00019959979989995,
191
+ "loss": 5.1468,
192
+ "step": 26
193
+ },
194
+ {
195
+ "epoch": 0.0111998340765322,
196
+ "grad_norm": 3.09375,
197
+ "learning_rate": 0.00019957978989494749,
198
+ "loss": 5.0455,
199
+ "step": 27
200
+ },
201
+ {
202
+ "epoch": 0.011614642746033393,
203
+ "grad_norm": 3.09375,
204
+ "learning_rate": 0.00019955977988994497,
205
+ "loss": 5.1206,
206
+ "step": 28
207
+ },
208
+ {
209
+ "epoch": 0.012029451415534584,
210
+ "grad_norm": 3.03125,
211
+ "learning_rate": 0.00019953976988494246,
212
+ "loss": 5.0164,
213
+ "step": 29
214
+ },
215
+ {
216
+ "epoch": 0.012444260085035777,
217
+ "grad_norm": 2.765625,
218
+ "learning_rate": 0.00019951975987993998,
219
+ "loss": 5.0402,
220
+ "step": 30
221
+ },
222
+ {
223
+ "epoch": 0.01285906875453697,
224
+ "grad_norm": 2.5625,
225
+ "learning_rate": 0.00019949974987493746,
226
+ "loss": 5.1637,
227
+ "step": 31
228
+ },
229
+ {
230
+ "epoch": 0.013273877424038162,
231
+ "grad_norm": 3.078125,
232
+ "learning_rate": 0.00019947973986993498,
233
+ "loss": 5.1842,
234
+ "step": 32
235
+ },
236
+ {
237
+ "epoch": 0.013688686093539355,
238
+ "grad_norm": 2.40625,
239
+ "learning_rate": 0.00019945972986493246,
240
+ "loss": 4.8599,
241
+ "step": 33
242
+ },
243
+ {
244
+ "epoch": 0.014103494763040547,
245
+ "grad_norm": 2.546875,
246
+ "learning_rate": 0.00019943971985992998,
247
+ "loss": 5.1072,
248
+ "step": 34
249
+ },
250
+ {
251
+ "epoch": 0.01451830343254174,
252
+ "grad_norm": 2.359375,
253
+ "learning_rate": 0.0001994197098549275,
254
+ "loss": 5.1639,
255
+ "step": 35
256
+ },
257
+ {
258
+ "epoch": 0.014933112102042933,
259
+ "grad_norm": 2.375,
260
+ "learning_rate": 0.00019939969984992498,
261
+ "loss": 5.0431,
262
+ "step": 36
263
+ },
264
+ {
265
+ "epoch": 0.015347920771544125,
266
+ "grad_norm": 3.140625,
267
+ "learning_rate": 0.00019937968984492247,
268
+ "loss": 5.0079,
269
+ "step": 37
270
+ },
271
+ {
272
+ "epoch": 0.015762729441045318,
273
+ "grad_norm": 2.421875,
274
+ "learning_rate": 0.00019935967983991995,
275
+ "loss": 5.1109,
276
+ "step": 38
277
+ },
278
+ {
279
+ "epoch": 0.01617753811054651,
280
+ "grad_norm": 2.390625,
281
+ "learning_rate": 0.00019933966983491747,
282
+ "loss": 5.0062,
283
+ "step": 39
284
+ },
285
+ {
286
+ "epoch": 0.016592346780047704,
287
+ "grad_norm": 2.453125,
288
+ "learning_rate": 0.00019931965982991496,
289
+ "loss": 5.1522,
290
+ "step": 40
291
+ },
292
+ {
293
+ "epoch": 0.017007155449548894,
294
+ "grad_norm": 2.578125,
295
+ "learning_rate": 0.00019929964982491247,
296
+ "loss": 4.9839,
297
+ "step": 41
298
+ },
299
+ {
300
+ "epoch": 0.017421964119050087,
301
+ "grad_norm": 2.25,
302
+ "learning_rate": 0.00019927963981990996,
303
+ "loss": 5.0712,
304
+ "step": 42
305
+ },
306
+ {
307
+ "epoch": 0.01783677278855128,
308
+ "grad_norm": 2.65625,
309
+ "learning_rate": 0.00019925962981490747,
310
+ "loss": 5.2342,
311
+ "step": 43
312
+ },
313
+ {
314
+ "epoch": 0.018251581458052474,
315
+ "grad_norm": 2.46875,
316
+ "learning_rate": 0.00019923961980990496,
317
+ "loss": 5.0108,
318
+ "step": 44
319
+ },
320
+ {
321
+ "epoch": 0.018666390127553667,
322
+ "grad_norm": 2.671875,
323
+ "learning_rate": 0.00019921960980490247,
324
+ "loss": 5.1698,
325
+ "step": 45
326
+ },
327
+ {
328
+ "epoch": 0.019081198797054857,
329
+ "grad_norm": 3.296875,
330
+ "learning_rate": 0.00019919959979989996,
331
+ "loss": 5.1331,
332
+ "step": 46
333
+ },
334
+ {
335
+ "epoch": 0.01949600746655605,
336
+ "grad_norm": 3.203125,
337
+ "learning_rate": 0.00019917958979489745,
338
+ "loss": 5.1377,
339
+ "step": 47
340
+ },
341
+ {
342
+ "epoch": 0.019910816136057243,
343
+ "grad_norm": 2.59375,
344
+ "learning_rate": 0.00019915957978989496,
345
+ "loss": 4.8147,
346
+ "step": 48
347
+ },
348
+ {
349
+ "epoch": 0.020325624805558436,
350
+ "grad_norm": 4.0,
351
+ "learning_rate": 0.00019913956978489245,
352
+ "loss": 4.7886,
353
+ "step": 49
354
+ },
355
+ {
356
+ "epoch": 0.02074043347505963,
357
+ "grad_norm": 2.796875,
358
+ "learning_rate": 0.00019911955977988996,
359
+ "loss": 5.0484,
360
+ "step": 50
361
+ },
362
+ {
363
+ "epoch": 0.021155242144560823,
364
+ "grad_norm": 3.078125,
365
+ "learning_rate": 0.00019909954977488745,
366
+ "loss": 5.22,
367
+ "step": 51
368
+ },
369
+ {
370
+ "epoch": 0.021570050814062013,
371
+ "grad_norm": 2.359375,
372
+ "learning_rate": 0.00019907953976988497,
373
+ "loss": 5.0641,
374
+ "step": 52
375
+ },
376
+ {
377
+ "epoch": 0.021984859483563206,
378
+ "grad_norm": 2.71875,
379
+ "learning_rate": 0.00019905952976488245,
380
+ "loss": 4.9759,
381
+ "step": 53
382
+ },
383
+ {
384
+ "epoch": 0.0223996681530644,
385
+ "grad_norm": 2.640625,
386
+ "learning_rate": 0.00019903951975987997,
387
+ "loss": 5.0263,
388
+ "step": 54
389
+ },
390
+ {
391
+ "epoch": 0.022814476822565592,
392
+ "grad_norm": 3.171875,
393
+ "learning_rate": 0.00019901950975487746,
394
+ "loss": 5.1059,
395
+ "step": 55
396
+ },
397
+ {
398
+ "epoch": 0.023229285492066785,
399
+ "grad_norm": 2.875,
400
+ "learning_rate": 0.00019899949974987494,
401
+ "loss": 5.0911,
402
+ "step": 56
403
+ },
404
+ {
405
+ "epoch": 0.023644094161567975,
406
+ "grad_norm": 3.390625,
407
+ "learning_rate": 0.00019897948974487243,
408
+ "loss": 4.9596,
409
+ "step": 57
410
+ },
411
+ {
412
+ "epoch": 0.02405890283106917,
413
+ "grad_norm": 2.4375,
414
+ "learning_rate": 0.00019895947973986994,
415
+ "loss": 4.9327,
416
+ "step": 58
417
+ },
418
+ {
419
+ "epoch": 0.02447371150057036,
420
+ "grad_norm": 2.421875,
421
+ "learning_rate": 0.00019893946973486743,
422
+ "loss": 5.2353,
423
+ "step": 59
424
+ },
425
+ {
426
+ "epoch": 0.024888520170071555,
427
+ "grad_norm": 2.609375,
428
+ "learning_rate": 0.00019891945972986495,
429
+ "loss": 4.7571,
430
+ "step": 60
431
+ },
432
+ {
433
+ "epoch": 0.025303328839572748,
434
+ "grad_norm": 2.75,
435
+ "learning_rate": 0.00019889944972486243,
436
+ "loss": 5.0165,
437
+ "step": 61
438
+ },
439
+ {
440
+ "epoch": 0.02571813750907394,
441
+ "grad_norm": 2.421875,
442
+ "learning_rate": 0.00019887943971985995,
443
+ "loss": 5.0253,
444
+ "step": 62
445
+ },
446
+ {
447
+ "epoch": 0.02613294617857513,
448
+ "grad_norm": 2.640625,
449
+ "learning_rate": 0.00019885942971485744,
450
+ "loss": 5.0432,
451
+ "step": 63
452
+ },
453
+ {
454
+ "epoch": 0.026547754848076324,
455
+ "grad_norm": 2.640625,
456
+ "learning_rate": 0.00019883941970985492,
457
+ "loss": 5.2195,
458
+ "step": 64
459
+ },
460
+ {
461
+ "epoch": 0.026962563517577517,
462
+ "grad_norm": 2.265625,
463
+ "learning_rate": 0.00019881940970485244,
464
+ "loss": 5.157,
465
+ "step": 65
466
+ },
467
+ {
468
+ "epoch": 0.02737737218707871,
469
+ "grad_norm": 2.4375,
470
+ "learning_rate": 0.00019879939969984992,
471
+ "loss": 5.0014,
472
+ "step": 66
473
+ },
474
+ {
475
+ "epoch": 0.027792180856579904,
476
+ "grad_norm": 2.421875,
477
+ "learning_rate": 0.00019877938969484744,
478
+ "loss": 5.05,
479
+ "step": 67
480
+ },
481
+ {
482
+ "epoch": 0.028206989526081094,
483
+ "grad_norm": 2.71875,
484
+ "learning_rate": 0.00019875937968984493,
485
+ "loss": 4.9888,
486
+ "step": 68
487
+ },
488
+ {
489
+ "epoch": 0.028621798195582287,
490
+ "grad_norm": 2.71875,
491
+ "learning_rate": 0.00019873936968484244,
492
+ "loss": 4.7699,
493
+ "step": 69
494
+ },
495
+ {
496
+ "epoch": 0.02903660686508348,
497
+ "grad_norm": 2.328125,
498
+ "learning_rate": 0.00019871935967983993,
499
+ "loss": 4.6892,
500
+ "step": 70
501
+ },
502
+ {
503
+ "epoch": 0.029451415534584673,
504
+ "grad_norm": 2.875,
505
+ "learning_rate": 0.00019869934967483744,
506
+ "loss": 4.8417,
507
+ "step": 71
508
+ },
509
+ {
510
+ "epoch": 0.029866224204085867,
511
+ "grad_norm": 2.65625,
512
+ "learning_rate": 0.00019867933966983493,
513
+ "loss": 4.9361,
514
+ "step": 72
515
+ },
516
+ {
517
+ "epoch": 0.030281032873587056,
518
+ "grad_norm": 3.21875,
519
+ "learning_rate": 0.00019865932966483242,
520
+ "loss": 4.86,
521
+ "step": 73
522
+ },
523
+ {
524
+ "epoch": 0.03069584154308825,
525
+ "grad_norm": 2.671875,
526
+ "learning_rate": 0.0001986393196598299,
527
+ "loss": 5.232,
528
+ "step": 74
529
+ },
530
+ {
531
+ "epoch": 0.031110650212589443,
532
+ "grad_norm": 2.578125,
533
+ "learning_rate": 0.00019861930965482742,
534
+ "loss": 5.0538,
535
+ "step": 75
536
+ },
537
+ {
538
+ "epoch": 0.031525458882090636,
539
+ "grad_norm": 2.828125,
540
+ "learning_rate": 0.00019859929964982493,
541
+ "loss": 4.9119,
542
+ "step": 76
543
+ },
544
+ {
545
+ "epoch": 0.03194026755159183,
546
+ "grad_norm": 2.5,
547
+ "learning_rate": 0.00019857928964482242,
548
+ "loss": 4.9387,
549
+ "step": 77
550
+ },
551
+ {
552
+ "epoch": 0.03235507622109302,
553
+ "grad_norm": 2.78125,
554
+ "learning_rate": 0.00019855927963981993,
555
+ "loss": 5.0123,
556
+ "step": 78
557
+ },
558
+ {
559
+ "epoch": 0.032769884890594216,
560
+ "grad_norm": 3.65625,
561
+ "learning_rate": 0.00019853926963481742,
562
+ "loss": 4.8198,
563
+ "step": 79
564
+ },
565
+ {
566
+ "epoch": 0.03318469356009541,
567
+ "grad_norm": 2.84375,
568
+ "learning_rate": 0.00019851925962981494,
569
+ "loss": 5.1624,
570
+ "step": 80
571
+ },
572
+ {
573
+ "epoch": 0.0335995022295966,
574
+ "grad_norm": 2.765625,
575
+ "learning_rate": 0.00019849924962481242,
576
+ "loss": 4.7054,
577
+ "step": 81
578
+ },
579
+ {
580
+ "epoch": 0.03401431089909779,
581
+ "grad_norm": 3.1875,
582
+ "learning_rate": 0.0001984792396198099,
583
+ "loss": 4.8135,
584
+ "step": 82
585
+ },
586
+ {
587
+ "epoch": 0.03442911956859898,
588
+ "grad_norm": 2.921875,
589
+ "learning_rate": 0.0001984592296148074,
590
+ "loss": 5.0179,
591
+ "step": 83
592
+ },
593
+ {
594
+ "epoch": 0.034843928238100175,
595
+ "grad_norm": 2.859375,
596
+ "learning_rate": 0.0001984392196098049,
597
+ "loss": 4.8094,
598
+ "step": 84
599
+ },
600
+ {
601
+ "epoch": 0.03525873690760137,
602
+ "grad_norm": 2.96875,
603
+ "learning_rate": 0.0001984192096048024,
604
+ "loss": 4.8648,
605
+ "step": 85
606
+ },
607
+ {
608
+ "epoch": 0.03567354557710256,
609
+ "grad_norm": 2.484375,
610
+ "learning_rate": 0.0001983991995997999,
611
+ "loss": 4.8648,
612
+ "step": 86
613
+ },
614
+ {
615
+ "epoch": 0.036088354246603754,
616
+ "grad_norm": 2.484375,
617
+ "learning_rate": 0.0001983791895947974,
618
+ "loss": 5.2012,
619
+ "step": 87
620
+ },
621
+ {
622
+ "epoch": 0.03650316291610495,
623
