omersaidd commited on
Commit
ef06507
·
verified ·
1 Parent(s): 8d3bb7e

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +6 -0
  2. checkpoint-1000/model-00001-of-00002.safetensors +3 -0
  3. checkpoint-1500/model-00001-of-00002.safetensors +3 -0
  4. checkpoint-200/rng_state.pth +3 -0
  5. checkpoint-200/scheduler.pt +3 -0
  6. checkpoint-200/tokenizer.json +3 -0
  7. checkpoint-200/training_args.bin +3 -0
  8. checkpoint-2000/model-00001-of-00002.safetensors +3 -0
  9. checkpoint-2000/model.safetensors +3 -0
  10. checkpoint-2500/model-00001-of-00002.safetensors +3 -0
  11. checkpoint-2500/model.safetensors +3 -0
  12. checkpoint-3000/model-00001-of-00002.safetensors +3 -0
  13. checkpoint-3500/model-00001-of-00002.safetensors +3 -0
  14. checkpoint-400/chat_template.jinja +93 -0
  15. checkpoint-400/rng_state.pth +3 -0
  16. checkpoint-400/scheduler.pt +3 -0
  17. checkpoint-400/special_tokens_map.json +19 -0
  18. checkpoint-400/tokenizer.json +3 -0
  19. checkpoint-400/tokenizer_config.json +0 -0
  20. checkpoint-400/trainer_state.json +2834 -0
  21. checkpoint-400/training_args.bin +3 -0
  22. checkpoint-4000/model-00001-of-00002.safetensors +3 -0
  23. checkpoint-4000/model-00002-of-00002.safetensors +3 -0
  24. checkpoint-4000/model.safetensors +3 -0
  25. checkpoint-4500/model-00002-of-00002.safetensors +3 -0
  26. checkpoint-4500/model.safetensors +3 -0
  27. checkpoint-4500/tokenizer.json +3 -0
  28. checkpoint-500/model-00001-of-00002.safetensors +3 -0
  29. checkpoint-5000/model-00002-of-00002.safetensors +3 -0
  30. checkpoint-5000/model.safetensors +3 -0
  31. checkpoint-5000/rng_state.pth +3 -0
  32. checkpoint-5000/scheduler.pt +3 -0
  33. checkpoint-5000/tokenizer.json +3 -0
  34. checkpoint-5000/training_args.bin +3 -0
  35. checkpoint-5500/chat_template.jinja +93 -0
  36. checkpoint-5500/config.json +38 -0
  37. checkpoint-5500/generation_config.json +11 -0
  38. checkpoint-5500/model.safetensors.index.json +262 -0
  39. checkpoint-5500/rng_state.pth +3 -0
  40. checkpoint-5500/scheduler.pt +3 -0
  41. checkpoint-5500/special_tokens_map.json +19 -0
  42. checkpoint-5500/tokenizer.json +3 -0
  43. checkpoint-5500/tokenizer_config.json +0 -0
  44. checkpoint-5500/trainer_state.json +0 -0
  45. checkpoint-5500/training_args.bin +3 -0
  46. checkpoint-6000/chat_template.jinja +93 -0
  47. checkpoint-6000/config.json +38 -0
  48. checkpoint-6000/generation_config.json +11 -0
  49. checkpoint-6000/model.safetensors.index.json +262 -0
  50. checkpoint-6000/rng_state.pth +3 -0
.gitattributes CHANGED
@@ -65,3 +65,9 @@ checkpoint-2500/tokenizer.json filter=lfs diff=lfs merge=lfs -text
65
  checkpoint-3000/tokenizer.json filter=lfs diff=lfs merge=lfs -text
66
  checkpoint-3500/tokenizer.json filter=lfs diff=lfs merge=lfs -text
67
  checkpoint-4000/tokenizer.json filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
65
  checkpoint-3000/tokenizer.json filter=lfs diff=lfs merge=lfs -text
66
  checkpoint-3500/tokenizer.json filter=lfs diff=lfs merge=lfs -text
67
  checkpoint-4000/tokenizer.json filter=lfs diff=lfs merge=lfs -text
68
+ checkpoint-4500/tokenizer.json filter=lfs diff=lfs merge=lfs -text
69
+ checkpoint-5000/tokenizer.json filter=lfs diff=lfs merge=lfs -text
70
+ checkpoint-200/tokenizer.json filter=lfs diff=lfs merge=lfs -text
71
+ checkpoint-400/tokenizer.json filter=lfs diff=lfs merge=lfs -text
72
+ checkpoint-5500/tokenizer.json filter=lfs diff=lfs merge=lfs -text
73
+ checkpoint-6000/tokenizer.json filter=lfs diff=lfs merge=lfs -text
checkpoint-1000/model-00001-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:74bfb3211309bdaa27d6d31519eeb7f732a056fb27af389b05b2aca959c94f0f
3
+ size 4991031824
checkpoint-1500/model-00001-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:97b13b43d3bbc0c3c7dac5a9ee5626a467dd43d60cc19293fba7ae60a7f24e62
3
+ size 4991031824
checkpoint-200/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7c800b778fa7e115e4c34de8529902de8b61c9a1b4bab3eb8295d06dafff030e
3
+ size 14645
checkpoint-200/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0d56e780bff043580345cfb36b2ef93592e24982c9aeaf99259504c2342d474d
3
+ size 1465
checkpoint-200/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fc3fecb199b4170636dbfab986d25f628157268d37b861f9cadaca60b1353bce
3
+ size 22849547
checkpoint-200/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ac139304666e944e0fc3575f6c040ab56bbf6ec57f74f42e44bf00eaf3b9b83e
3
+ size 5713
checkpoint-2000/model-00001-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:99ea596f68ece8ea612f6a7bcea229dd369c66831b0897a990a5fe8ea49f633d