+ "grad_norm": 2.625,
624
+ "learning_rate": 0.00019835917958979492,
625
+ "loss": 5.0743,
626
+ "step": 88
627
+ },
628
+ {
629
+ "epoch": 0.03691797158560614,
630
+ "grad_norm": 2.4375,
631
+ "learning_rate": 0.0001983391695847924,
632
+ "loss": 4.9473,
633
+ "step": 89
634
+ },
635
+ {
636
+ "epoch": 0.037332780255107334,
637
+ "grad_norm": 2.546875,
638
+ "learning_rate": 0.00019831915957978992,
639
+ "loss": 4.8153,
640
+ "step": 90
641
+ },
642
+ {
643
+ "epoch": 0.03774758892460853,
644
+ "grad_norm": 2.5625,
645
+ "learning_rate": 0.0001982991495747874,
646
+ "loss": 4.9615,
647
+ "step": 91
648
+ },
649
+ {
650
+ "epoch": 0.038162397594109713,
651
+ "grad_norm": 2.359375,
652
+ "learning_rate": 0.0001982791395697849,
653
+ "loss": 4.7808,
654
+ "step": 92
655
+ },
656
+ {
657
+ "epoch": 0.03857720626361091,
658
+ "grad_norm": 3.578125,
659
+ "learning_rate": 0.0001982591295647824,
660
+ "loss": 4.7397,
661
+ "step": 93
662
+ },
663
+ {
664
+ "epoch": 0.0389920149331121,
665
+ "grad_norm": 3.171875,
666
+ "learning_rate": 0.0001982391195597799,
667
+ "loss": 4.7318,
668
+ "step": 94
669
+ },
670
+ {
671
+ "epoch": 0.03940682360261329,
672
+ "grad_norm": 2.71875,
673
+ "learning_rate": 0.0001982191095547774,
674
+ "loss": 4.7505,
675
+ "step": 95
676
+ },
677
+ {
678
+ "epoch": 0.039821632272114486,
679
+ "grad_norm": 2.84375,
680
+ "learning_rate": 0.0001981990995497749,
681
+ "loss": 4.9952,
682
+ "step": 96
683
+ },
684
+ {
685
+ "epoch": 0.04023644094161568,
686
+ "grad_norm": 3.390625,
687
+ "learning_rate": 0.0001981790895447724,
688
+ "loss": 4.7346,
689
+ "step": 97
690
+ },
691
+ {
692
+ "epoch": 0.04065124961111687,
693
+ "grad_norm": 2.828125,
694
+ "learning_rate": 0.0001981590795397699,
695
+ "loss": 4.9629,
696
+ "step": 98
697
+ },
698
+ {
699
+ "epoch": 0.041066058280618066,
700
+ "grad_norm": 2.5625,
701
+ "learning_rate": 0.00019813906953476738,
702
+ "loss": 4.9172,
703
+ "step": 99
704
+ },
705
+ {
706
+ "epoch": 0.04148086695011926,
707
+ "grad_norm": 3.09375,
708
+ "learning_rate": 0.00019811905952976487,
709
+ "loss": 4.7065,
710
+ "step": 100
711
+ },
712
+ {
713
+ "epoch": 0.04189567561962045,
714
+ "grad_norm": 3.25,
715
+ "learning_rate": 0.00019809904952476239,
716
+ "loss": 4.8555,
717
+ "step": 101
718
+ },
719
+ {
720
+ "epoch": 0.042310484289121646,
721
+ "grad_norm": 3.171875,
722
+ "learning_rate": 0.00019807903951975987,
723
+ "loss": 5.1348,
724
+ "step": 102
725
+ },
726
+ {
727
+ "epoch": 0.04272529295862283,
728
+ "grad_norm": 2.734375,
729
+ "learning_rate": 0.0001980590295147574,
730
+ "loss": 4.6186,
731
+ "step": 103
732
+ },
733
+ {
734
+ "epoch": 0.043140101628124025,
735
+ "grad_norm": 2.75,
736
+ "learning_rate": 0.0001980390195097549,
737
+ "loss": 4.9732,
738
+ "step": 104
739
+ },
740
+ {
741
+ "epoch": 0.04355491029762522,
742
+ "grad_norm": 3.1875,
743
+ "learning_rate": 0.0001980190095047524,
744
+ "loss": 4.6935,
745
+ "step": 105
746
+ },
747
+ {
748
+ "epoch": 0.04396971896712641,
749
+ "grad_norm": 2.640625,
750
+ "learning_rate": 0.0001979989994997499,
751
+ "loss": 4.8805,
752
+ "step": 106
753
+ },
754
+ {
755
+ "epoch": 0.044384527636627605,
756
+ "grad_norm": 2.828125,
757
+ "learning_rate": 0.0001979789894947474,
758
+ "loss": 4.7667,
759
+ "step": 107
760
+ },
761
+ {
762
+ "epoch": 0.0447993363061288,
763
+ "grad_norm": 2.515625,
764
+ "learning_rate": 0.00019795897948974488,
765
+ "loss": 4.5853,
766
+ "step": 108
767
+ },
768
+ {
769
+ "epoch": 0.04521414497562999,
770
+ "grad_norm": 2.640625,
771
+ "learning_rate": 0.00019793896948474236,
772
+ "loss": 4.8158,
773
+ "step": 109
774
+ },
775
+ {
776
+ "epoch": 0.045628953645131184,
777
+ "grad_norm": 3.046875,
778
+ "learning_rate": 0.00019791895947973988,
779
+ "loss": 4.7036,
780
+ "step": 110
781
+ },
782
+ {
783
+ "epoch": 0.04604376231463238,
784
+ "grad_norm": 2.5,
785
+ "learning_rate": 0.00019789894947473737,
786
+ "loss": 4.8263,
787
+ "step": 111
788
+ },
789
+ {
790
+ "epoch": 0.04645857098413357,
791
+ "grad_norm": 2.890625,
792
+ "learning_rate": 0.00019787893946973488,
793
+ "loss": 4.6605,
794
+ "step": 112
795
+ },
796
+ {
797
+ "epoch": 0.046873379653634764,
798
+ "grad_norm": 2.625,
799
+ "learning_rate": 0.00019785892946473237,
800
+ "loss": 4.941,
801
+ "step": 113
802
+ },
803
+ {
804
+ "epoch": 0.04728818832313595,
805
+ "grad_norm": 2.296875,
806
+ "learning_rate": 0.00019783891945972988,
807
+ "loss": 4.8322,
808
+ "step": 114
809
+ },
810
+ {
811
+ "epoch": 0.047702996992637144,
812
+ "grad_norm": 2.65625,
813
+ "learning_rate": 0.00019781890945472737,
814
+ "loss": 4.7647,
815
+ "step": 115
816
+ },
817
+ {
818
+ "epoch": 0.04811780566213834,
819
+ "grad_norm": 2.640625,
820
+ "learning_rate": 0.00019779889944972488,
821
+ "loss": 4.9316,
822
+ "step": 116
823
+ },
824
+ {
825
+ "epoch": 0.04853261433163953,
826
+ "grad_norm": 3.078125,
827
+ "learning_rate": 0.00019777888944472237,
828
+ "loss": 5.0164,
829
+ "step": 117
830
+ },
831
+ {
832
+ "epoch": 0.04894742300114072,
833
+ "grad_norm": 2.84375,
834
+ "learning_rate": 0.00019775887943971986,
835
+ "loss": 5.037,
836
+ "step": 118
837
+ },
838
+ {
839
+ "epoch": 0.049362231670641916,
840
+ "grad_norm": 2.578125,
841
+ "learning_rate": 0.00019773886943471737,
842
+ "loss": 4.8183,
843
+ "step": 119
844
+ },
845
+ {
846
+ "epoch": 0.04977704034014311,
847
+ "grad_norm": 2.6875,
848
+ "learning_rate": 0.00019771885942971486,
849
+ "loss": 4.6524,
850
+ "step": 120
851
+ },
852
+ {
853
+ "epoch": 0.0501918490096443,
854
+ "grad_norm": 2.578125,
855
+ "learning_rate": 0.00019769884942471237,
856
+ "loss": 4.8141,
857
+ "step": 121
858
+ },
859
+ {
860
+ "epoch": 0.050606657679145496,
861
+ "grad_norm": 2.515625,
862
+ "learning_rate": 0.00019767883941970986,
863
+ "loss": 4.719,
864
+ "step": 122
865
+ },
866
+ {
867
+ "epoch": 0.05102146634864669,
868
+ "grad_norm": 3.0,
869
+ "learning_rate": 0.00019765882941470738,
870
+ "loss": 4.6229,
871
+ "step": 123
872
+ },
873
+ {
874
+ "epoch": 0.05143627501814788,
875
+ "grad_norm": 3.03125,
876
+ "learning_rate": 0.00019763881940970486,
877
+ "loss": 4.7896,
878
+ "step": 124
879
+ },
880
+ {
881
+ "epoch": 0.05185108368764907,
882
+ "grad_norm": 2.78125,
883
+ "learning_rate": 0.00019761880940470238,
884
+ "loss": 4.6164,
885
+ "step": 125
886
+ },
887
+ {
888
+ "epoch": 0.05226589235715026,
889
+ "grad_norm": 2.46875,
890
+ "learning_rate": 0.00019759879939969987,
891
+ "loss": 4.777,
892
+ "step": 126
893
+ },
894
+ {
895
+ "epoch": 0.052680701026651455,
896
+ "grad_norm": 2.40625,
897
+ "learning_rate": 0.00019757878939469735,
898
+ "loss": 4.7161,
899
+ "step": 127
900
+ },
901
+ {
902
+ "epoch": 0.05309550969615265,
903
+ "grad_norm": 2.484375,
904
+ "learning_rate": 0.00019755877938969484,
905
+ "loss": 4.5956,
906
+ "step": 128
907
+ },
908
+ {
909
+ "epoch": 0.05351031836565384,
910
+ "grad_norm": 2.8125,
911
+ "learning_rate": 0.00019753876938469235,
912
+ "loss": 4.8752,
913
+ "step": 129
914
+ },
915
+ {
916
+ "epoch": 0.053925127035155035,
917
+ "grad_norm": 2.09375,
918
+ "learning_rate": 0.00019751875937968984,
919
+ "loss": 4.8244,
920
+ "step": 130
921
+ },
922
+ {
923
+ "epoch": 0.05433993570465623,
924
+ "grad_norm": 2.6875,
925
+ "learning_rate": 0.00019749874937468736,
926
+ "loss": 4.9454,
927
+ "step": 131
928
+ },
929
+ {
930
+ "epoch": 0.05475474437415742,
931
+ "grad_norm": 2.390625,
932
+ "learning_rate": 0.00019747873936968487,
933
+ "loss": 4.8617,
934
+ "step": 132
935
+ },
936
+ {
937
+ "epoch": 0.055169553043658615,
938
+ "grad_norm": 2.65625,
939
+ "learning_rate": 0.00019745872936468236,
940
+ "loss": 4.9938,
941
+ "step": 133
942
+ },
943
+ {
944
+ "epoch": 0.05558436171315981,
945
+ "grad_norm": 2.390625,
946
+ "learning_rate": 0.00019743871935967985,
947
+ "loss": 4.6219,
948
+ "step": 134
949
+ },
950
+ {
951
+ "epoch": 0.055999170382661,
952
+ "grad_norm": 3.296875,
953
+ "learning_rate": 0.00019741870935467733,
954
+ "loss": 4.699,
955
+ "step": 135
956
+ },
957
+ {
958
+ "epoch": 0.05641397905216219,
959
+ "grad_norm": 2.78125,
960
+ "learning_rate": 0.00019739869934967485,
961
+ "loss": 4.8001,
962
+ "step": 136
963
+ },
964
+ {
965
+ "epoch": 0.05682878772166338,
966
+ "grad_norm": 2.40625,
967
+ "learning_rate": 0.00019737868934467233,
968
+ "loss": 4.617,
969
+ "step": 137
970
+ },
971
+ {
972
+ "epoch": 0.057243596391164574,
973
+ "grad_norm": 2.59375,
974
+ "learning_rate": 0.00019735867933966985,
975
+ "loss": 4.6295,
976
+ "step": 138
977
+ },
978
+ {
979
+ "epoch": 0.05765840506066577,
980
+ "grad_norm": 2.828125,
981
+ "learning_rate": 0.00019733866933466734,
982
+ "loss": 4.716,
983
+ "step": 139
984
+ },
985
+ {
986
+ "epoch": 0.05807321373016696,
987
+ "grad_norm": 2.265625,
988
+ "learning_rate": 0.00019731865932966485,
989
+ "loss": 4.7463,
990
+ "step": 140
991
+ },
992
+ {
993
+ "epoch": 0.05848802239966815,
994
+ "grad_norm": 2.484375,
995
+ "learning_rate": 0.00019729864932466234,
996
+ "loss": 4.6761,
997
+ "step": 141
998
+ },
999
+ {
1000
+ "epoch": 0.05890283106916935,
1001
+ "grad_norm": 2.703125,
1002
+ "learning_rate": 0.00019727863931965985,
1003
+ "loss": 4.7429,
1004
+ "step": 142
1005
+ },
1006
+ {
1007
+ "epoch": 0.05931763973867054,
1008
+ "grad_norm": 2.671875,
1009
+ "learning_rate": 0.00019725862931465734,
1010
+ "loss": 4.9624,
1011
+ "step": 143
1012
+ },
1013
+ {
1014
+ "epoch": 0.05973244840817173,
1015
+ "grad_norm": 3.171875,
1016
+ "learning_rate": 0.00019723861930965483,
1017
+ "loss": 5.0382,
1018
+ "step": 144
1019
+ },
1020
+ {
1021
+ "epoch": 0.060147257077672926,
1022
+ "grad_norm": 2.71875,
1023
+ "learning_rate": 0.00019721860930465234,
1024
+ "loss": 4.7497,
1025
+ "step": 145
1026
+ },
1027
+ {
1028
+ "epoch": 0.06056206574717411,
1029
+ "grad_norm": 2.3125,
1030
+ "learning_rate": 0.00019719859929964983,
1031
+ "loss": 5.0408,
1032
+ "step": 146
1033
+ },
1034
+ {
1035
+ "epoch": 0.060976874416675306,
1036
+ "grad_norm": 2.375,
1037
+ "learning_rate": 0.00019717858929464734,
1038
+ "loss": 4.8933,
1039
+ "step": 147
1040
+ },
1041
+ {
1042
+ "epoch": 0.0613916830861765,
1043
+ "grad_norm": 2.328125,
1044
+ "learning_rate": 0.00019715857928964483,
1045
+ "loss": 4.7968,
1046
+ "step": 148
1047
+ },
1048
+ {
1049
+ "epoch": 0.06180649175567769,
1050
+ "grad_norm": 2.46875,
1051
+ "learning_rate": 0.00019713856928464234,
1052
+ "loss": 4.8065,
1053
+ "step": 149
1054
+ },
1055
+ {
1056
+ "epoch": 0.062221300425178885,
1057
+ "grad_norm": 2.765625,
1058
+ "learning_rate": 0.00019711855927963983,
1059
+ "loss": 4.8984,
1060
+ "step": 150
1061
+ },
1062
+ {
1063
+ "epoch": 0.06263610909468008,
1064
+ "grad_norm": 2.3125,
1065
+ "learning_rate": 0.00019709854927463735,
1066
+ "loss": 4.8585,
1067
+ "step": 151
1068
+ },
1069
+ {
1070
+ "epoch": 0.06305091776418127,
1071
+ "grad_norm": 2.546875,
1072
+ "learning_rate": 0.00019707853926963483,
1073
+ "loss": 4.6844,
1074
+ "step": 152
1075
+ },
1076
+ {
1077
+ "epoch": 0.06346572643368247,
1078
+ "grad_norm": 2.890625,
1079
+ "learning_rate": 0.00019705852926463232,
1080
+ "loss": 4.7681,
1081
+ "step": 153
1082
+ },
1083
+ {
1084
+ "epoch": 0.06388053510318366,
1085
+ "grad_norm": 2.953125,
1086
+ "learning_rate": 0.0001970385192596298,
1087
+ "loss": 4.9683,
1088
+ "step": 154
1089
+ },
1090
+ {
1091
+ "epoch": 0.06429534377268485,
1092
+ "grad_norm": 2.609375,
1093
+ "learning_rate": 0.00019701850925462732,
1094
+ "loss": 4.6499,
1095
+ "step": 155
1096
+ },
1097
+ {
1098
+ "epoch": 0.06471015244218604,
1099
+ "grad_norm": 3.046875,
1100
+ "learning_rate": 0.0001969984992496248,
1101
+ "loss": 4.8674,
1102
+ "step": 156
1103
+ },
1104
+ {
1105
+ "epoch": 0.06512496111168724,
1106
+ "grad_norm": 2.53125,
1107
+ "learning_rate": 0.00019697848924462232,
1108
+ "loss": 4.8091,
1109
+ "step": 157
1110
+ },
1111
+ {
1112
+ "epoch": 0.06553976978118843,
1113
+ "grad_norm": 2.421875,
1114
+ "learning_rate": 0.0001969584792396198,
1115
+ "loss": 4.7716,
1116
+ "step": 158
1117
+ },
1118
+ {
1119
+ "epoch": 0.06595457845068962,
1120
+ "grad_norm": 3.046875,
1121
+ "learning_rate": 0.00019693846923461733,
1122
+ "loss": 4.9851,
1123
+ "step": 159
1124
+ },
1125
+ {
1126
+ "epoch": 0.06636938712019082,
1127
+ "grad_norm": 2.5625,
1128
+ "learning_rate": 0.00019691845922961484,
1129
+ "loss": 4.7429,
1130
+ "step": 160
1131
+ },
1132
+ {
1133
+ "epoch": 0.06678419578969201,
1134
+ "grad_norm": 2.703125,
1135
+ "learning_rate": 0.00019689844922461233,
1136
+ "loss": 4.7494,
1137
+ "step": 161
1138
+ },
1139
+ {
1140
+ "epoch": 0.0671990044591932,
1141
+ "grad_norm": 2.234375,
1142
+ "learning_rate": 0.00019687843921960981,
1143
+ "loss": 4.6275,
1144
+ "step": 162
1145
+ },
1146
+ {
1147
+ "epoch": 0.06761381312869438,
1148
+ "grad_norm": 2.140625,
1149
+ "learning_rate": 0.0001968584292146073,
1150
+ "loss": 4.6852,
1151
+ "step": 163
1152
+ },
1153
+ {
1154
+ "epoch": 0.06802862179819558,
1155
+ "grad_norm": 2.40625,
1156
+ "learning_rate": 0.00019683841920960482,
1157
+ "loss": 4.9879,
1158
+ "step": 164
1159
+ },
1160
+ {
1161
+ "epoch": 0.06844343046769677,
1162
+ "grad_norm": 2.15625,
1163
+ "learning_rate": 0.0001968184092046023,
1164
+ "loss": 4.7699,
1165
+ "step": 165
1166
+ },
1167
+ {
1168
+ "epoch": 0.06885823913719796,
1169
+ "grad_norm": 2.546875,
1170
+ "learning_rate": 0.00019679839919959982,
1171
+ "loss": 4.719,
1172
+ "step": 166
1173
+ },
1174
+ {
1175
+ "epoch": 0.06927304780669916,
1176
+ "grad_norm": 3.0,
1177
+ "learning_rate": 0.0001967783891945973,
1178
+ "loss": 4.7444,
1179
+ "step": 167
1180
+ },
1181
+ {
1182
+ "epoch": 0.06968785647620035,
1183
+ "grad_norm": 2.921875,
1184
+ "learning_rate": 0.00019675837918959482,
1185
+ "loss": 4.5795,
1186
+ "step": 168
1187
+ },
1188
+ {
1189
+ "epoch": 0.07010266514570154,
1190
+ "grad_norm": 2.578125,
1191
+ "learning_rate": 0.0001967383691845923,
1192
+ "loss": 4.5533,
1193
+ "step": 169
1194
+ },
1195
+ {
1196
+ "epoch": 0.07051747381520274,
1197
+ "grad_norm": 2.8125,
1198
+ "learning_rate": 0.0001967183591795898,
1199
+ "loss": 4.6815,
1200
+ "step": 170
1201
+ },
1202
+ {
1203
+ "epoch": 0.07093228248470393,
1204
+ "grad_norm": 2.921875,
1205
+ "learning_rate": 0.00019669834917458728,
1206
+ "loss": 4.5554,
1207
+ "step": 171
1208
+ },
1209
+ {
1210
+ "epoch": 0.07134709115420512,
1211
+ "grad_norm": 2.921875,
1212
+ "learning_rate": 0.0001966783391695848,
1213
+ "loss": 4.5954,
1214
+ "step": 172
1215
+ },
1216
+ {
1217
+ "epoch": 0.07176189982370632,
1218
+ "grad_norm": 2.4375,
1219
+ "learning_rate": 0.0001966583291645823,
1220
+ "loss": 4.4794,
1221
+ "step": 173
1222
+ },
1223
+ {
1224
+ "epoch": 0.07217670849320751,
1225
+ "grad_norm": 2.5625,
1226
+ "learning_rate": 0.0001966383191595798,
1227
+ "loss": 4.7955,
1228
+ "step": 174
1229
+ },
1230
+ {
1231
+ "epoch": 0.0725915171627087,
1232
+ "grad_norm": 3.71875,
1233
+ "learning_rate": 0.0001966183091545773,
1234
+ "loss": 4.7153,
1235
+ "step": 175
1236
+ },
1237
+ {
1238
+ "epoch": 0.0730063258322099,
1239
+ "grad_norm": 2.546875,
1240
+ "learning_rate": 0.0001965982991495748,
1241
+ "loss": 4.9269,
1242
+ "step": 176
1243
+ },
1244
+ {
1245
+ "epoch": 0.07342113450171109,
1246
+ "grad_norm": 2.6875,
1247
+ "learning_rate": 0.0001965782891445723,
1248
+ "loss": 4.5882,
1249
+ "step": 177
1250
+ },
1251
+ {
1252
+ "epoch": 0.07383594317121228,
1253
+ "grad_norm": 2.375,
1254
+ "learning_rate": 0.0001965582791395698,
1255
+ "loss": 4.6883,
1256
+ "step": 178
1257
+ },
1258
+ {
1259
+ "epoch": 0.07425075184071347,
1260
+ "grad_norm": 2.75,
1261
+ "learning_rate": 0.0001965382691345673,
1262
+ "loss": 4.6313,
1263
+ "step": 179
1264
+ },
1265
+ {
1266
+ "epoch": 0.07466556051021467,
1267
+ "grad_norm": 2.421875,
1268
+ "learning_rate": 0.00019651825912956477,
1269
+ "loss": 4.676,
1270
+ "step": 180
1271
+ },
1272
+ {
1273
+ "epoch": 0.07508036917971586,
1274
+ "grad_norm": 2.546875,
1275
+ "learning_rate": 0.0001964982491245623,
1276
+ "loss": 4.5967,
1277
+ "step": 181
1278
+ },
1279
+ {
1280
+ "epoch": 0.07549517784921705,
1281
+ "grad_norm": 2.53125,
1282
+ "learning_rate": 0.00019647823911955978,
1283
+ "loss": 4.863,
1284
+ "step": 182
1285
+ },
1286
+ {
1287
+ "epoch": 0.07590998651871825,
1288
+ "grad_norm": 2.765625,
1289
+ "learning_rate": 0.0001964582291145573,
1290
+ "loss": 4.4148,
1291
+ "step": 183
1292
+ },
1293
+ {
1294
+ "epoch": 0.07632479518821943,
1295
+ "grad_norm": 2.453125,
1296
+ "learning_rate": 0.00019643821910955478,
1297
+ "loss": 4.8396,
1298
+ "step": 184
1299
+ },
1300
+ {
1301
+ "epoch": 0.07673960385772062,
1302
+ "grad_norm": 2.625,
1303
+ "learning_rate": 0.0001964182091045523,
1304
+ "loss": 4.741,
1305
+ "step": 185
1306
+ },
1307
+ {
1308
+ "epoch": 0.07715441252722181,
1309
+ "grad_norm": 2.890625,
1310
+ "learning_rate": 0.00019639819909954978,
1311
+ "loss": 4.6253,
1312
+ "step": 186
1313
+ },
1314
+ {
1315
+ "epoch": 0.077569221196723,
1316
+ "grad_norm": 2.90625,
1317
+ "learning_rate": 0.0001963781890945473,
1318
+ "loss": 4.6309,
1319
+ "step": 187
1320
+ },
1321
+ {
1322
+ "epoch": 0.0779840298662242,
1323
+ "grad_norm": 2.640625,
1324
+ "learning_rate": 0.00019635817908954478,
1325
+ "loss": 4.8369,
1326
+ "step": 188
1327
+ },
1328
+ {
1329
+ "epoch": 0.0783988385357254,
1330
+ "grad_norm": 2.59375,
1331
+ "learning_rate": 0.00019633816908454227,
1332
+ "loss": 4.8035,
1333
+ "step": 189
1334
+ },
1335
+ {
1336
+ "epoch": 0.07881364720522659,
1337
+ "grad_norm": 2.75,
1338
+ "learning_rate": 0.00019631815907953978,
1339
+ "loss": 4.8848,
1340
+ "step": 190
1341
+ },
1342
+ {
1343
+ "epoch": 0.07922845587472778,
1344
+ "grad_norm": 2.421875,
1345
+ "learning_rate": 0.00019629814907453727,
1346
+ "loss": 4.8717,
1347
+ "step": 191
1348
+ },
1349
+ {
1350
+ "epoch": 0.07964326454422897,
1351
+ "grad_norm": 2.84375,
1352
+ "learning_rate": 0.00019627813906953478,
1353
+ "loss": 5.0118,
1354
+ "step": 192
1355
+ },
1356
+ {
1357
+ "epoch": 0.08005807321373017,
1358
+ "grad_norm": 2.6875,
1359
+ "learning_rate": 0.00019625812906453227,
1360
+ "loss": 4.7332,
1361
+ "step": 193
1362
+ },
1363
+ {
1364
+ "epoch": 0.08047288188323136,
1365
+ "grad_norm": 2.8125,
1366
+ "learning_rate": 0.0001962381190595298,
1367
+ "loss": 4.6317,
1368
+ "step": 194
1369
+ },
1370
+ {
1371
+ "epoch": 0.08088769055273255,
1372
+ "grad_norm": 2.109375,
1373
+ "learning_rate": 0.00019621810905452727,
1374
+ "loss": 4.6825,
1375
+ "step": 195
1376
+ },
1377
+ {
1378
+ "epoch": 0.08130249922223375,
1379
+ "grad_norm": 2.703125,
1380
+ "learning_rate": 0.0001961980990495248,
1381
+ "loss": 4.5926,
1382
+ "step": 196
1383
+ },
1384
+ {
1385
+ "epoch": 0.08171730789173494,
1386
+ "grad_norm": 2.546875,
1387
+ "learning_rate": 0.00019617808904452225,
1388
+ "loss": 4.6585,
1389
+ "step": 197
1390
+ },
1391
+ {
1392
+ "epoch": 0.08213211656123613,
1393
+ "grad_norm": 2.609375,
1394
+ "learning_rate": 0.00019615807903951976,
1395
+ "loss": 4.7669,
1396
+ "step": 198
1397
+ },
1398
+ {
1399
+ "epoch": 0.08254692523073733,
1400
+ "grad_norm": 2.703125,
1401
+ "learning_rate": 0.00019613806903451725,
1402
+ "loss": 4.7337,
1403
+ "step": 199
1404
+ },
1405
+ {
1406
+ "epoch": 0.08296173390023852,
1407
+ "grad_norm": 2.375,
1408
+ "learning_rate": 0.00019611805902951476,
1409
+ "loss": 4.9821,
1410
+ "step": 200
1411
+ },
1412
+ {
1413
+ "epoch": 0.08337654256973971,
1414
+ "grad_norm": 2.75,
1415
+ "learning_rate": 0.00019609804902451228,
1416
+ "loss": 4.6123,
1417
+ "step": 201
1418
+ },
1419
+ {
1420
+ "epoch": 0.0837913512392409,
1421
+ "grad_norm": 3.140625,
1422
+ "learning_rate": 0.00019607803901950977,
1423
+ "loss": 4.9772,
1424
+ "step": 202
1425
+ },
1426
+ {
1427
+ "epoch": 0.0842061599087421,
1428
+ "grad_norm": 3.546875,
1429
+ "learning_rate": 0.00019605802901450728,
1430
+ "loss": 4.5804,
1431
+ "step": 203
1432
+ },
1433
+ {
1434
+ "epoch": 0.08462096857824329,
1435
+ "grad_norm": 2.875,
1436
+ "learning_rate": 0.00019603801900950477,
1437
+ "loss": 4.7674,
1438
+ "step": 204
1439
+ },
1440
+ {
1441
+ "epoch": 0.08503577724774448,
1442
+ "grad_norm": 2.515625,
1443
+ "learning_rate": 0.00019601800900450226,
1444
+ "loss": 4.8421,
1445
+ "step": 205
1446
+ },
1447
+ {
1448
+ "epoch": 0.08545058591724566,
1449
+ "grad_norm": 2.484375,
1450
+ "learning_rate": 0.00019599799899949974,
1451
+ "loss": 4.6861,
1452
+ "step": 206
1453
+ },
1454
+ {
1455
+ "epoch": 0.08586539458674686,
1456
+ "grad_norm": 2.578125,
1457
+ "learning_rate": 0.00019597798899449726,
1458
+ "loss": 4.5915,
1459
+ "step": 207
1460
+ },
1461
+ {
1462
+ "epoch": 0.08628020325624805,
1463
+ "grad_norm": 2.9375,
1464
+ "learning_rate": 0.00019595797898949474,
1465
+ "loss": 4.7162,
1466
+ "step": 208