3
+ size 4991031824
checkpoint-2000/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f0faf37f32c6e7dcef5e1a4cc9ad8938b46257cd70561b3111fc028f09e802a2
3
+ size 2589131192
checkpoint-2500/model-00001-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e2b828238ae6a4dfaad9f87f1f58ae475b93a69a7c7da20f5cbd9b19276db222
3
+ size 4991031824
checkpoint-2500/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c99fa1981be2b9633aac932774a35031c5aefda39c2fe0dec94a3b6430044a3
3
+ size 2589131192
checkpoint-3000/model-00001-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c59051f565ad717a3f30f01a1b2a75ac451c5d84fc4d0feeb239bf8c36bfbdfc
3
+ size 4991031824
checkpoint-3500/model-00001-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:af055edf11c20fe4320c18d4c66b640856ea63f431ff937f8c4fe628cc93e723
3
+ size 4991031824
checkpoint-400/chat_template.jinja ADDED
@@ -0,0 +1,93 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {{- bos_token }}
2
+ {%- if custom_tools is defined %}
3
+ {%- set tools = custom_tools %}
4
+ {%- endif %}
5
+ {%- if not tools_in_user_message is defined %}
6
+ {%- set tools_in_user_message = true %}
7
+ {%- endif %}
8
+ {%- if not date_string is defined %}
9
+ {%- if strftime_now is defined %}
10
+ {%- set date_string = strftime_now("%d %b %Y") %}
11
+ {%- else %}
12
+ {%- set date_string = "26 Jul 2024" %}
13
+ {%- endif %}
14
+ {%- endif %}
15
+ {%- if not tools is defined %}
16
+ {%- set tools = none %}
17
+ {%- endif %}
18
+
19
+ {#- This block extracts the system message, so we can slot it into the right place. #}
20
+ {%- if messages[0]['role'] == 'system' %}
21
+ {%- set system_message = messages[0]['content']|trim %}
22
+ {%- set messages = messages[1:] %}
23
+ {%- else %}
24
+ {%- set system_message = "" %}
25
+ {%- endif %}
26
+
27
+ {#- System message #}
28
+ {{- "<|start_header_id|>system<|end_header_id|>\n\n" }}
29
+ {%- if tools is not none %}
30
+ {{- "Environment: ipython\n" }}
31
+ {%- endif %}
32
+ {{- "Cutting Knowledge Date: December 2023\n" }}
33
+ {{- "Today Date: " + date_string + "\n\n" }}
34
+ {%- if tools is not none and not tools_in_user_message %}
35
+ {{- "You have access to the following functions. To call a function, please respond with JSON for a function call." }}
36
+ {{- 'Respond in the format {"name": function name, "parameters": dictionary of argument name and its value}.' }}
37
+ {{- "Do not use variables.\n\n" }}
38
+ {%- for t in tools %}
39
+ {{- t | tojson(indent=4) }}
40
+ {{- "\n\n" }}
41
+ {%- endfor %}
42
+ {%- endif %}
43
+ {{- system_message }}
44
+ {{- "<|eot_id|>" }}
45
+
46
+ {#- Custom tools are passed in a user message with some extra guidance #}
47
+ {%- if tools_in_user_message and not tools is none %}
48
+ {#- Extract the first user message so we can plug it in here #}
49
+ {%- if messages | length != 0 %}
50
+ {%- set first_user_message = messages[0]['content']|trim %}
51
+ {%- set messages = messages[1:] %}
52
+ {%- else %}
53
+ {{- raise_exception("Cannot put tools in the first user message when there's no first user message!") }}
54
+ {%- endif %}
55
+ {{- '<|start_header_id|>user<|end_header_id|>\n\n' -}}
56
+ {{- "Given the following functions, please respond with a JSON for a function call " }}
57
+ {{- "with its proper arguments that best answers the given prompt.\n\n" }}
58
+ {{- 'Respond in the format {"name": function name, "parameters": dictionary of argument name and its value}.' }}
59
+ {{- "Do not use variables.\n\n" }}
60
+ {%- for t in tools %}
61
+ {{- t | tojson(indent=4) }}
62
+ {{- "\n\n" }}
63
+ {%- endfor %}
64
+ {{- first_user_message + "<|eot_id|>"}}
65
+ {%- endif %}
66
+
67
+ {%- for message in messages %}
68
+ {%- if not (message.role == 'ipython' or message.role == 'tool' or 'tool_calls' in message) %}
69
+ {{- '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n'+ message['content'] | trim + '<|eot_id|>' }}
70
+ {%- elif 'tool_calls' in message %}
71
+ {%- if not message.tool_calls|length == 1 %}
72
+ {{- raise_exception("This model only supports single tool-calls at once!") }}
73
+ {%- endif %}
74
+ {%- set tool_call = message.tool_calls[0].function %}
75
+ {{- '<|start_header_id|>assistant<|end_header_id|>\n\n' -}}
76
+ {{- '{"name": "' + tool_call.name + '", ' }}
77
+ {{- '"parameters": ' }}
78
+ {{- tool_call.arguments | tojson }}
79
+ {{- "}" }}
80
+ {{- "<|eot_id|>" }}
81
+ {%- elif message.role == "tool" or message.role == "ipython" %}
82
+ {{- "<|start_header_id|>ipython<|end_header_id|>\n\n" }}
83