1467
+ },
1468
+ {
1469
+ "epoch": 0.08669501192574924,
1470
+ "grad_norm": 2.46875,
1471
+ "learning_rate": 0.00019593796898449226,
1472
+ "loss": 4.8773,
1473
+ "step": 209
1474
+ },
1475
+ {
1476
+ "epoch": 0.08710982059525044,
1477
+ "grad_norm": 2.40625,
1478
+ "learning_rate": 0.00019591795897948975,
1479
+ "loss": 4.6635,
1480
+ "step": 210
1481
+ },
1482
+ {
1483
+ "epoch": 0.08752462926475163,
1484
+ "grad_norm": 2.75,
1485
+ "learning_rate": 0.00019589794897448726,
1486
+ "loss": 4.8939,
1487
+ "step": 211
1488
+ },
1489
+ {
1490
+ "epoch": 0.08793943793425282,
1491
+ "grad_norm": 2.53125,
1492
+ "learning_rate": 0.00019587793896948475,
1493
+ "loss": 4.8248,
1494
+ "step": 212
1495
+ },
1496
+ {
1497
+ "epoch": 0.08835424660375402,
1498
+ "grad_norm": 2.609375,
1499
+ "learning_rate": 0.00019585792896448226,
1500
+ "loss": 4.5695,
1501
+ "step": 213
1502
+ },
1503
+ {
1504
+ "epoch": 0.08876905527325521,
1505
+ "grad_norm": 2.515625,
1506
+ "learning_rate": 0.00019583791895947975,
1507
+ "loss": 4.7652,
1508
+ "step": 214
1509
+ },
1510
+ {
1511
+ "epoch": 0.0891838639427564,
1512
+ "grad_norm": 2.359375,
1513
+ "learning_rate": 0.00019581790895447724,
1514
+ "loss": 4.6485,
1515
+ "step": 215
1516
+ },
1517
+ {
1518
+ "epoch": 0.0895986726122576,
1519
+ "grad_norm": 2.171875,
1520
+ "learning_rate": 0.00019579789894947475,
1521
+ "loss": 4.6893,
1522
+ "step": 216
1523
+ },
1524
+ {
1525
+ "epoch": 0.09001348128175879,
1526
+ "grad_norm": 2.515625,
1527
+ "learning_rate": 0.00019577788894447224,
1528
+ "loss": 4.7114,
1529
+ "step": 217
1530
+ },
1531
+ {
1532
+ "epoch": 0.09042828995125998,
1533
+ "grad_norm": 2.296875,
1534
+ "learning_rate": 0.00019575787893946975,
1535
+ "loss": 4.6796,
1536
+ "step": 218
1537
+ },
1538
+ {
1539
+ "epoch": 0.09084309862076118,
1540
+ "grad_norm": 2.359375,
1541
+ "learning_rate": 0.00019573786893446724,
1542
+ "loss": 4.7153,
1543
+ "step": 219
1544
+ },
1545
+ {
1546
+ "epoch": 0.09125790729026237,
1547
+ "grad_norm": 2.6875,
1548
+ "learning_rate": 0.00019571785892946475,
1549
+ "loss": 4.5696,
1550
+ "step": 220
1551
+ },
1552
+ {
1553
+ "epoch": 0.09167271595976356,
1554
+ "grad_norm": 2.453125,
1555
+ "learning_rate": 0.00019569784892446224,
1556
+ "loss": 5.0882,
1557
+ "step": 221
1558
+ },
1559
+ {
1560
+ "epoch": 0.09208752462926476,
1561
+ "grad_norm": 2.390625,
1562
+ "learning_rate": 0.00019567783891945976,
1563
+ "loss": 4.7033,
1564
+ "step": 222
1565
+ },
1566
+ {
1567
+ "epoch": 0.09250233329876595,
1568
+ "grad_norm": 2.609375,
1569
+ "learning_rate": 0.00019565782891445724,
1570
+ "loss": 4.813,
1571
+ "step": 223
1572
+ },
1573
+ {
1574
+ "epoch": 0.09291714196826714,
1575
+ "grad_norm": 2.234375,
1576
+ "learning_rate": 0.00019563781890945473,
1577
+ "loss": 4.4582,
1578
+ "step": 224
1579
+ },
1580
+ {
1581
+ "epoch": 0.09333195063776833,
1582
+ "grad_norm": 2.234375,
1583
+ "learning_rate": 0.00019561780890445222,
1584
+ "loss": 4.7579,
1585
+ "step": 225
1586
+ },
1587
+ {
1588
+ "epoch": 0.09374675930726953,
1589
+ "grad_norm": 2.40625,
1590
+ "learning_rate": 0.00019559779889944973,
1591
+ "loss": 4.6935,
1592
+ "step": 226
1593
+ },
1594
+ {
1595
+ "epoch": 0.09416156797677072,
1596
+ "grad_norm": 2.46875,
1597
+ "learning_rate": 0.00019557778889444722,
1598
+ "loss": 4.7105,
1599
+ "step": 227
1600
+ },
1601
+ {
1602
+ "epoch": 0.0945763766462719,
1603
+ "grad_norm": 2.546875,
1604
+ "learning_rate": 0.00019555777888944473,
1605
+ "loss": 4.5942,
1606
+ "step": 228
1607
+ },
1608
+ {
1609
+ "epoch": 0.0949911853157731,
1610
+ "grad_norm": 2.5,
1611
+ "learning_rate": 0.00019553776888444225,
1612
+ "loss": 4.6961,
1613
+ "step": 229
1614
+ },
1615
+ {
1616
+ "epoch": 0.09540599398527429,
1617
+ "grad_norm": 2.53125,
1618
+ "learning_rate": 0.00019551775887943974,
1619
+ "loss": 4.9044,
1620
+ "step": 230
1621
+ },
1622
+ {
1623
+ "epoch": 0.09582080265477548,
1624
+ "grad_norm": 2.3125,
1625
+ "learning_rate": 0.00019549774887443725,
1626
+ "loss": 4.7508,
1627
+ "step": 231
1628
+ },
1629
+ {
1630
+ "epoch": 0.09623561132427667,
1631
+ "grad_norm": 2.203125,
1632
+ "learning_rate": 0.0001954777388694347,
1633
+ "loss": 4.7008,
1634
+ "step": 232
1635
+ },
1636
+ {
1637
+ "epoch": 0.09665041999377787,
1638
+ "grad_norm": 2.3125,
1639
+ "learning_rate": 0.00019545772886443222,
1640
+ "loss": 4.9721,
1641
+ "step": 233
1642
+ },
1643
+ {
1644
+ "epoch": 0.09706522866327906,
1645
+ "grad_norm": 2.53125,
1646
+ "learning_rate": 0.0001954377188594297,
1647
+ "loss": 4.54,
1648
+ "step": 234
1649
+ },
1650
+ {
1651
+ "epoch": 0.09748003733278025,
1652
+ "grad_norm": 2.265625,
1653
+ "learning_rate": 0.00019541770885442723,
1654
+ "loss": 4.8986,
1655
+ "step": 235
1656
+ },
1657
+ {
1658
+ "epoch": 0.09789484600228145,
1659
+ "grad_norm": 2.421875,
1660
+ "learning_rate": 0.0001953976988494247,
1661
+ "loss": 4.3516,
1662
+ "step": 236
1663
+ },
1664
+ {
1665
+ "epoch": 0.09830965467178264,
1666
+ "grad_norm": 2.890625,
1667
+ "learning_rate": 0.00019537768884442223,
1668
+ "loss": 4.6487,
1669
+ "step": 237
1670
+ },
1671
+ {
1672
+ "epoch": 0.09872446334128383,
1673
+ "grad_norm": 2.234375,
1674
+ "learning_rate": 0.00019535767883941971,
1675
+ "loss": 4.7861,
1676
+ "step": 238
1677
+ },
1678
+ {
1679
+ "epoch": 0.09913927201078503,
1680
+ "grad_norm": 2.171875,
1681
+ "learning_rate": 0.00019533766883441723,
1682
+ "loss": 4.4747,
1683
+ "step": 239
1684
+ },
1685
+ {
1686
+ "epoch": 0.09955408068028622,
1687
+ "grad_norm": 2.640625,
1688
+ "learning_rate": 0.00019531765882941472,
1689
+ "loss": 4.6611,
1690
+ "step": 240
1691
+ },
1692
+ {
1693
+ "epoch": 0.09996888934978741,
1694
+ "grad_norm": 2.359375,
1695
+ "learning_rate": 0.0001952976488244122,
1696
+ "loss": 4.8161,
1697
+ "step": 241
1698
+ },
1699
+ {
1700
+ "epoch": 0.1003836980192886,
1701
+ "grad_norm": 2.34375,
1702
+ "learning_rate": 0.00019527763881940972,
1703
+ "loss": 4.6394,
1704
+ "step": 242
1705
+ },
1706
+ {
1707
+ "epoch": 0.1007985066887898,
1708
+ "grad_norm": 2.421875,
1709
+ "learning_rate": 0.0001952576288144072,
1710
+ "loss": 4.5768,
1711
+ "step": 243
1712
+ },
1713
+ {
1714
+ "epoch": 0.10121331535829099,
1715
+ "grad_norm": 2.484375,
1716
+ "learning_rate": 0.00019523761880940472,
1717
+ "loss": 4.5237,
1718
+ "step": 244
1719
+ },
1720
+ {
1721
+ "epoch": 0.10162812402779219,
1722
+ "grad_norm": 2.171875,
1723
+ "learning_rate": 0.0001952176088044022,
1724
+ "loss": 4.5366,
1725
+ "step": 245
1726
+ },
1727
+ {
1728
+ "epoch": 0.10204293269729338,
1729
+ "grad_norm": 2.859375,
1730
+ "learning_rate": 0.00019519759879939972,
1731
+ "loss": 4.647,
1732
+ "step": 246
1733
+ },
1734
+ {
1735
+ "epoch": 0.10245774136679457,
1736
+ "grad_norm": 2.078125,
1737
+ "learning_rate": 0.0001951775887943972,
1738
+ "loss": 4.5444,
1739
+ "step": 247
1740
+ },
1741
+ {
1742
+ "epoch": 0.10287255003629577,
1743
+ "grad_norm": 2.125,
1744
+ "learning_rate": 0.00019515757878939472,
1745
+ "loss": 4.5602,
1746
+ "step": 248
1747
+ },
1748
+ {
1749
+ "epoch": 0.10328735870579694,
1750
+ "grad_norm": 2.25,
1751
+ "learning_rate": 0.0001951375687843922,
1752
+ "loss": 4.5301,
1753
+ "step": 249
1754
+ },
1755
+ {
1756
+ "epoch": 0.10370216737529814,
1757
+ "grad_norm": 3.046875,
1758
+ "learning_rate": 0.0001951175587793897,
1759
+ "loss": 4.691,
1760
+ "step": 250
1761
+ },
1762
+ {
1763
+ "epoch": 0.10411697604479933,
1764
+ "grad_norm": 2.375,
1765
+ "learning_rate": 0.00019509754877438718,
1766
+ "loss": 4.6174,
1767
+ "step": 251
1768
+ },
1769
+ {
1770
+ "epoch": 0.10453178471430052,
1771
+ "grad_norm": 2.15625,
1772
+ "learning_rate": 0.0001950775387693847,
1773
+ "loss": 4.7134,
1774
+ "step": 252
1775
+ },
1776
+ {
1777
+ "epoch": 0.10494659338380172,
1778
+ "grad_norm": 2.453125,
1779
+ "learning_rate": 0.0001950575287643822,
1780
+ "loss": 4.8516,
1781
+ "step": 253
1782
+ },
1783
+ {
1784
+ "epoch": 0.10536140205330291,
1785
+ "grad_norm": 2.828125,
1786
+ "learning_rate": 0.0001950375187593797,
1787
+ "loss": 4.6675,
1788
+ "step": 254
1789
+ },
1790
+ {
1791
+ "epoch": 0.1057762107228041,
1792
+ "grad_norm": 2.53125,
1793
+ "learning_rate": 0.0001950175087543772,
1794
+ "loss": 4.7508,
1795
+ "step": 255
1796
+ },
1797
+ {
1798
+ "epoch": 0.1061910193923053,
1799
+ "grad_norm": 2.65625,
1800
+ "learning_rate": 0.0001949974987493747,
1801
+ "loss": 4.6769,
1802
+ "step": 256
1803
+ },
1804
+ {
1805
+ "epoch": 0.10660582806180649,
1806
+ "grad_norm": 2.3125,
1807
+ "learning_rate": 0.00019497748874437222,
1808
+ "loss": 4.3861,
1809
+ "step": 257
1810
+ },
1811
+ {
1812
+ "epoch": 0.10702063673130768,
1813
+ "grad_norm": 2.34375,
1814
+ "learning_rate": 0.0001949574787393697,
1815
+ "loss": 4.6051,
1816
+ "step": 258
1817
+ },
1818
+ {
1819
+ "epoch": 0.10743544540080888,
1820
+ "grad_norm": 2.265625,
1821
+ "learning_rate": 0.0001949374687343672,
1822
+ "loss": 4.5368,
1823
+ "step": 259
1824
+ },
1825
+ {
1826
+ "epoch": 0.10785025407031007,
1827
+ "grad_norm": 2.546875,
1828
+ "learning_rate": 0.00019491745872936468,
1829
+ "loss": 4.7008,
1830
+ "step": 260
1831
+ },
1832
+ {
1833
+ "epoch": 0.10826506273981126,
1834
+ "grad_norm": 2.21875,
1835
+ "learning_rate": 0.0001948974487243622,
1836
+ "loss": 4.6742,
1837
+ "step": 261
1838
+ },
1839
+ {
1840
+ "epoch": 0.10867987140931246,
1841
+ "grad_norm": 2.453125,
1842
+ "learning_rate": 0.00019487743871935968,
1843
+ "loss": 4.3499,
1844
+ "step": 262
1845
+ },
1846
+ {
1847
+ "epoch": 0.10909468007881365,
1848
+ "grad_norm": 2.390625,
1849
+ "learning_rate": 0.0001948574287143572,
1850
+ "loss": 4.6754,
1851
+ "step": 263
1852
+ },
1853
+ {
1854
+ "epoch": 0.10950948874831484,
1855
+ "grad_norm": 2.296875,
1856
+ "learning_rate": 0.00019483741870935468,
1857
+ "loss": 4.6755,
1858
+ "step": 264
1859
+ },
1860
+ {
1861
+ "epoch": 0.10992429741781604,
1862
+ "grad_norm": 2.46875,
1863
+ "learning_rate": 0.0001948174087043522,
1864
+ "loss": 4.6689,
1865
+ "step": 265
1866
+ },
1867
+ {
1868
+ "epoch": 0.11033910608731723,
1869
+ "grad_norm": 2.109375,
1870
+ "learning_rate": 0.00019479739869934968,
1871
+ "loss": 4.6618,
1872
+ "step": 266
1873
+ },
1874
+ {
1875
+ "epoch": 0.11075391475681842,
1876
+ "grad_norm": 2.53125,
1877
+ "learning_rate": 0.0001947773886943472,
1878
+ "loss": 4.7117,
1879
+ "step": 267
1880
+ },
1881
+ {
1882
+ "epoch": 0.11116872342631962,
1883
+ "grad_norm": 2.21875,
1884
+ "learning_rate": 0.00019475737868934466,
1885
+ "loss": 4.6274,
1886
+ "step": 268
1887
+ },
1888
+ {
1889
+ "epoch": 0.11158353209582081,
1890
+ "grad_norm": 2.46875,
1891
+ "learning_rate": 0.00019473736868434217,
1892
+ "loss": 4.6007,
1893
+ "step": 269
1894
+ },
1895
+ {
1896
+ "epoch": 0.111998340765322,
1897
+ "grad_norm": 2.53125,
1898
+ "learning_rate": 0.0001947173586793397,
1899
+ "loss": 4.8718,
1900
+ "step": 270
1901
+ },
1902
+ {
1903
+ "epoch": 0.11241314943482318,
1904
+ "grad_norm": 2.734375,
1905
+ "learning_rate": 0.00019469734867433717,
1906
+ "loss": 4.7442,
1907
+ "step": 271
1908
+ },
1909
+ {
1910
+ "epoch": 0.11282795810432437,
1911
+ "grad_norm": 2.390625,
1912
+ "learning_rate": 0.0001946773386693347,
1913
+ "loss": 4.6158,
1914
+ "step": 272
1915
+ },
1916
+ {
1917
+ "epoch": 0.11324276677382557,
1918
+ "grad_norm": 2.453125,
1919
+ "learning_rate": 0.00019465732866433218,
1920
+ "loss": 4.7251,
1921
+ "step": 273
1922
+ },
1923
+ {
1924
+ "epoch": 0.11365757544332676,
1925
+ "grad_norm": 2.453125,
1926
+ "learning_rate": 0.0001946373186593297,
1927
+ "loss": 4.9831,
1928
+ "step": 274
1929
+ },
1930
+ {
1931
+ "epoch": 0.11407238411282795,
1932
+ "grad_norm": 2.421875,
1933
+ "learning_rate": 0.00019461730865432718,
1934
+ "loss": 4.6253,
1935
+ "step": 275
1936
+ },
1937
+ {
1938
+ "epoch": 0.11448719278232915,
1939
+ "grad_norm": 2.125,
1940
+ "learning_rate": 0.00019459729864932467,
1941
+ "loss": 4.5307,
1942
+ "step": 276
1943
+ },
1944
+ {
1945
+ "epoch": 0.11490200145183034,
1946
+ "grad_norm": 2.546875,
1947
+ "learning_rate": 0.00019457728864432215,
1948
+ "loss": 4.7805,
1949
+ "step": 277
1950
+ },
1951
+ {
1952
+ "epoch": 0.11531681012133153,
1953
+ "grad_norm": 2.265625,
1954
+ "learning_rate": 0.00019455727863931967,
1955
+ "loss": 4.5133,
1956
+ "step": 278
1957
+ },
1958
+ {
1959
+ "epoch": 0.11573161879083273,
1960
+ "grad_norm": 2.5,
1961
+ "learning_rate": 0.00019453726863431715,
1962
+ "loss": 4.4652,
1963
+ "step": 279
1964
+ },
1965
+ {
1966
+ "epoch": 0.11614642746033392,
1967
+ "grad_norm": 2.5625,
1968
+ "learning_rate": 0.00019451725862931467,
1969
+ "loss": 4.7797,
1970
+ "step": 280
1971
+ },
1972
+ {
1973
+ "epoch": 0.11656123612983511,
1974
+ "grad_norm": 2.546875,
1975
+ "learning_rate": 0.00019449724862431216,
1976
+ "loss": 4.6143,
1977
+ "step": 281
1978
+ },
1979
+ {
1980
+ "epoch": 0.1169760447993363,
1981
+ "grad_norm": 2.53125,
1982
+ "learning_rate": 0.00019447723861930967,
1983
+ "loss": 4.7538,
1984
+ "step": 282
1985
+ },
1986
+ {
1987
+ "epoch": 0.1173908534688375,
1988
+ "grad_norm": 2.53125,
1989
+ "learning_rate": 0.00019445722861430716,
1990
+ "loss": 4.6332,
1991
+ "step": 283
1992
+ },
1993
+ {
1994
+ "epoch": 0.1178056621383387,
1995
+ "grad_norm": 2.484375,
1996
+ "learning_rate": 0.00019443721860930467,
1997
+ "loss": 4.5163,
1998
+ "step": 284
1999
+ },
2000
+ {
2001
+ "epoch": 0.11822047080783989,
2002
+ "grad_norm": 2.34375,
2003
+ "learning_rate": 0.00019441720860430216,
2004
+ "loss": 4.4752,
2005
+ "step": 285
2006
+ },
2007
+ {
2008
+ "epoch": 0.11863527947734108,
2009
+ "grad_norm": 2.3125,
2010
+ "learning_rate": 0.00019439719859929965,
2011
+ "loss": 4.5883,
2012
+ "step": 286
2013
+ },
2014
+ {
2015
+ "epoch": 0.11905008814684227,
2016
+ "grad_norm": 2.40625,
2017
+ "learning_rate": 0.00019437718859429716,
2018
+ "loss": 4.723,
2019
+ "step": 287
2020
+ },
2021
+ {
2022
+ "epoch": 0.11946489681634347,
2023
+ "grad_norm": 2.8125,
2024
+ "learning_rate": 0.00019435717858929465,
2025
+ "loss": 4.8239,
2026
+ "step": 288
2027
+ },
2028
+ {
2029
+ "epoch": 0.11987970548584466,
2030
+ "grad_norm": 2.765625,
2031
+ "learning_rate": 0.00019433716858429216,
2032
+ "loss": 4.7219,
2033
+ "step": 289
2034
+ },
2035
+ {
2036
+ "epoch": 0.12029451415534585,
2037
+ "grad_norm": 2.515625,
2038
+ "learning_rate": 0.00019431715857928965,
2039
+ "loss": 4.9378,
2040
+ "step": 290
2041
+ },
2042
+ {
2043
+ "epoch": 0.12070932282484705,
2044
+ "grad_norm": 2.359375,
2045
+ "learning_rate": 0.00019429714857428716,
2046
+ "loss": 4.4392,
2047
+ "step": 291
2048
+ },
2049
+ {
2050
+ "epoch": 0.12112413149434823,
2051
+ "grad_norm": 2.390625,
2052
+ "learning_rate": 0.00019427713856928465,
2053
+ "loss": 5.0761,
2054
+ "step": 292
2055
+ },
2056
+ {
2057
+ "epoch": 0.12153894016384942,
2058
+ "grad_norm": 2.484375,
2059
+ "learning_rate": 0.00019425712856428217,
2060
+ "loss": 4.5624,
2061
+ "step": 293
2062
+ },
2063
+ {
2064
+ "epoch": 0.12195374883335061,
2065
+ "grad_norm": 2.453125,
2066
+ "learning_rate": 0.00019423711855927965,
2067
+ "loss": 4.889,
2068
+ "step": 294
2069
+ },
2070
+ {
2071
+ "epoch": 0.1223685575028518,
2072
+ "grad_norm": 2.28125,
2073
+ "learning_rate": 0.00019421710855427714,
2074
+ "loss": 4.7606,
2075
+ "step": 295
2076
+ },
2077
+ {
2078
+ "epoch": 0.122783366172353,
2079
+ "grad_norm": 2.359375,
2080
+ "learning_rate": 0.00019419709854927463,
2081
+ "loss": 4.4913,
2082
+ "step": 296
2083
+ },
2084
+ {
2085
+ "epoch": 0.12319817484185419,
2086
+ "grad_norm": 2.40625,
2087
+ "learning_rate": 0.00019417708854427214,
2088
+ "loss": 4.6842,
2089
+ "step": 297
2090
+ },
2091
+ {
2092
+ "epoch": 0.12361298351135538,
2093
+ "grad_norm": 2.4375,
2094
+ "learning_rate": 0.00019415707853926966,
2095
+ "loss": 4.5627,
2096
+ "step": 298
2097
+ },
2098
+ {
2099
+ "epoch": 0.12402779218085658,
2100
+ "grad_norm": 2.28125,
2101
+ "learning_rate": 0.00019413706853426714,
2102
+ "loss": 4.68,
2103
+ "step": 299
2104
+ },
2105
+ {
2106
+ "epoch": 0.12444260085035777,
2107
+ "grad_norm": 2.703125,
2108
+ "learning_rate": 0.00019411705852926466,
2109
+ "loss": 4.5748,
2110
+ "step": 300
2111
+ },
2112
+ {
2113
+ "epoch": 0.12485740951985896,
2114
+ "grad_norm": 2.953125,
2115
+ "learning_rate": 0.00019409704852426215,
2116
+ "loss": 4.5055,
2117
+ "step": 301
2118
+ },
2119
+ {
2120
+ "epoch": 0.12527221818936016,
2121
+ "grad_norm": 2.515625,
2122
+ "learning_rate": 0.00019407703851925966,
2123
+ "loss": 4.6107,
2124
+ "step": 302
2125
+ },
2126
+ {
2127
+ "epoch": 0.12568702685886135,
2128
+ "grad_norm": 2.984375,
2129
+ "learning_rate": 0.00019405702851425712,
2130
+ "loss": 4.531,
2131
+ "step": 303
2132
+ },
2133
+ {
2134
+ "epoch": 0.12610183552836254,
2135
+ "grad_norm": 2.28125,
2136
+ "learning_rate": 0.00019403701850925463,
2137
+ "loss": 4.6775,
2138
+ "step": 304
2139
+ },
2140
+ {
2141
+ "epoch": 0.12651664419786374,
2142
+ "grad_norm": 2.859375,
2143
+ "learning_rate": 0.00019401700850425212,
2144
+ "loss": 4.6577,
2145
+ "step": 305
2146
+ },
2147
+ {
2148
+ "epoch": 0.12693145286736493,
2149
+ "grad_norm": 2.484375,
2150
+ "learning_rate": 0.00019399699849924964,
2151
+ "loss": 4.5784,
2152
+ "step": 306
2153
+ },
2154
+ {
2155
+ "epoch": 0.12734626153686612,
2156
+ "grad_norm": 3.28125,
2157
+ "learning_rate": 0.00019397698849424712,
2158
+ "loss": 4.6397,
2159
+ "step": 307
2160
+ },
2161
+ {
2162
+ "epoch": 0.12776107020636732,
2163
+ "grad_norm": 2.359375,
2164
+ "learning_rate": 0.00019395697848924464,
2165
+ "loss": 4.7788,
2166
+ "step": 308
2167
+ },
2168
+ {
2169
+ "epoch": 0.1281758788758685,
2170
+ "grad_norm": 2.546875,
2171
+ "learning_rate": 0.00019393696848424212,
2172
+ "loss": 5.0678,
2173
+ "step": 309
2174
+ },
2175
+ {
2176
+ "epoch": 0.1285906875453697,
2177
+ "grad_norm": 2.328125,
2178
+ "learning_rate": 0.00019391695847923964,
2179
+ "loss": 4.4743,
2180
+ "step": 310
2181
+ },
2182
+ {
2183
+ "epoch": 0.1290054962148709,
2184
+ "grad_norm": 2.84375,
2185
+ "learning_rate": 0.00019389694847423713,
2186
+ "loss": 4.6317,
2187
+ "step": 311
2188
+ },
2189
+ {
2190
+ "epoch": 0.1294203048843721,
2191
+ "grad_norm": 2.3125,
2192
+ "learning_rate": 0.00019387693846923461,
2193
+ "loss": 4.6397,
2194
+ "step": 312
2195
+ },
2196
+ {
2197
+ "epoch": 0.12983511355387328,
2198
+ "grad_norm": 2.40625,
2199
+ "learning_rate": 0.00019385692846423213,
2200
+ "loss": 4.5141,
2201
+ "step": 313
2202
+ },
2203
+ {
2204
+ "epoch": 0.13024992222337448,
2205
+ "grad_norm": 2.390625,
2206
+ "learning_rate": 0.00019383691845922962,
2207
+ "loss": 4.6465,
2208
+ "step": 314
2209
+ },
2210
+ {
2211
+ "epoch": 0.13066473089287567,
2212
+ "grad_norm": 2.390625,
2213
+ "learning_rate": 0.00019381690845422713,
2214
+ "loss": 4.8338,
2215
+ "step": 315
2216
+ },
2217
+ {
2218
+ "epoch": 0.13107953956237686,
2219
+ "grad_norm": 2.421875,
2220
+ "learning_rate": 0.00019379689844922462,
2221
+ "loss": 4.6736,
2222
+ "step": 316
2223
+ },
2224
+ {
2225
+ "epoch": 0.13149434823187806,
2226
+ "grad_norm": 2.859375,
2227
+ "learning_rate": 0.00019377688844422213,
2228
+ "loss": 4.7102,
2229
+ "step": 317
2230
+ },
2231
+ {
2232
+ "epoch": 0.13190915690137925,
2233
+ "grad_norm": 2.46875,
2234
+ "learning_rate": 0.00019375687843921962,
2235
+ "loss": 4.6496,
2236
+ "step": 318
2237
+ },
2238
+ {
2239
+ "epoch": 0.13232396557088044,
2240
+ "grad_norm": 2.140625,
2241
+ "learning_rate": 0.00019373686843421713,
2242
+ "loss": 4.8149,
2243
+ "step": 319
2244
+ },
2245
+ {
2246
+ "epoch": 0.13273877424038164,
2247
+ "grad_norm": 2.21875,
2248
+ "learning_rate": 0.00019371685842921462,
2249
+ "loss": 4.5535,
2250
+ "step": 320
2251
+ },
2252
+ {
2253
+ "epoch": 0.13315358290988283,
2254
+ "grad_norm": 2.78125,
2255
+ "learning_rate": 0.0001936968484242121,
2256
+ "loss": 4.5018,
2257
+ "step": 321
2258
+ },
2259
+ {
2260
+ "epoch": 0.13356839157938402,
2261
+ "grad_norm": 2.484375,
2262
+ "learning_rate": 0.0001936768384192096,
2263
+ "loss": 4.6553,
2264
+ "step": 322
2265
+ },
2266
+ {
2267
+ "epoch": 0.13398320024888521,
2268
+ "grad_norm": 2.390625,
2269
+ "learning_rate": 0.0001936568284142071,
2270
+ "loss": 4.8589,
2271
+ "step": 323
2272
+ },
2273
+ {
2274
+ "epoch": 0.1343980089183864,
2275
+ "grad_norm": 2.515625,
2276
+ "learning_rate": 0.0001936368184092046,
2277
+ "loss": 4.8949,
2278
+ "step": 324
2279
+ },
2280
+ {
2281
+ "epoch": 0.13481281758788757,
2282
+ "grad_norm": 2.3125,
2283
+ "learning_rate": 0.0001936168084042021,
2284
+ "loss": 4.5917,
2285
+ "step": 325
2286
+ },
2287
+ {
2288
+ "epoch": 0.13522762625738877,
2289
+ "grad_norm": 2.765625,
2290
+ "learning_rate": 0.00019359679839919963,
2291
+ "loss": 4.5207,
2292
+ "step": 326
2293
+ },
2294
+ {
2295
+ "epoch": 0.13564243492688996,