+ {%- if message.content is mapping or message.content is iterable %}
84
+ {{- message.content | tojson }}
85
+ {%- else %}
86
+ {{- message.content }}
87
+ {%- endif %}
88
+ {{- "<|eot_id|>" }}
89
+ {%- endif %}
90
+ {%- endfor %}
91
+ {%- if add_generation_prompt %}
92
+ {{- '<|start_header_id|>assistant<|end_header_id|>\n\n' }}
93
+ {%- endif %}
checkpoint-400/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:181c5f0270cf39930062ddfa3767a2481d0c360f120b11f8e25dbf533a1cdaba
3
+ size 14645
checkpoint-400/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9b8a590b08652be8259139b6f786bae95affe2f53f84177838aa80ae5d9ee130
3
+ size 1465
checkpoint-400/special_tokens_map.json ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|audio|>"
4
+ ],
5
+ "bos_token": {
6
+ "content": "<|begin_of_text|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false
11
+ },
12
+ "eos_token": {
13
+ "content": "<|eot_id|>",
14
+ "lstrip": false,
15
+ "normalized": false,
16
+ "rstrip": false,
17
+ "single_word": false
18
+ }
19
+ }
checkpoint-400/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fc3fecb199b4170636dbfab986d25f628157268d37b861f9cadaca60b1353bce
3
+ size 22849547
checkpoint-400/tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-400/trainer_state.json ADDED
@@ -0,0 +1,2834 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": null,
3
+ "best_metric": null,
4
+ "best_model_checkpoint": null,
5
+ "epoch": 2.88086642599278,
6
+ "eval_steps": 500,
7
+ "global_step": 400,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "epoch": 0.007220216606498195,
14
+ "grad_norm": 7.65625,
15
+ "learning_rate": 0.0,
16
+ "loss": 8.1214,
17
+ "step": 1
18
+ },
19
+ {
20
+ "epoch": 0.01444043321299639,
21
+ "grad_norm": 7.625,
22
+ "learning_rate": 4e-05,
23
+ "loss": 7.8276,
24
+ "step": 2
25
+ },
26
+ {
27
+ "epoch": 0.021660649819494584,
28
+ "grad_norm": 6.71875,
29
+ "learning_rate": 8e-05,
30
+ "loss": 7.5215,
31
+ "step": 3
32
+ },
33
+ {
34
+ "epoch": 0.02888086642599278,
35
+ "grad_norm": 3.328125,
36
+ "learning_rate": 0.00012,
37
+ "loss": 6.4869,
38
+ "step": 4
39
+ },
40
+ {
41
+ "epoch": 0.036101083032490974,
42
+ "grad_norm": 3.0,
43
+ "learning_rate": 0.00016,
44
+ "loss": 6.2766,
45
+ "step": 5
46
+ },
47
+ {
48
+ "epoch": 0.04332129963898917,
49
+ "grad_norm": 3.53125,
50
+ "learning_rate": 0.0002,
51
+ "loss": 6.235,
52
+ "step": 6
53
+ },
54
+ {
55
+ "epoch": 0.05054151624548736,
56
+ "grad_norm": 2.453125,
57
+ "learning_rate": 0.00019949367088607596,
58
+ "loss": 5.7801,
59
+ "step": 7
60
+ },
61
+ {
62
+ "epoch": 0.05776173285198556,
63
+ "grad_norm": 1.953125,
64
+ "learning_rate": 0.0001989873417721519,
65
+ "loss": 5.5885,
66
+ "step": 8
67
+ },
68
+ {
69
+ "epoch": 0.06498194945848375,
70
+ "grad_norm": 9.125,
71
+ "learning_rate": 0.00019848101265822785,
72
+ "loss": 5.9437,
73
+ "step": 9
74
+ },
75
+ {
76
+ "epoch": 0.07220216606498195,
77
+ "grad_norm": 1.6640625,
78
+ "learning_rate": 0.0001979746835443038,
79
+ "loss": 5.8105,
80
+ "step": 10
81
+ },
82
+ {
83
+ "epoch": 0.07942238267148015,
84
+ "grad_norm": 1.984375,
85
+ "learning_rate": 0.00019746835443037975,
86
+ "loss": 5.5402,
87
+ "step": 11
88
+ },
89
+ {
90
+ "epoch": 0.08664259927797834,
91
+ "grad_norm": 1.75,
92
+ "learning_rate": 0.0001969620253164557,
93
+ "loss": 5.6069,
94
+ "step": 12
95
+ },
96
+ {
97
+ "epoch": 0.09386281588447654,
98
+ "grad_norm": 2.5,
99
+ "learning_rate": 0.00019645569620253166,
100
+ "loss": 5.4168,
101
+ "step": 13
102
+ },
103
+ {
104
+ "epoch": 0.10108303249097472,
105
+ "grad_norm": 1.78125,
106
+ "learning_rate": 0.00019594936708860762,
107
+ "loss": 5.5413,
108
+ "step": 14
109
+ },
110
+ {
111
+ "epoch": 0.10830324909747292,
112
+ "grad_norm": 1.796875,
113
+ "learning_rate": 0.00019544303797468354,
114
+ "loss": 5.6355,
115
+ "step": 15
116
+ },
117
+ {
118
+ "epoch": 0.11552346570397112,
119
+ "grad_norm": 2.265625,
120
+ "learning_rate": 0.0001949367088607595,
121
+ "loss": 5.5477,
122
+ "step": 16
123
+ },
124
+ {
125
+ "epoch": 0.12274368231046931,
126
+ "grad_norm": 2.21875,
127
+ "learning_rate": 0.00019443037974683545,
128
+ "loss": 5.54,
129
+ "step": 17
130
+ },
131
+ {
132
+ "epoch": 0.1299638989169675,
133
+ "grad_norm": 1.8515625,
134
+ "learning_rate": 0.00019392405063291138,
135
+ "loss": 5.5275,
136
+ "step": 18
137
+ },
138
+ {
139
+ "epoch": 0.1371841155234657,
140
+ "grad_norm": 1.53125,
141
+ "learning_rate": 0.00019341772151898736,
142
+ "loss": 5.4271,
143
+ "step": 19
144
+ },
145
+ {
146
+ "epoch": 0.1444043321299639,
147
+ "grad_norm": 1.5703125,