2296
+ "grad_norm": 3.015625,
2297
+ "learning_rate": 0.0001935767883941971,
2298
+ "loss": 4.6245,
2299
+ "step": 327
2300
+ },
2301
+ {
2302
+ "epoch": 0.13605724359639115,
2303
+ "grad_norm": 2.265625,
2304
+ "learning_rate": 0.00019355677838919463,
2305
+ "loss": 4.5721,
2306
+ "step": 328
2307
+ },
2308
+ {
2309
+ "epoch": 0.13647205226589235,
2310
+ "grad_norm": 2.171875,
2311
+ "learning_rate": 0.00019353676838419211,
2312
+ "loss": 4.5226,
2313
+ "step": 329
2314
+ },
2315
+ {
2316
+ "epoch": 0.13688686093539354,
2317
+ "grad_norm": 2.203125,
2318
+ "learning_rate": 0.0001935167583791896,
2319
+ "loss": 4.4595,
2320
+ "step": 330
2321
+ },
2322
+ {
2323
+ "epoch": 0.13730166960489473,
2324
+ "grad_norm": 2.328125,
2325
+ "learning_rate": 0.0001934967483741871,
2326
+ "loss": 4.941,
2327
+ "step": 331
2328
+ },
2329
+ {
2330
+ "epoch": 0.13771647827439593,
2331
+ "grad_norm": 2.296875,
2332
+ "learning_rate": 0.0001934767383691846,
2333
+ "loss": 4.523,
2334
+ "step": 332
2335
+ },
2336
+ {
2337
+ "epoch": 0.13813128694389712,
2338
+ "grad_norm": 2.234375,
2339
+ "learning_rate": 0.0001934567283641821,
2340
+ "loss": 4.5625,
2341
+ "step": 333
2342
+ },
2343
+ {
2344
+ "epoch": 0.1385460956133983,
2345
+ "grad_norm": 3.140625,
2346
+ "learning_rate": 0.0001934367183591796,
2347
+ "loss": 4.7129,
2348
+ "step": 334
2349
+ },
2350
+ {
2351
+ "epoch": 0.1389609042828995,
2352
+ "grad_norm": 2.609375,
2353
+ "learning_rate": 0.0001934167083541771,
2354
+ "loss": 4.5963,
2355
+ "step": 335
2356
+ },
2357
+ {
2358
+ "epoch": 0.1393757129524007,
2359
+ "grad_norm": 2.5,
2360
+ "learning_rate": 0.0001933966983491746,
2361
+ "loss": 4.4981,
2362
+ "step": 336
2363
+ },
2364
+ {
2365
+ "epoch": 0.1397905216219019,
2366
+ "grad_norm": 2.453125,
2367
+ "learning_rate": 0.0001933766883441721,
2368
+ "loss": 4.4765,
2369
+ "step": 337
2370
+ },
2371
+ {
2372
+ "epoch": 0.14020533029140309,
2373
+ "grad_norm": 2.28125,
2374
+ "learning_rate": 0.00019335667833916958,
2375
+ "loss": 4.7399,
2376
+ "step": 338
2377
+ },
2378
+ {
2379
+ "epoch": 0.14062013896090428,
2380
+ "grad_norm": 2.59375,
2381
+ "learning_rate": 0.0001933366683341671,
2382
+ "loss": 4.5903,
2383
+ "step": 339
2384
+ },
2385
+ {
2386
+ "epoch": 0.14103494763040547,
2387
+ "grad_norm": 3.40625,
2388
+ "learning_rate": 0.00019331665832916458,
2389
+ "loss": 4.7435,
2390
+ "step": 340
2391
+ },
2392
+ {
2393
+ "epoch": 0.14144975629990666,
2394
+ "grad_norm": 2.734375,
2395
+ "learning_rate": 0.0001932966483241621,
2396
+ "loss": 4.7956,
2397
+ "step": 341
2398
+ },
2399
+ {
2400
+ "epoch": 0.14186456496940786,
2401
+ "grad_norm": 2.390625,
2402
+ "learning_rate": 0.00019327663831915958,
2403
+ "loss": 4.7103,
2404
+ "step": 342
2405
+ },
2406
+ {
2407
+ "epoch": 0.14227937363890905,
2408
+ "grad_norm": 2.4375,
2409
+ "learning_rate": 0.0001932566283141571,
2410
+ "loss": 4.6113,
2411
+ "step": 343
2412
+ },
2413
+ {
2414
+ "epoch": 0.14269418230841024,
2415
+ "grad_norm": 2.46875,
2416
+ "learning_rate": 0.00019323661830915459,
2417
+ "loss": 4.7041,
2418
+ "step": 344
2419
+ },
2420
+ {
2421
+ "epoch": 0.14310899097791144,
2422
+ "grad_norm": 2.390625,
2423
+ "learning_rate": 0.0001932166083041521,
2424
+ "loss": 4.6125,
2425
+ "step": 345
2426
+ },
2427
+ {
2428
+ "epoch": 0.14352379964741263,
2429
+ "grad_norm": 2.3125,
2430
+ "learning_rate": 0.0001931965982991496,
2431
+ "loss": 4.4779,
2432
+ "step": 346
2433
+ },
2434
+ {
2435
+ "epoch": 0.14393860831691382,
2436
+ "grad_norm": 2.75,
2437
+ "learning_rate": 0.00019317658829414708,
2438
+ "loss": 4.4845,
2439
+ "step": 347
2440
+ },
2441
+ {
2442
+ "epoch": 0.14435341698641502,
2443
+ "grad_norm": 2.703125,
2444
+ "learning_rate": 0.00019315657828914456,
2445
+ "loss": 4.5883,
2446
+ "step": 348
2447
+ },
2448
+ {
2449
+ "epoch": 0.1447682256559162,
2450
+ "grad_norm": 2.1875,
2451
+ "learning_rate": 0.00019313656828414208,
2452
+ "loss": 4.6283,
2453
+ "step": 349
2454
+ },
2455
+ {
2456
+ "epoch": 0.1451830343254174,
2457
+ "grad_norm": 2.28125,
2458
+ "learning_rate": 0.00019311655827913956,
2459
+ "loss": 4.6821,
2460
+ "step": 350
2461
+ },
2462
+ {
2463
+ "epoch": 0.1455978429949186,
2464
+ "grad_norm": 2.5,
2465
+ "learning_rate": 0.00019309654827413708,
2466
+ "loss": 4.2464,
2467
+ "step": 351
2468
+ },
2469
+ {
2470
+ "epoch": 0.1460126516644198,
2471
+ "grad_norm": 2.484375,
2472
+ "learning_rate": 0.00019307653826913457,
2473
+ "loss": 4.4201,
2474
+ "step": 352
2475
+ },
2476
+ {
2477
+ "epoch": 0.14642746033392098,
2478
+ "grad_norm": 2.984375,
2479
+ "learning_rate": 0.00019305652826413208,
2480
+ "loss": 4.8415,
2481
+ "step": 353
2482
+ },
2483
+ {
2484
+ "epoch": 0.14684226900342218,
2485
+ "grad_norm": 2.53125,
2486
+ "learning_rate": 0.0001930365182591296,
2487
+ "loss": 4.612,
2488
+ "step": 354
2489
+ },
2490
+ {
2491
+ "epoch": 0.14725707767292337,
2492
+ "grad_norm": 2.25,
2493
+ "learning_rate": 0.00019301650825412708,
2494
+ "loss": 4.7386,
2495
+ "step": 355
2496
+ },
2497
+ {
2498
+ "epoch": 0.14767188634242456,
2499
+ "grad_norm": 2.171875,
2500
+ "learning_rate": 0.00019299649824912457,
2501
+ "loss": 4.6206,
2502
+ "step": 356
2503
+ },
2504
+ {
2505
+ "epoch": 0.14808669501192576,
2506
+ "grad_norm": 2.28125,
2507
+ "learning_rate": 0.00019297648824412206,
2508
+ "loss": 4.7842,
2509
+ "step": 357
2510
+ },
2511
+ {
2512
+ "epoch": 0.14850150368142695,
2513
+ "grad_norm": 2.3125,
2514
+ "learning_rate": 0.00019295647823911957,
2515
+ "loss": 4.4395,
2516
+ "step": 358
2517
+ },
2518
+ {
2519
+ "epoch": 0.14891631235092814,
2520
+ "grad_norm": 2.09375,
2521
+ "learning_rate": 0.00019293646823411706,
2522
+ "loss": 4.8042,
2523
+ "step": 359
2524
+ },
2525
+ {
2526
+ "epoch": 0.14933112102042934,
2527
+ "grad_norm": 2.09375,
2528
+ "learning_rate": 0.00019291645822911457,
2529
+ "loss": 4.5574,
2530
+ "step": 360
2531
+ },
2532
+ {
2533
+ "epoch": 0.14974592968993053,
2534
+ "grad_norm": 2.234375,
2535
+ "learning_rate": 0.00019289644822411206,
2536
+ "loss": 4.5097,
2537
+ "step": 361
2538
+ },
2539
+ {
2540
+ "epoch": 0.15016073835943172,
2541
+ "grad_norm": 2.4375,
2542
+ "learning_rate": 0.00019287643821910957,
2543
+ "loss": 4.6248,
2544
+ "step": 362
2545
+ },
2546
+ {
2547
+ "epoch": 0.15057554702893292,
2548
+ "grad_norm": 2.34375,
2549
+ "learning_rate": 0.00019285642821410706,
2550
+ "loss": 4.5815,
2551
+ "step": 363
2552
+ },
2553
+ {
2554
+ "epoch": 0.1509903556984341,
2555
+ "grad_norm": 2.3125,
2556
+ "learning_rate": 0.00019283641820910458,
2557
+ "loss": 4.6993,
2558
+ "step": 364
2559
+ },
2560
+ {
2561
+ "epoch": 0.1514051643679353,
2562
+ "grad_norm": 2.6875,
2563
+ "learning_rate": 0.00019281640820410206,
2564
+ "loss": 4.9004,
2565
+ "step": 365
2566
+ },
2567
+ {
2568
+ "epoch": 0.1518199730374365,
2569
+ "grad_norm": 2.40625,
2570
+ "learning_rate": 0.00019279639819909955,
2571
+ "loss": 4.6554,
2572
+ "step": 366
2573
+ },
2574
+ {
2575
+ "epoch": 0.1522347817069377,
2576
+ "grad_norm": 2.15625,
2577
+ "learning_rate": 0.00019277638819409706,
2578
+ "loss": 4.3681,
2579
+ "step": 367
2580
+ },
2581
+ {
2582
+ "epoch": 0.15264959037643885,
2583
+ "grad_norm": 2.328125,
2584
+ "learning_rate": 0.00019275637818909455,
2585
+ "loss": 4.3656,
2586
+ "step": 368
2587
+ },
2588
+ {
2589
+ "epoch": 0.15306439904594005,
2590
+ "grad_norm": 2.40625,
2591
+ "learning_rate": 0.00019273636818409207,
2592
+ "loss": 4.5683,
2593
+ "step": 369
2594
+ },
2595
+ {
2596
+ "epoch": 0.15347920771544124,
2597
+ "grad_norm": 2.265625,
2598
+ "learning_rate": 0.00019271635817908955,
2599
+ "loss": 4.7063,
2600
+ "step": 370
2601
+ },
2602
+ {
2603
+ "epoch": 0.15389401638494243,
2604
+ "grad_norm": 2.515625,
2605
+ "learning_rate": 0.00019269634817408707,
2606
+ "loss": 4.7527,
2607
+ "step": 371
2608
+ },
2609
+ {
2610
+ "epoch": 0.15430882505444363,
2611
+ "grad_norm": 2.328125,
2612
+ "learning_rate": 0.00019267633816908456,
2613
+ "loss": 4.6669,
2614
+ "step": 372
2615
+ },
2616
+ {
2617
+ "epoch": 0.15472363372394482,
2618
+ "grad_norm": 2.1875,
2619
+ "learning_rate": 0.00019265632816408204,
2620
+ "loss": 4.5687,
2621
+ "step": 373
2622
+ },
2623
+ {
2624
+ "epoch": 0.155138442393446,
2625
+ "grad_norm": 2.28125,
2626
+ "learning_rate": 0.00019263631815907953,
2627
+ "loss": 4.8767,
2628
+ "step": 374
2629
+ },
2630
+ {
2631
+ "epoch": 0.1555532510629472,
2632
+ "grad_norm": 2.21875,
2633
+ "learning_rate": 0.00019261630815407704,
2634
+ "loss": 4.5858,
2635
+ "step": 375
2636
+ },
2637
+ {
2638
+ "epoch": 0.1559680597324484,
2639
+ "grad_norm": 2.09375,
2640
+ "learning_rate": 0.00019259629814907453,
2641
+ "loss": 4.4694,
2642
+ "step": 376
2643
+ },
2644
+ {
2645
+ "epoch": 0.1563828684019496,
2646
+ "grad_norm": 2.5,
2647
+ "learning_rate": 0.00019257628814407205,
2648
+ "loss": 4.4371,
2649
+ "step": 377
2650
+ },
2651
+ {
2652
+ "epoch": 0.1567976770714508,
2653
+ "grad_norm": 2.171875,
2654
+ "learning_rate": 0.00019255627813906953,
2655
+ "loss": 4.4846,
2656
+ "step": 378
2657
+ },
2658
+ {
2659
+ "epoch": 0.15721248574095198,
2660
+ "grad_norm": 2.328125,
2661
+ "learning_rate": 0.00019253626813406705,
2662
+ "loss": 4.7829,
2663
+ "step": 379
2664
+ },
2665
+ {
2666
+ "epoch": 0.15762729441045317,
2667
+ "grad_norm": 2.234375,
2668
+ "learning_rate": 0.00019251625812906453,
2669
+ "loss": 4.7909,
2670
+ "step": 380
2671
+ },
2672
+ {
2673
+ "epoch": 0.15804210307995437,
2674
+ "grad_norm": 2.296875,
2675
+ "learning_rate": 0.00019249624812406205,
2676
+ "loss": 4.349,
2677
+ "step": 381
2678
+ },
2679
+ {
2680
+ "epoch": 0.15845691174945556,
2681
+ "grad_norm": 2.375,
2682
+ "learning_rate": 0.00019247623811905954,
2683
+ "loss": 4.518,
2684
+ "step": 382
2685
+ },
2686
+ {
2687
+ "epoch": 0.15887172041895675,
2688
+ "grad_norm": 2.296875,
2689
+ "learning_rate": 0.00019245622811405702,
2690
+ "loss": 4.7616,
2691
+ "step": 383
2692
+ },
2693
+ {
2694
+ "epoch": 0.15928652908845795,
2695
+ "grad_norm": 2.796875,
2696
+ "learning_rate": 0.00019243621810905454,
2697
+ "loss": 4.5117,
2698
+ "step": 384
2699
+ },
2700
+ {
2701
+ "epoch": 0.15970133775795914,
2702
+ "grad_norm": 2.28125,
2703
+ "learning_rate": 0.00019241620810405203,
2704
+ "loss": 4.5693,
2705
+ "step": 385
2706
+ },
2707
+ {
2708
+ "epoch": 0.16011614642746033,
2709
+ "grad_norm": 2.234375,
2710