148
+ "learning_rate": 0.00019291139240506331,
149
+ "loss": 5.367,
150
+ "step": 20
151
+ },
152
+ {
153
+ "epoch": 0.15162454873646208,
154
+ "grad_norm": 1.890625,
155
+ "learning_rate": 0.00019240506329113924,
156
+ "loss": 5.1354,
157
+ "step": 21
158
+ },
159
+ {
160
+ "epoch": 0.1588447653429603,
161
+ "grad_norm": 1.4453125,
162
+ "learning_rate": 0.0001918987341772152,
163
+ "loss": 5.446,
164
+ "step": 22
165
+ },
166
+ {
167
+ "epoch": 0.16606498194945848,
168
+ "grad_norm": 1.4296875,
169
+ "learning_rate": 0.00019139240506329115,
170
+ "loss": 5.2923,
171
+ "step": 23
172
+ },
173
+ {
174
+ "epoch": 0.17328519855595667,
175
+ "grad_norm": 1.234375,
176
+ "learning_rate": 0.0001908860759493671,
177
+ "loss": 5.2639,
178
+ "step": 24
179
+ },
180
+ {
181
+ "epoch": 0.18050541516245489,
182
+ "grad_norm": 1.3203125,
183
+ "learning_rate": 0.00019037974683544303,
184
+ "loss": 5.2309,
185
+ "step": 25
186
+ },
187
+ {
188
+ "epoch": 0.18772563176895307,
189
+ "grad_norm": 1.59375,
190
+ "learning_rate": 0.00018987341772151899,
191
+ "loss": 5.0781,
192
+ "step": 26
193
+ },
194
+ {
195
+ "epoch": 0.19494584837545126,
196
+ "grad_norm": 1.828125,
197
+ "learning_rate": 0.00018936708860759497,
198
+ "loss": 5.1897,
199
+ "step": 27
200
+ },
201
+ {
202
+ "epoch": 0.20216606498194944,
203
+ "grad_norm": 1.4921875,
204
+ "learning_rate": 0.0001888607594936709,
205
+ "loss": 5.4471,
206
+ "step": 28
207
+ },
208
+ {
209
+ "epoch": 0.20938628158844766,
210
+ "grad_norm": 1.78125,
211
+ "learning_rate": 0.00018835443037974685,
212
+ "loss": 5.2128,
213
+ "step": 29
214
+ },
215
+ {
216
+ "epoch": 0.21660649819494585,
217
+ "grad_norm": 1.6484375,
218
+ "learning_rate": 0.0001878481012658228,
219
+ "loss": 5.3517,
220
+ "step": 30
221
+ },
222
+ {
223
+ "epoch": 0.22382671480144403,
224
+ "grad_norm": 1.3125,
225
+ "learning_rate": 0.00018734177215189873,
226
+ "loss": 5.3442,
227
+ "step": 31
228
+ },
229
+ {
230
+ "epoch": 0.23104693140794225,
231
+ "grad_norm": 1.2734375,
232
+ "learning_rate": 0.00018683544303797468,
233
+ "loss": 5.4343,
234
+ "step": 32
235
+ },
236
+ {
237
+ "epoch": 0.23826714801444043,
238
+ "grad_norm": 1.796875,
239
+ "learning_rate": 0.00018632911392405064,
240
+ "loss": 5.0345,
241
+ "step": 33
242
+ },
243
+ {
244
+ "epoch": 0.24548736462093862,
245
+ "grad_norm": 1.4296875,
246
+ "learning_rate": 0.0001858227848101266,
247
+ "loss": 5.1871,
248
+ "step": 34
249
+ },
250
+ {
251
+ "epoch": 0.2527075812274368,
252
+ "grad_norm": 1.5078125,
253
+ "learning_rate": 0.00018531645569620255,
254
+ "loss": 5.2378,
255
+ "step": 35
256
+ },
257
+ {
258
+ "epoch": 0.259927797833935,
259
+ "grad_norm": 1.4921875,
260
+ "learning_rate": 0.0001848101265822785,
261
+ "loss": 5.1513,
262
+ "step": 36
263
+ },
264
+ {
265
+ "epoch": 0.26714801444043323,
266
+ "grad_norm": 2.015625,
267
+ "learning_rate": 0.00018430379746835445,
268
+ "loss": 5.2382,
269
+ "step": 37
270
+ },
271
+ {
272
+ "epoch": 0.2743682310469314,
273
+ "grad_norm": 1.5,
274
+ "learning_rate": 0.00018379746835443038,
275
+ "loss": 5.4532,
276
+ "step": 38
277
+ },
278
+ {
279
+ "epoch": 0.2815884476534296,
280
+ "grad_norm": 1.28125,
281
+ "learning_rate": 0.00018329113924050634,
282
+ "loss": 5.2139,
283
+ "step": 39
284
+ },
285
+ {
286
+ "epoch": 0.2888086642599278,
287
+ "grad_norm": 1.5703125,
288
+ "learning_rate": 0.0001827848101265823,
289
+ "loss": 5.1815,
290
+ "step": 40
291
+ },
292
+ {
293
+ "epoch": 0.296028880866426,
294
+ "grad_norm": 2.015625,
295
+ "learning_rate": 0.00018227848101265824,
296
+ "loss": 5.0119,
297
+ "step": 41
298
+ },
299
+ {
300
+ "epoch": 0.30324909747292417,
301
+ "grad_norm": 1.484375,
302
+ "learning_rate": 0.00018177215189873417,
303
+ "loss": 5.3286,
304
+ "step": 42
305
+ },
306
+ {
307
+ "epoch": 0.3104693140794224,
308
+ "grad_norm": 1.484375,
309
+ "learning_rate": 0.00018126582278481013,
310
+ "loss": 5.2125,
311
+ "step": 43
312
+ },
313
+ {
314
+ "epoch": 0.3176895306859206,
315
+ "grad_norm": 1.4140625,
316
+ "learning_rate": 0.00018075949367088608,
317
+ "loss": 5.1263,
318
+ "step": 44
319
+ },
320
+ {
321
+ "epoch": 0.3249097472924188,
322
+ "grad_norm": 1.125,
323
+ "learning_rate": 0.00018025316455696203,
324
+ "loss": 5.0574,
325
+ "step": 45
326
+ },
327
+ {
328
+ "epoch": 0.33212996389891697,
329
+ "grad_norm": 1.34375,
330
+ "learning_rate": 0.000179746835443038,
331
+ "loss": 5.1185,
332
+ "step": 46
333
+ },
334
+ {
335
+ "epoch": 0.33935018050541516,
336
+ "grad_norm": 1.5625,
337
+ "learning_rate": 0.00017924050632911394,
338
+ "loss": 5.4551,
339
+ "step": 47
340
+ },
341
+ {
342
+ "epoch": 0.34657039711191334,
343
+ "grad_norm": 1.5703125,
344
+ "learning_rate": 0.00017873417721518987,
345
+ "loss": 5.064,
346
+ "step": 48
347
+ },
348
+ {
349
+ "epoch": 0.35379061371841153,
350
+ "grad_norm": 1.328125,
351
+ "learning_rate": 0.00017822784810126582,
352
+ "loss": 5.1898,
353
+ "step": 49
354
+ },
355
+ {
356
+ "epoch": 0.36101083032490977,
357
+ "grad_norm": 1.40625,
358
+ "learning_rate": 0.00017772151898734178,
359
+ "loss": 5.2415,
360
+ "step": 50
361
+ },
362
+ {
363
+ "epoch": 0.36823104693140796,
364
+ "grad_norm": 1.6015625,
365
+ "learning_rate": 0.00017721518987341773,
366
+ "loss": 5.1292,
367
+ "step": 51
368
+ },
369
+ {
370
+ "epoch": 0.37545126353790614,
371
+ "grad_norm": 1.46875,
372
+ "learning_rate": 0.0001767088607594937,
373
+ "loss": 5.0821,
374
+ "step": 52
375
+ },
376
+ {
377
+ "epoch": 0.38267148014440433,
378
+ "grad_norm": 1.4921875,
379
+ "learning_rate": 0.00017620253164556964,
380
+ "loss": 5.3007,
381
+ "step": 53
382
+ },
383
+ {
384
+ "epoch": 0.3898916967509025,
385
+ "grad_norm": 1.59375,
386
+ "learning_rate": 0.0001756962025316456,
387
+ "loss": 5.2343,
388
+ "step": 54
389
+ },
390
+ {
391
+ "epoch": 0.3971119133574007,
392
+ "grad_norm": 1.4609375,
393
+ "learning_rate": 0.00017518987341772152,
394
+ "loss": 5.1127,
395
+ "step": 55
396
+ },
397
+ {
398
+ "epoch": 0.4043321299638989,
399
+ "grad_norm": 1.5703125,
400
+ "learning_rate": 0.00017468354430379748,
401
+ "loss": 4.9955,
402
+ "step": 56
403
+ },
404
+ {
405
+ "epoch": 0.41155234657039713,
406
+ "grad_norm": 1.7109375,
407
+ "learning_rate": 0.00017417721518987343,
408
+ "loss": 5.0371,
409
+ "step": 57
410
+ },
411
+ {
412
+ "epoch": 0.4187725631768953,
413
+ "grad_norm": 1.71875,
414
+ "learning_rate": 0.00017367088607594936,
415
+ "loss": 5.0244,
416
+ "step": 58
417
+ },
418
+ {
419
+ "epoch": 0.4259927797833935,
420
+ "grad_norm": 1.34375,
421
+ "learning_rate": 0.0001731645569620253,
422
+ "loss": 5.0269,
423
+ "step": 59
424
+ },
425
+ {
426
+ "epoch": 0.4332129963898917,
427
+ "grad_norm": 1.2734375,
428
+ "learning_rate": 0.0001726582278481013,
429
+ "loss": 5.0641,
430
+ "step": 60
431
+ },
432
+ {
433
+ "epoch": 0.4404332129963899,
434
+ "grad_norm": 1.1171875,
435
+ "learning_rate": 0.00017215189873417722,
436
+ "loss": 5.2098,
437
+ "step": 61
438
+ },
439
+ {
440
+ "epoch": 0.44765342960288806,
441
+ "grad_norm": 1.984375,
442
+ "learning_rate": 0.00017164556962025317,
443
+ "loss": 4.7874,
444
+ "step": 62
445
+ },
446
+ {
447
+ "epoch": 0.4548736462093863,
448
+ "grad_norm": 1.578125,
449
+ "learning_rate": 0.00017113924050632913,
450
+ "loss": 5.0914,
451
+ "step": 63
452
+ },
453
+ {
454
+ "epoch": 0.4620938628158845,
455
+ "grad_norm": 1.375,
456
+ "learning_rate": 0.00017063291139240508,
457
+ "loss": 5.0948,
458
+ "step": 64
459
+ },
460
+ {
461
+ "epoch": 0.4693140794223827,
462
+ "grad_norm": 1.40625,
463
+ "learning_rate": 0.000170126582278481,
464
+ "loss": 5.2387,
465
+ "step": 65
466
+ },
467
+ {
468
+ "epoch": 0.47653429602888087,
469
+ "grad_norm": 1.6953125,
470
+ "learning_rate": 0.00016962025316455696,
471
+ "loss": 4.7688,
472
+ "step": 66
473
+ },
474
+ {
475
+ "epoch": 0.48375451263537905,
476
+ "grad_norm": 1.1484375,
477
+ "learning_rate": 0.00016911392405063292,
478
+ "loss": 5.1276,
479
+ "step": 67
480
+ },
481
+ {
482
+ "epoch": 0.49097472924187724,
483
+ "grad_norm": 1.5859375,
484
+ "learning_rate": 0.00016860759493670887,
485
+ "loss": 5.0263,
486
+ "step": 68
487
+ },
488
+ {
489
+ "epoch": 0.4981949458483754,
490
+ "grad_norm": 1.2421875,
491
+ "learning_rate": 0.00016810126582278483,
492
+ "loss": 5.0675,
493
+ "step": 69
494
+ },
495
+ {
496
+ "epoch": 0.5054151624548736,
497
+ "grad_norm": 1.90625,
498
+ "learning_rate": 0.00016759493670886078,
499
+ "loss": 4.9957,
500
+ "step": 70
501
+ },
502
+ {
503
+ "epoch": 0.5126353790613718,
504
+ "grad_norm": 1.5234375,
505
+ "learning_rate": 0.0001670886075949367,
506
+ "loss": 5.2671,
507
+ "step": 71
508
+ },
509
+ {
510
+ "epoch": 0.51985559566787,
511
+ "grad_norm": 1.578125,
512
+ "learning_rate": 0.00016658227848101266,
513
+ "loss": 5.0403,
514
+ "step": 72
515
+ },
516
+ {
517
+ "epoch": 0.5270758122743683,
518
+ "grad_norm": 1.3125,
519
+ "learning_rate": 0.00016607594936708862,
520
+ "loss": 5.1303,
521
+ "step": 73
522
+ },
523
+ {
524
+ "epoch": 0.5342960288808665,
525
+ "grad_norm": 1.546875,
526
+ "learning_rate": 0.00016556962025316457,
527
+ "loss": 4.7457,
528
+ "step": 74
529