+ "learning_rate": 0.00019239619809904954,
2711
+ "loss": 4.748,
2712
+ "step": 386
2713
+ },
2714
+ {
2715
+ "epoch": 0.16053095509696153,
2716
+ "grad_norm": 2.3125,
2717
+ "learning_rate": 0.00019237618809404703,
2718
+ "loss": 4.6349,
2719
+ "step": 387
2720
+ },
2721
+ {
2722
+ "epoch": 0.16094576376646272,
2723
+ "grad_norm": 2.359375,
2724
+ "learning_rate": 0.00019235617808904454,
2725
+ "loss": 4.6104,
2726
+ "step": 388
2727
+ },
2728
+ {
2729
+ "epoch": 0.1613605724359639,
2730
+ "grad_norm": 2.71875,
2731
+ "learning_rate": 0.00019233616808404203,
2732
+ "loss": 4.6278,
2733
+ "step": 389
2734
+ },
2735
+ {
2736
+ "epoch": 0.1617753811054651,
2737
+ "grad_norm": 2.21875,
2738
+ "learning_rate": 0.00019231615807903954,
2739
+ "loss": 4.6366,
2740
+ "step": 390
2741
+ },
2742
+ {
2743
+ "epoch": 0.1621901897749663,
2744
+ "grad_norm": 2.390625,
2745
+ "learning_rate": 0.00019229614807403703,
2746
+ "loss": 4.6784,
2747
+ "step": 391
2748
+ },
2749
+ {
2750
+ "epoch": 0.1626049984444675,
2751
+ "grad_norm": 2.3125,
2752
+ "learning_rate": 0.00019227613806903452,
2753
+ "loss": 4.5775,
2754
+ "step": 392
2755
+ },
2756
+ {
2757
+ "epoch": 0.16301980711396868,
2758
+ "grad_norm": 2.5,
2759
+ "learning_rate": 0.000192256128064032,
2760
+ "loss": 4.7694,
2761
+ "step": 393
2762
+ },
2763
+ {
2764
+ "epoch": 0.16343461578346988,
2765
+ "grad_norm": 2.4375,
2766
+ "learning_rate": 0.00019223611805902952,
2767
+ "loss": 4.3015,
2768
+ "step": 394
2769
+ },
2770
+ {
2771
+ "epoch": 0.16384942445297107,
2772
+ "grad_norm": 2.25,
2773
+ "learning_rate": 0.00019221610805402703,
2774
+ "loss": 4.5376,
2775
+ "step": 395
2776
+ },
2777
+ {
2778
+ "epoch": 0.16426423312247226,
2779
+ "grad_norm": 2.578125,
2780
+ "learning_rate": 0.00019219609804902452,
2781
+ "loss": 4.5119,
2782
+ "step": 396
2783
+ },
2784
+ {
2785
+ "epoch": 0.16467904179197346,
2786
+ "grad_norm": 2.5625,
2787
+ "learning_rate": 0.00019217608804402204,
2788
+ "loss": 4.6437,
2789
+ "step": 397
2790
+ },
2791
+ {
2792
+ "epoch": 0.16509385046147465,
2793
+ "grad_norm": 2.765625,
2794
+ "learning_rate": 0.00019215607803901952,
2795
+ "loss": 4.7193,
2796
+ "step": 398
2797
+ },
2798
+ {
2799
+ "epoch": 0.16550865913097584,
2800
+ "grad_norm": 2.0625,
2801
+ "learning_rate": 0.00019213606803401704,
2802
+ "loss": 4.5158,
2803
+ "step": 399
2804
+ },
2805
+ {
2806
+ "epoch": 0.16592346780047704,
2807
+ "grad_norm": 2.34375,
2808
+ "learning_rate": 0.00019211605802901452,
2809
+ "loss": 4.9949,
2810
+ "step": 400
2811
+ },
2812
+ {
2813
+ "epoch": 0.16633827646997823,
2814
+ "grad_norm": 2.15625,
2815
+ "learning_rate": 0.000192096048024012,
2816
+ "loss": 4.7789,
2817
+ "step": 401
2818
+ },
2819
+ {
2820
+ "epoch": 0.16675308513947942,
2821
+ "grad_norm": 2.515625,
2822
+ "learning_rate": 0.0001920760380190095,
2823
+ "loss": 4.6586,
2824
+ "step": 402
2825
+ },
2826
+ {
2827
+ "epoch": 0.16716789380898062,
2828
+ "grad_norm": 2.5,
2829
+ "learning_rate": 0.000192056028014007,
2830
+ "loss": 4.5197,
2831
+ "step": 403
2832
+ },
2833
+ {
2834
+ "epoch": 0.1675827024784818,
2835
+ "grad_norm": 2.484375,
2836
+ "learning_rate": 0.0001920360180090045,
2837
+ "loss": 4.6449,
2838
+ "step": 404
2839
+ },
2840
+ {
2841
+ "epoch": 0.167997511147983,
2842
+ "grad_norm": 2.125,
2843
+ "learning_rate": 0.00019201600800400202,
2844
+ "loss": 4.6291,
2845
+ "step": 405
2846
+ },
2847
+ {
2848
+ "epoch": 0.1684123198174842,
2849
+ "grad_norm": 2.171875,
2850
+ "learning_rate": 0.0001919959979989995,
2851
+ "loss": 4.7104,
2852
+ "step": 406
2853
+ },
2854
+ {
2855
+ "epoch": 0.1688271284869854,
2856
+ "grad_norm": 2.0625,
2857
+ "learning_rate": 0.00019197598799399702,
2858
+ "loss": 4.7399,
2859
+ "step": 407
2860
+ },
2861
+ {
2862
+ "epoch": 0.16924193715648658,
2863
+ "grad_norm": 2.28125,
2864
+ "learning_rate": 0.0001919559779889945,
2865
+ "loss": 4.3293,
2866
+ "step": 408
2867
+ },
2868
+ {
2869
+ "epoch": 0.16965674582598778,
2870
+ "grad_norm": 2.1875,
2871
+ "learning_rate": 0.000191935967983992,
2872
+ "loss": 4.4642,
2873
+ "step": 409
2874
+ },
2875
+ {
2876
+ "epoch": 0.17007155449548897,
2877
+ "grad_norm": 2.453125,
2878
+ "learning_rate": 0.0001919159579789895,
2879
+ "loss": 4.5354,
2880
+ "step": 410
2881
+ },
2882
+ {
2883
+ "epoch": 0.17048636316499013,
2884
+ "grad_norm": 2.15625,
2885
+ "learning_rate": 0.000191895947973987,
2886
+ "loss": 4.4258,
2887
+ "step": 411
2888
+ },
2889
+ {
2890
+ "epoch": 0.17090117183449133,
2891
+ "grad_norm": 2.328125,
2892
+ "learning_rate": 0.0001918759379689845,
2893
+ "loss": 4.7604,
2894
+ "step": 412
2895
+ },
2896
+ {
2897
+ "epoch": 0.17131598050399252,
2898
+ "grad_norm": 2.6875,
2899
+ "learning_rate": 0.000191855927963982,
2900
+ "loss": 4.9124,
2901
+ "step": 413
2902
+ },
2903
+ {
2904
+ "epoch": 0.17173078917349371,
2905
+ "grad_norm": 2.0625,
2906
+ "learning_rate": 0.0001918359179589795,
2907
+ "loss": 4.8301,
2908
+ "step": 414
2909
+ },
2910
+ {
2911
+ "epoch": 0.1721455978429949,
2912
+ "grad_norm": 2.296875,
2913
+ "learning_rate": 0.000191815907953977,
2914
+ "loss": 4.7501,
2915
+ "step": 415
2916
+ },
2917
+ {
2918
+ "epoch": 0.1725604065124961,
2919
+ "grad_norm": 2.171875,
2920
+ "learning_rate": 0.0001917958979489745,
2921
+ "loss": 4.5007,
2922
+ "step": 416
2923
+ },
2924
+ {
2925
+ "epoch": 0.1729752151819973,
2926
+ "grad_norm": 2.75,
2927
+ "learning_rate": 0.000191775887943972,
2928
+ "loss": 4.7086,
2929
+ "step": 417
2930
+ },
2931
+ {
2932
+ "epoch": 0.1733900238514985,
2933
+ "grad_norm": 2.359375,
2934
+ "learning_rate": 0.00019175587793896949,
2935
+ "loss": 4.5778,
2936
+ "step": 418
2937
+ },
2938
+ {
2939
+ "epoch": 0.17380483252099968,
2940
+ "grad_norm": 2.296875,
2941
+ "learning_rate": 0.00019173586793396697,
2942
+ "loss": 4.529,
2943
+ "step": 419
2944
+ },
2945
+ {
2946
+ "epoch": 0.17421964119050087,
2947
+ "grad_norm": 2.53125,
2948
+ "learning_rate": 0.0001917158579289645,
2949
+ "loss": 4.4016,
2950
+ "step": 420
2951
+ },
2952
+ {
2953
+ "epoch": 0.17463444986000207,
2954
+ "grad_norm": 2.1875,
2955
+ "learning_rate": 0.00019169584792396197,
2956
+ "loss": 4.4806,
2957
+ "step": 421
2958
+ },
2959
+ {
2960
+ "epoch": 0.17504925852950326,
2961
+ "grad_norm": 2.453125,
2962
+ "learning_rate": 0.0001916758379189595,
2963
+ "loss": 4.6308,
2964
+ "step": 422
2965
+ },
2966
+ {
2967
+ "epoch": 0.17546406719900445,
2968
+ "grad_norm": 2.28125,
2969
+ "learning_rate": 0.000191655827913957,
2970
+ "loss": 4.5926,
2971
+ "step": 423
2972
+ },
2973
+ {
2974
+ "epoch": 0.17587887586850565,
2975
+ "grad_norm": 2.328125,
2976
+ "learning_rate": 0.0001916358179089545,
2977
+ "loss": 4.3179,
2978
+ "step": 424
2979
+ },
2980
+ {
2981
+ "epoch": 0.17629368453800684,
2982
+ "grad_norm": 2.625,
2983
+ "learning_rate": 0.000191615807903952,
2984
+ "loss": 4.5057,
2985
+ "step": 425
2986
+ },
2987
+ {
2988
+ "epoch": 0.17670849320750803,
2989
+ "grad_norm": 2.484375,
2990
+ "learning_rate": 0.0001915957978989495,
2991
+ "loss": 4.6446,
2992
+ "step": 426
2993
+ },
2994
+ {
2995
+ "epoch": 0.17712330187700923,
2996
+ "grad_norm": 2.21875,
2997
+ "learning_rate": 0.00019157578789394698,
2998
+ "loss": 4.7132,
2999
+ "step": 427
3000
+ },
3001
+ {
3002
+ "epoch": 0.17753811054651042,
3003
+ "grad_norm": 2.296875,
3004
+ "learning_rate": 0.00019155577788894447,
3005
+ "loss": 4.4011,
3006
+ "step": 428
3007
+ },
3008
+ {
3009
+ "epoch": 0.1779529192160116,
3010
+ "grad_norm": 2.3125,
3011
+ "learning_rate": 0.00019153576788394198,
3012
+ "loss": 4.7595,
3013
+ "step": 429
3014
+ },
3015
+ {
3016
+ "epoch": 0.1783677278855128,
3017
+ "grad_norm": 2.171875,
3018
+ "learning_rate": 0.00019151575787893947,
3019
+ "loss": 4.5743,
3020
+ "step": 430
3021
+ },
3022
+ {
3023
+ "epoch": 0.178782536555014,
3024
+ "grad_norm": 2.265625,
3025
+ "learning_rate": 0.00019149574787393698,
3026
+ "loss": 4.6784,
3027
+ "step": 431
3028
+ },
3029
+ {
3030
+ "epoch": 0.1791973452245152,
3031
+ "grad_norm": 2.4375,
3032
+ "learning_rate": 0.00019147573786893447,
3033
+ "loss": 4.4957,
3034
+ "step": 432
3035
+ },
3036
+ {
3037
+ "epoch": 0.17961215389401639,
3038
+ "grad_norm": 2.59375,
3039
+ "learning_rate": 0.00019145572786393198,
3040
+ "loss": 4.4072,
3041
+ "step": 433
3042
+ },
3043
+ {
3044
+ "epoch": 0.18002696256351758,
3045
+ "grad_norm": 2.4375,
3046
+ "learning_rate": 0.00019143571785892947,
3047
+ "loss": 4.6275,
3048
+ "step": 434
3049
+ },
3050
+ {
3051
+ "epoch": 0.18044177123301877,
3052
+ "grad_norm": 2.59375,
3053
+ "learning_rate": 0.00019141570785392699,
3054
+ "loss": 4.6934,
3055
+ "step": 435
3056
+ },
3057
+ {
3058
+ "epoch": 0.18085657990251996,
3059
+ "grad_norm": 2.234375,
3060
+ "learning_rate": 0.00019139569784892447,
3061
+ "loss": 4.6939,
3062
+ "step": 436
3063
+ },
3064
+ {
3065
+ "epoch": 0.18127138857202116,
3066
+ "grad_norm": 2.5,
3067
+ "learning_rate": 0.00019137568784392196,
3068
+ "loss": 4.6987,
3069
+ "step": 437
3070
+ },
3071
+ {
3072
+ "epoch": 0.18168619724152235,
3073
+ "grad_norm": 2.421875,
3074
+ "learning_rate": 0.00019135567783891947,
3075
+ "loss": 4.5695,
3076
+ "step": 438
3077
+ },
3078
+ {
3079
+ "epoch": 0.18210100591102354,
3080
+ "grad_norm": 2.171875,
3081
+ "learning_rate": 0.00019133566783391696,
3082
+ "loss": 4.7376,
3083
+ "step": 439
3084
+ },
3085
+ {
3086
+ "epoch": 0.18251581458052474,
3087
+ "grad_norm": 2.640625,
3088
+ "learning_rate": 0.00019131565782891448,
3089
+ "loss": 4.5068,
3090
+ "step": 440
3091
+ },
3092
+ {
3093
+ "epoch": 0.18293062325002593,
3094
+ "grad_norm": 2.734375,
3095
+ "learning_rate": 0.00019129564782391196,
3096
+ "loss": 4.4134,
3097
+ "step": 441
3098
+ },
3099
+ {
3100
+ "epoch": 0.18334543191952712,
3101
+ "grad_norm": 2.453125,
3102
+ "learning_rate": 0.00019127563781890948,
3103
+ "loss": 4.5897,
3104
+ "step": 442
3105
+ },
3106
+ {
3107
+ "epoch": 0.18376024058902832,
3108
+ "grad_norm": 2.15625,
3109
+ "learning_rate": 0.00019125562781390697,
3110
+ "loss": 4.5844,
3111
+ "step": 443
3112
+ },
3113
+ {
3114
+ "epoch": 0.1841750492585295,
3115
+ "grad_norm": 2.328125,
3116
+ "learning_rate": 0.00019123561780890445,
3117
+ "loss": 4.6493,
3118
+ "step": 444
3119
+ },
3120
+ {
3121
+ "epoch": 0.1845898579280307,
3122
+ "grad_norm": 2.515625,
3123
+ "learning_rate": 0.00019121560780390194,
3124
+ "loss": 4.4406,
3125
+ "step": 445
3126