+ },
530
+ {
531
+ "epoch": 0.5415162454873647,
532
+ "grad_norm": 2.171875,
533
+ "learning_rate": 0.0001650632911392405,
534
+ "loss": 4.6724,
535
+ "step": 75
536
+ },
537
+ {
538
+ "epoch": 0.5487364620938628,
539
+ "grad_norm": 1.3125,
540
+ "learning_rate": 0.00016455696202531648,
541
+ "loss": 5.077,
542
+ "step": 76
543
+ },
544
+ {
545
+ "epoch": 0.555956678700361,
546
+ "grad_norm": 1.4375,
547
+ "learning_rate": 0.00016405063291139243,
548
+ "loss": 5.1458,
549
+ "step": 77
550
+ },
551
+ {
552
+ "epoch": 0.5631768953068592,
553
+ "grad_norm": 1.9140625,
554
+ "learning_rate": 0.00016354430379746836,
555
+ "loss": 4.8579,
556
+ "step": 78
557
+ },
558
+ {
559
+ "epoch": 0.5703971119133574,
560
+ "grad_norm": 1.2109375,
561
+ "learning_rate": 0.00016303797468354431,
562
+ "loss": 5.1405,
563
+ "step": 79
564
+ },
565
+ {
566
+ "epoch": 0.5776173285198556,
567
+ "grad_norm": 1.890625,
568
+ "learning_rate": 0.00016253164556962027,
569
+ "loss": 5.0978,
570
+ "step": 80
571
+ },
572
+ {
573
+ "epoch": 0.5848375451263538,
574
+ "grad_norm": 1.34375,
575
+ "learning_rate": 0.0001620253164556962,
576
+ "loss": 5.1328,
577
+ "step": 81
578
+ },
579
+ {
580
+ "epoch": 0.592057761732852,
581
+ "grad_norm": 1.421875,
582
+ "learning_rate": 0.00016151898734177215,
583
+ "loss": 5.0119,
584
+ "step": 82
585
+ },
586
+ {
587
+ "epoch": 0.5992779783393501,
588
+ "grad_norm": 1.6796875,
589
+ "learning_rate": 0.0001610126582278481,
590
+ "loss": 4.9794,
591
+ "step": 83
592
+ },
593
+ {
594
+ "epoch": 0.6064981949458483,
595
+ "grad_norm": 1.2578125,
596
+ "learning_rate": 0.00016050632911392406,
597
+ "loss": 5.0867,
598
+ "step": 84
599
+ },
600
+ {
601
+ "epoch": 0.6137184115523465,
602
+ "grad_norm": 1.53125,
603
+ "learning_rate": 0.00016,
604
+ "loss": 4.9906,
605
+ "step": 85
606
+ },
607
+ {
608
+ "epoch": 0.6209386281588448,
609
+ "grad_norm": 1.7265625,
610
+ "learning_rate": 0.00015949367088607597,
611
+ "loss": 4.8388,
612
+ "step": 86
613
+ },
614
+ {
615
+ "epoch": 0.628158844765343,
616
+ "grad_norm": 1.578125,
617
+ "learning_rate": 0.00015898734177215192,
618
+ "loss": 4.9262,
619
+ "step": 87
620
+ },
621
+ {
622
+ "epoch": 0.6353790613718412,
623
+ "grad_norm": 1.7578125,
624
+ "learning_rate": 0.00015848101265822785,
625
+ "loss": 4.9778,
626
+ "step": 88
627
+ },
628
+ {
629
+ "epoch": 0.6425992779783394,
630
+ "grad_norm": 1.3203125,
631
+ "learning_rate": 0.0001579746835443038,
632
+ "loss": 4.7477,
633
+ "step": 89
634
+ },
635
+ {
636
+ "epoch": 0.6498194945848376,
637
+ "grad_norm": 1.484375,
638
+ "learning_rate": 0.00015746835443037976,
639
+ "loss": 4.9632,
640
+ "step": 90
641
+ },
642
+ {
643
+ "epoch": 0.6570397111913358,
644
+ "grad_norm": 1.9453125,
645
+ "learning_rate": 0.00015696202531645568,
646
+ "loss": 5.1071,
647
+ "step": 91
648
+ },
649
+ {
650
+ "epoch": 0.6642599277978339,
651
+ "grad_norm": 1.7890625,
652
+ "learning_rate": 0.00015645569620253164,
653
+ "loss": 4.7171,
654
+ "step": 92
655
+ },
656
+ {
657
+ "epoch": 0.6714801444043321,
658
+ "grad_norm": 1.4296875,
659
+ "learning_rate": 0.00015594936708860762,
660
+ "loss": 4.841,
661
+ "step": 93
662
+ },
663
+ {
664
+ "epoch": 0.6787003610108303,
665
+ "grad_norm": 1.5,
666
+ "learning_rate": 0.00015544303797468355,
667
+ "loss": 4.7562,
668
+ "step": 94
669
+ },
670
+ {
671
+ "epoch": 0.6859205776173285,
672
+ "grad_norm": 1.8671875,
673
+ "learning_rate": 0.0001549367088607595,
674
+ "loss": 4.8401,
675
+ "step": 95
676
+ },
677
+ {
678
+ "epoch": 0.6931407942238267,
679
+ "grad_norm": 1.3203125,
680
+ "learning_rate": 0.00015443037974683546,
681
+ "loss": 4.7018,
682
+ "step": 96
683
+ },
684
+ {
685
+ "epoch": 0.7003610108303249,
686
+ "grad_norm": 1.7578125,
687
+ "learning_rate": 0.0001539240506329114,
688
+ "loss": 4.7021,
689
+ "step": 97
690
+ },
691
+ {
692
+ "epoch": 0.7075812274368231,
693
+ "grad_norm": 1.671875,
694
+ "learning_rate": 0.00015341772151898734,
695
+ "loss": 4.7623,
696
+ "step": 98
697
+ },
698
+ {
699
+ "epoch": 0.7148014440433214,
700
+ "grad_norm": 1.2734375,
701
+ "learning_rate": 0.0001529113924050633,
702
+ "loss": 4.8588,
703
+ "step": 99
704
+ },
705
+ {
706
+ "epoch": 0.7220216606498195,
707
+ "grad_norm": 1.3515625,
708
+ "learning_rate": 0.00015240506329113924,
709
+ "loss": 4.7439,
710
+ "step": 100
711
+ },
712
+ {
713
+ "epoch": 0.7292418772563177,
714
+ "grad_norm": 1.3203125,
715
+ "learning_rate": 0.0001518987341772152,
716
+ "loss": 4.9254,
717
+ "step": 101
718
+ },
719
+ {
720
+ "epoch": 0.7364620938628159,
721
+ "grad_norm": 1.578125,
722
+ "learning_rate": 0.00015139240506329115,
723
+ "loss": 4.9471,
724
+ "step": 102
725
+ },
726
+ {
727
+ "epoch": 0.7436823104693141,
728
+ "grad_norm": 1.5546875,
729
+ "learning_rate": 0.0001508860759493671,
730
+ "loss": 4.9483,
731
+ "step": 103
732
+ },
733
+ {
734
+ "epoch": 0.7509025270758123,
735
+ "grad_norm": 1.53125,
736
+ "learning_rate": 0.00015037974683544303,
737
+ "loss": 4.8422,
738
+ "step": 104
739
+ },
740
+ {
741
+ "epoch": 0.7581227436823105,
742
+ "grad_norm": 1.9609375,
743
+ "learning_rate": 0.000149873417721519,
744
+ "loss": 4.9045,
745
+ "step": 105
746
+ },
747
+ {
748
+ "epoch": 0.7653429602888087,
749
+ "grad_norm": 1.4140625,
750
+ "learning_rate": 0.00014936708860759494,
751
+ "loss": 4.8837,
752
+ "step": 106
753
+ },
754
+ {
755
+ "epoch": 0.7725631768953068,
756
+ "grad_norm": 1.6328125,
757
+ "learning_rate": 0.0001488607594936709,
758
+ "loss": 5.1295,
759
+ "step": 107
760
+ },
761
+ {
762
+ "epoch": 0.779783393501805,
763
+ "grad_norm": 1.4609375,
764
+ "learning_rate": 0.00014835443037974682,
765
+ "loss": 4.8442,
766
+ "step": 108
767
+ },
768
+ {
769
+ "epoch": 0.7870036101083032,
770
+ "grad_norm": 1.4765625,
771
+ "learning_rate": 0.0001478481012658228,
772
+ "loss": 4.7237,
773
+ "step": 109
774
+ },
775
+ {
776
+ "epoch": 0.7942238267148014,
777
+ "grad_norm": 1.2109375,
778
+ "learning_rate": 0.00014734177215189876,
779
+ "loss": 5.0218,
780
+ "step": 110
781
+ },
782
+ {
783
+ "epoch": 0.8014440433212996,
784
+ "grad_norm": 1.203125,
785
+ "learning_rate": 0.0001468354430379747,
786
+ "loss": 5.0859,
787
+ "step": 111
788
+ },
789
+ {
790
+ "epoch": 0.8086642599277978,
791
+ "grad_norm": 1.1484375,
792
+ "learning_rate": 0.00014632911392405064,
793
+ "loss": 5.0543,
794
+ "step": 112
795
+ },
796
+ {
797
+ "epoch": 0.8158844765342961,
798
+ "grad_norm": 1.140625,
799
+ "learning_rate": 0.0001458227848101266,
800
+ "loss": 4.8919,
801
+ "step": 113
802
+ },
803
+ {
804
+ "epoch": 0.8231046931407943,
805
+ "grad_norm": 1.453125,
806
+ "learning_rate": 0.00014531645569620252,
807
+ "loss": 4.8091,
808
+ "step": 114
809
+ },
810
+ {
811
+ "epoch": 0.8303249097472925,
812
+ "grad_norm": 1.4375,
813
+ "learning_rate": 0.00014481012658227848,
814
+ "loss": 4.7945,
815
+ "step": 115
816
+ },
817
+ {
818
+ "epoch": 0.8375451263537906,
819
+ "grad_norm": 1.1484375,
820
+ "learning_rate": 0.00014430379746835443,
821
+ "loss": 5.0791,
822
+ "step": 116
823
+ },
824
+ {
825
+ "epoch": 0.8447653429602888,
826
+ "grad_norm": 1.421875,
827
+ "learning_rate": 0.00014379746835443039,
828
+ "loss": 4.8741,
829
+ "step": 117
830
+ },
831
+ {
832
+ "epoch": 0.851985559566787,
833
+ "grad_norm": 1.5,
834
+ "learning_rate": 0.00014329113924050634,
835
+ "loss": 4.927,
836
+ "step": 118
837
+ },
838
+ {
839
+ "epoch": 0.8592057761732852,
840
+ "grad_norm": 1.5859375,
841
+ "learning_rate": 0.0001427848101265823,
842
+ "loss": 5.2094,
843
+ "step": 119
844
+ },
845
+ {
846
+ "epoch": 0.8664259927797834,
847
+ "grad_norm": 1.3515625,
848
+ "learning_rate": 0.00014227848101265825,
849
+ "loss": 5.027,
850
+ "step": 120
851
+ },
852
+ {
853
+ "epoch": 0.8736462093862816,
854
+ "grad_norm": 1.28125,
855
+ "learning_rate": 0.00014177215189873418,
856
+ "loss": 4.809,
857
+ "step": 121
858
+ },
859
+ {
860
+ "epoch": 0.8808664259927798,
861
+ "grad_norm": 1.328125,
862
+ "learning_rate": 0.00014126582278481013,
863
+ "loss": 5.2795,
864
+ "step": 122
865
+ },
866
+ {
867
+ "epoch": 0.8880866425992779,
868
+ "grad_norm": 1.3828125,
869
+ "learning_rate": 0.00014075949367088608,
870
+ "loss": 4.9871,
871
+ "step": 123
872
+ },
873
+ {
874
+ "epoch": 0.8953068592057761,
875
+ "grad_norm": 1.4296875,
876
+ "learning_rate": 0.00014025316455696204,
877
+ "loss": 4.711,
878
+ "step": 124
879
+ },
880
+ {
881
+ "epoch": 0.9025270758122743,
882
+ "grad_norm": 1.5,
883
+ "learning_rate": 0.00013974683544303796,
884
+ "loss": 5.006,
885
+ "step": 125
886
+ },
887
+ {
888
+ "epoch": 0.9097472924187726,
889
+ "grad_norm": 1.2734375,
890
+ "learning_rate": 0.00013924050632911395,
891
+ "loss": 4.974,
892
+ "step": 126
893
+ },
894
+ {
895
+ "epoch": 0.9169675090252708,
896
+ "grad_norm": 1.75,
897
+ "learning_rate": 0.00013873417721518987,
898
+ "loss": 4.818,
899
+ "step": 127
900
+ },
901
+ {
902
+ "epoch": 0.924187725631769,
903
+ "grad_norm": 1.2578125,
904
+ "learning_rate": 0.00013822784810126583,
905
+ "loss": 4.9661,
906
+ "step": 128
907
+ },
908
+ {
909
+ "epoch": 0.9314079422382672,
910
+ "grad_norm": 1.921875,
911
+ "learning_rate": 0.00013772151898734178,