+ },
3127
+ {
3128
+ "epoch": 0.1850046665975319,
3129
+ "grad_norm": 2.34375,
3130
+ "learning_rate": 0.00019119559779889945,
3131
+ "loss": 4.5867,
3132
+ "step": 446
3133
+ },
3134
+ {
3135
+ "epoch": 0.1854194752670331,
3136
+ "grad_norm": 2.453125,
3137
+ "learning_rate": 0.00019117558779389694,
3138
+ "loss": 4.7002,
3139
+ "step": 447
3140
+ },
3141
+ {
3142
+ "epoch": 0.18583428393653428,
3143
+ "grad_norm": 2.703125,
3144
+ "learning_rate": 0.00019115557778889446,
3145
+ "loss": 4.7154,
3146
+ "step": 448
3147
+ },
3148
+ {
3149
+ "epoch": 0.18624909260603548,
3150
+ "grad_norm": 2.25,
3151
+ "learning_rate": 0.00019113556778389194,
3152
+ "loss": 4.5751,
3153
+ "step": 449
3154
+ },
3155
+ {
3156
+ "epoch": 0.18666390127553667,
3157
+ "grad_norm": 2.5,
3158
+ "learning_rate": 0.00019111555777888946,
3159
+ "loss": 4.448,
3160
+ "step": 450
3161
+ },
3162
+ {
3163
+ "epoch": 0.18707870994503786,
3164
+ "grad_norm": 2.234375,
3165
+ "learning_rate": 0.00019109554777388697,
3166
+ "loss": 4.4763,
3167
+ "step": 451
3168
+ },
3169
+ {
3170
+ "epoch": 0.18749351861453906,
3171
+ "grad_norm": 2.234375,
3172
+ "learning_rate": 0.00019107553776888446,
3173
+ "loss": 4.795,
3174
+ "step": 452
3175
+ },
3176
+ {
3177
+ "epoch": 0.18790832728404025,
3178
+ "grad_norm": 2.203125,
3179
+ "learning_rate": 0.00019105552776388195,
3180
+ "loss": 4.6979,
3181
+ "step": 453
3182
+ },
3183
+ {
3184
+ "epoch": 0.18832313595354144,
3185
+ "grad_norm": 2.421875,
3186
+ "learning_rate": 0.00019103551775887943,
3187
+ "loss": 4.3613,
3188
+ "step": 454
3189
+ },
3190
+ {
3191
+ "epoch": 0.1887379446230426,
3192
+ "grad_norm": 2.203125,
3193
+ "learning_rate": 0.00019101550775387695,
3194
+ "loss": 4.4992,
3195
+ "step": 455
3196
+ },
3197
+ {
3198
+ "epoch": 0.1891527532925438,
3199
+ "grad_norm": 2.703125,
3200
+ "learning_rate": 0.00019099549774887444,
3201
+ "loss": 4.6909,
3202
+ "step": 456
3203
+ },
3204
+ {
3205
+ "epoch": 0.189567561962045,
3206
+ "grad_norm": 2.390625,
3207
+ "learning_rate": 0.00019097548774387195,
3208
+ "loss": 4.6363,
3209
+ "step": 457
3210
+ },
3211
+ {
3212
+ "epoch": 0.1899823706315462,
3213
+ "grad_norm": 2.28125,
3214
+ "learning_rate": 0.00019095547773886944,
3215
+ "loss": 4.551,
3216
+ "step": 458
3217
+ },
3218
+ {
3219
+ "epoch": 0.19039717930104738,
3220
+ "grad_norm": 2.40625,
3221
+ "learning_rate": 0.00019093546773386695,
3222
+ "loss": 4.5158,
3223
+ "step": 459
3224
+ },
3225
+ {
3226
+ "epoch": 0.19081198797054857,
3227
+ "grad_norm": 2.578125,
3228
+ "learning_rate": 0.00019091545772886444,
3229
+ "loss": 4.6661,
3230
+ "step": 460
3231
+ },
3232
+ {
3233
+ "epoch": 0.19122679664004977,
3234
+ "grad_norm": 2.3125,
3235
+ "learning_rate": 0.00019089544772386195,
3236
+ "loss": 4.2847,
3237
+ "step": 461
3238
+ },
3239
+ {
3240
+ "epoch": 0.19164160530955096,
3241
+ "grad_norm": 2.328125,
3242
+ "learning_rate": 0.00019087543771885944,
3243
+ "loss": 4.4697,
3244
+ "step": 462
3245
+ },
3246
+ {
3247
+ "epoch": 0.19205641397905215,
3248
+ "grad_norm": 2.078125,
3249
+ "learning_rate": 0.00019085542771385693,
3250
+ "loss": 4.4851,
3251
+ "step": 463
3252
+ },
3253
+ {
3254
+ "epoch": 0.19247122264855335,
3255
+ "grad_norm": 2.015625,
3256
+ "learning_rate": 0.00019083541770885444,
3257
+ "loss": 4.4844,
3258
+ "step": 464
3259
+ },
3260
+ {
3261
+ "epoch": 0.19288603131805454,
3262
+ "grad_norm": 2.203125,
3263
+ "learning_rate": 0.00019081540770385193,
3264
+ "loss": 4.7539,
3265
+ "step": 465
3266
+ },
3267
+ {
3268
+ "epoch": 0.19330083998755573,
3269
+ "grad_norm": 1.9765625,
3270
+ "learning_rate": 0.00019079539769884944,
3271
+ "loss": 4.3977,
3272
+ "step": 466
3273
+ },
3274
+ {
3275
+ "epoch": 0.19371564865705693,
3276
+ "grad_norm": 2.171875,
3277
+ "learning_rate": 0.00019077538769384693,
3278
+ "loss": 4.3886,
3279
+ "step": 467
3280
+ },
3281
+ {
3282
+ "epoch": 0.19413045732655812,
3283
+ "grad_norm": 2.40625,
3284
+ "learning_rate": 0.00019075537768884445,
3285
+ "loss": 4.7598,
3286
+ "step": 468
3287
+ },
3288
+ {
3289
+ "epoch": 0.1945452659960593,
3290
+ "grad_norm": 2.171875,
3291
+ "learning_rate": 0.00019073536768384193,
3292
+ "loss": 4.6188,
3293
+ "step": 469
3294
+ },
3295
+ {
3296
+ "epoch": 0.1949600746655605,
3297
+ "grad_norm": 2.25,
3298
+ "learning_rate": 0.00019071535767883945,
3299
+ "loss": 4.4196,
3300
+ "step": 470
3301
+ },
3302
+ {
3303
+ "epoch": 0.1953748833350617,
3304
+ "grad_norm": 2.046875,
3305
+ "learning_rate": 0.00019069534767383693,
3306
+ "loss": 4.5675,
3307
+ "step": 471
3308
+ },
3309
+ {
3310
+ "epoch": 0.1957896920045629,
3311
+ "grad_norm": 2.265625,
3312
+ "learning_rate": 0.00019067533766883442,
3313
+ "loss": 4.5032,
3314
+ "step": 472
3315
+ },
3316
+ {
3317
+ "epoch": 0.1962045006740641,
3318
+ "grad_norm": 2.46875,
3319
+ "learning_rate": 0.0001906553276638319,
3320
+ "loss": 4.5395,
3321
+ "step": 473
3322
+ },
3323
+ {
3324
+ "epoch": 0.19661930934356528,
3325
+ "grad_norm": 2.46875,
3326
+ "learning_rate": 0.00019063531765882942,
3327
+ "loss": 4.5965,
3328
+ "step": 474
3329
+ },
3330
+ {
3331
+ "epoch": 0.19703411801306647,
3332
+ "grad_norm": 2.40625,
3333
+ "learning_rate": 0.0001906153076538269,
3334
+ "loss": 4.8952,
3335
+ "step": 475
3336
+ },
3337
+ {
3338
+ "epoch": 0.19744892668256767,
3339
+ "grad_norm": 2.234375,
3340
+ "learning_rate": 0.00019059529764882443,
3341
+ "loss": 4.5312,
3342
+ "step": 476
3343
+ },
3344
+ {
3345
+ "epoch": 0.19786373535206886,
3346
+ "grad_norm": 2.046875,
3347
+ "learning_rate": 0.0001905752876438219,
3348
+ "loss": 4.576,
3349
+ "step": 477
3350
+ },
3351
+ {
3352
+ "epoch": 0.19827854402157005,
3353
+ "grad_norm": 2.421875,
3354
+ "learning_rate": 0.00019055527763881943,
3355
+ "loss": 4.3351,
3356
+ "step": 478
3357
+ },
3358
+ {
3359
+ "epoch": 0.19869335269107125,
3360
+ "grad_norm": 2.078125,
3361
+ "learning_rate": 0.00019053526763381691,
3362
+ "loss": 4.5906,
3363
+ "step": 479
3364
+ },
3365
+ {
3366
+ "epoch": 0.19910816136057244,
3367
+ "grad_norm": 2.296875,
3368
+ "learning_rate": 0.0001905152576288144,
3369
+ "loss": 4.4678,
3370
+ "step": 480
3371
+ },
3372
+ {
3373
+ "epoch": 0.19952297003007363,
3374
+ "grad_norm": 2.21875,
3375
+ "learning_rate": 0.00019049524762381192,
3376
+ "loss": 4.3641,
3377
+ "step": 481
3378
+ },
3379
+ {
3380
+ "epoch": 0.19993777869957483,
3381
+ "grad_norm": 2.328125,
3382
+ "learning_rate": 0.0001904752376188094,
3383
+ "loss": 4.4432,
3384
+ "step": 482
3385
+ },
3386
+ {
3387
+ "epoch": 0.20035258736907602,
3388
+ "grad_norm": 2.390625,
3389
+ "learning_rate": 0.00019045522761380692,
3390
+ "loss": 4.4244,
3391
+ "step": 483
3392
+ },
3393
+ {
3394
+ "epoch": 0.2007673960385772,
3395
+ "grad_norm": 2.21875,
3396
+ "learning_rate": 0.0001904352176088044,
3397
+ "loss": 4.5019,
3398
+ "step": 484
3399
+ },
3400
+ {
3401
+ "epoch": 0.2011822047080784,
3402
+ "grad_norm": 2.34375,
3403
+ "learning_rate": 0.00019041520760380192,
3404
+ "loss": 4.5012,
3405
+ "step": 485
3406
+ },
3407
+ {
3408
+ "epoch": 0.2015970133775796,
3409
+ "grad_norm": 2.203125,
3410
+ "learning_rate": 0.0001903951975987994,
3411
+ "loss": 4.6173,
3412
+ "step": 486
3413
+ },
3414
+ {
3415
+ "epoch": 0.2020118220470808,
3416
+ "grad_norm": 2.59375,
3417
+ "learning_rate": 0.00019037518759379692,
3418
+ "loss": 4.6062,
3419
+ "step": 487
3420
+ },
3421
+ {
3422
+ "epoch": 0.20242663071658198,
3423
+ "grad_norm": 2.109375,
3424
+ "learning_rate": 0.0001903551775887944,
3425
+ "loss": 4.4623,
3426
+ "step": 488
3427
+ },
3428
+ {
3429
+ "epoch": 0.20284143938608318,
3430
+ "grad_norm": 2.15625,
3431
+ "learning_rate": 0.0001903351675837919,
3432
+ "loss": 4.5057,
3433
+ "step": 489
3434
+ },
3435
+ {
3436
+ "epoch": 0.20325624805558437,
3437
+ "grad_norm": 1.984375,
3438
+ "learning_rate": 0.00019031515757878938,
3439
+ "loss": 4.3361,
3440
+ "step": 490
3441
+ },
3442
+ {
3443
+ "epoch": 0.20367105672508556,
3444
+ "grad_norm": 2.21875,
3445
+ "learning_rate": 0.0001902951475737869,
3446
+ "loss": 4.3838,
3447
+ "step": 491
3448
+ },
3449
+ {
3450
+ "epoch": 0.20408586539458676,
3451
+ "grad_norm": 2.3125,
3452
+ "learning_rate": 0.0001902751375687844,
3453
+ "loss": 4.5128,
3454
+ "step": 492
3455
+ },
3456
+ {
3457
+ "epoch": 0.20450067406408795,
3458
+ "grad_norm": 2.515625,
3459
+ "learning_rate": 0.0001902551275637819,
3460
+ "loss": 4.4631,
3461
+ "step": 493
3462
+ },
3463
+ {
3464
+ "epoch": 0.20491548273358914,
3465
+ "grad_norm": 2.328125,
3466
+ "learning_rate": 0.0001902351175587794,
3467
+ "loss": 4.7555,
3468
+ "step": 494
3469
+ },
3470
+ {
3471
+ "epoch": 0.20533029140309034,
3472
+ "grad_norm": 3.078125,
3473
+ "learning_rate": 0.0001902151075537769,
3474
+ "loss": 4.8614,
3475
+ "step": 495
3476
+ },
3477
+ {
3478
+ "epoch": 0.20574510007259153,
3479
+ "grad_norm": 2.1875,
3480
+ "learning_rate": 0.00019019509754877441,
3481
+ "loss": 4.5543,
3482
+ "step": 496
3483
+ },
3484
+ {
3485
+ "epoch": 0.20615990874209272,
3486
+ "grad_norm": 2.4375,
3487
+ "learning_rate": 0.0001901750875437719,
3488
+ "loss": 4.5363,
3489
+ "step": 497
3490
+ },
3491
+ {
3492
+ "epoch": 0.2065747174115939,
3493
+ "grad_norm": 2.28125,
3494
+ "learning_rate": 0.0001901550775387694,
3495
+ "loss": 4.6619,
3496
+ "step": 498
3497
+ },
3498
+ {
3499
+ "epoch": 0.20698952608109508,
3500
+ "grad_norm": 2.265625,
3501
+ "learning_rate": 0.00019013506753376688,
3502
+ "loss": 4.3184,
3503
+ "step": 499
3504
+ },
3505
+ {
3506
+ "epoch": 0.20740433475059628,
3507
+ "grad_norm": 2.28125,
3508
+ "learning_rate": 0.0001901150575287644,
3509
+ "loss": 4.3842,
3510
+ "step": 500
3511
+ }
3512
+ ],
3513
+ "logging_steps": 1,
3514
+ "max_steps": 10000,
3515
+ "num_input_tokens_seen": 0,
3516
+ "num_train_epochs": 5,
3517
+ "save_steps": 500,
3518
+ "stateful_callbacks": {
3519
+ "TrainerControl": {
3520
+ "args": {
3521
+ "should_epoch_stop": false,
3522
+ "should_evaluate": false,
3523
+ "should_log": false,
3524
+ "should_save": true,
3525
+ "should_training_stop": false
3526
+ },
3527
+ "attributes": {}
3528
+ }
3529
+ },
3530
+ "total_flos": 1.6544062792876032e+16,
3531
+ "train_batch_size": 1,
3532
+ "trial_name": null,
3533
+ "trial_params": null
3534
+ }
checkpoint-500/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b8040193c5b74e2442575cb75407cc1b7ae4e1c7c98400fab63e59606dc8a3f6
3
+ size 5713