912
+ "loss": 4.6811,
913
+ "step": 129
914
+ },
915
+ {
916
+ "epoch": 0.9386281588447654,
917
+ "grad_norm": 1.515625,
918
+ "learning_rate": 0.00013721518987341774,
919
+ "loss": 4.642,
920
+ "step": 130
921
+ },
922
+ {
923
+ "epoch": 0.9458483754512635,
924
+ "grad_norm": 1.203125,
925
+ "learning_rate": 0.00013670886075949366,
926
+ "loss": 4.6431,
927
+ "step": 131
928
+ },
929
+ {
930
+ "epoch": 0.9530685920577617,
931
+ "grad_norm": 1.5859375,
932
+ "learning_rate": 0.00013620253164556962,
933
+ "loss": 4.9552,
934
+ "step": 132
935
+ },
936
+ {
937
+ "epoch": 0.9602888086642599,
938
+ "grad_norm": 1.8203125,
939
+ "learning_rate": 0.00013569620253164557,
940
+ "loss": 4.7089,
941
+ "step": 133
942
+ },
943
+ {
944
+ "epoch": 0.9675090252707581,
945
+ "grad_norm": 1.4296875,
946
+ "learning_rate": 0.00013518987341772153,
947
+ "loss": 5.1314,
948
+ "step": 134
949
+ },
950
+ {
951
+ "epoch": 0.9747292418772563,
952
+ "grad_norm": 1.4609375,
953
+ "learning_rate": 0.00013468354430379748,
954
+ "loss": 4.9375,
955
+ "step": 135
956
+ },
957
+ {
958
+ "epoch": 0.9819494584837545,
959
+ "grad_norm": 1.578125,
960
+ "learning_rate": 0.00013417721518987343,
961
+ "loss": 4.6534,
962
+ "step": 136
963
+ },
964
+ {
965
+ "epoch": 0.9891696750902527,
966
+ "grad_norm": 1.15625,
967
+ "learning_rate": 0.0001336708860759494,
968
+ "loss": 4.9474,
969
+ "step": 137
970
+ },
971
+ {
972
+ "epoch": 0.9963898916967509,
973
+ "grad_norm": 1.3515625,
974
+ "learning_rate": 0.00013316455696202532,
975
+ "loss": 4.595,
976
+ "step": 138
977
+ },
978
+ {
979
+ "epoch": 1.0,
980
+ "grad_norm": 2.21875,
981
+ "learning_rate": 0.00013265822784810127,
982
+ "loss": 5.3188,
983
+ "step": 139
984
+ },
985
+ {
986
+ "epoch": 1.0072202166064983,
987
+ "grad_norm": 2.046875,
988
+ "learning_rate": 0.00013215189873417722,
989
+ "loss": 4.2236,
990
+ "step": 140
991
+ },
992
+ {
993
+ "epoch": 1.0144404332129964,
994
+ "grad_norm": 1.5,
995
+ "learning_rate": 0.00013164556962025315,
996
+ "loss": 3.9149,
997
+ "step": 141
998
+ },
999
+ {
1000
+ "epoch": 1.0216606498194947,
1001
+ "grad_norm": 1.8046875,
1002
+ "learning_rate": 0.00013113924050632913,
1003
+ "loss": 3.9392,
1004
+ "step": 142
1005
+ },
1006
+ {
1007
+ "epoch": 1.0288808664259927,
1008
+ "grad_norm": 1.6171875,
1009
+ "learning_rate": 0.0001306329113924051,
1010
+ "loss": 3.595,
1011
+ "step": 143
1012
+ },
1013
+ {
1014
+ "epoch": 1.036101083032491,
1015
+ "grad_norm": 1.7578125,
1016
+ "learning_rate": 0.00013012658227848101,
1017
+ "loss": 3.7682,
1018
+ "step": 144
1019
+ },
1020
+ {
1021
+ "epoch": 1.0433212996389891,
1022
+ "grad_norm": 1.6015625,
1023
+ "learning_rate": 0.00012962025316455697,
1024
+ "loss": 3.548,
1025
+ "step": 145
1026
+ },
1027
+ {
1028
+ "epoch": 1.0505415162454874,
1029
+ "grad_norm": 2.203125,
1030
+ "learning_rate": 0.00012911392405063292,
1031
+ "loss": 3.432,
1032
+ "step": 146
1033
+ },
1034
+ {
1035
+ "epoch": 1.0577617328519855,
1036
+ "grad_norm": 1.8125,
1037
+ "learning_rate": 0.00012860759493670888,
1038
+ "loss": 3.4599,
1039
+ "step": 147
1040
+ },
1041
+ {
1042
+ "epoch": 1.0649819494584838,
1043
+ "grad_norm": 2.75,
1044
+ "learning_rate": 0.0001281012658227848,
1045
+ "loss": 3.4754,
1046
+ "step": 148
1047
+ },
1048
+ {
1049
+ "epoch": 1.0722021660649819,
1050
+ "grad_norm": 2.015625,
1051
+ "learning_rate": 0.00012759493670886076,
1052
+ "loss": 3.793,
1053
+ "step": 149
1054
+ },
1055
+ {
1056
+ "epoch": 1.0794223826714802,
1057
+ "grad_norm": 2.0625,
1058
+ "learning_rate": 0.0001270886075949367,
1059
+ "loss": 4.3158,
1060
+ "step": 150
1061
+ },
1062
+ {
1063
+ "epoch": 1.0866425992779782,
1064
+ "grad_norm": 1.8046875,
1065
+ "learning_rate": 0.00012658227848101267,
1066
+ "loss": 4.1955,
1067
+ "step": 151
1068
+ },
1069
+ {
1070
+ "epoch": 1.0938628158844765,
1071
+ "grad_norm": 1.890625,
1072
+ "learning_rate": 0.00012607594936708862,
1073
+ "loss": 3.7652,
1074
+ "step": 152
1075
+ },
1076
+ {
1077
+ "epoch": 1.1010830324909748,
1078
+ "grad_norm": 1.921875,
1079
+ "learning_rate": 0.00012556962025316457,
1080
+ "loss": 3.6214,
1081
+ "step": 153
1082
+ },
1083
+ {
1084
+ "epoch": 1.108303249097473,
1085
+ "grad_norm": 1.6953125,
1086
+ "learning_rate": 0.0001250632911392405,
1087
+ "loss": 3.6964,
1088
+ "step": 154
1089
+ },
1090
+ {
1091
+ "epoch": 1.1155234657039712,
1092
+ "grad_norm": 2.25,
1093
+ "learning_rate": 0.00012455696202531646,
1094
+ "loss": 3.8066,
1095
+ "step": 155
1096
+ },
1097
+ {
1098
+ "epoch": 1.1227436823104693,
1099
+ "grad_norm": 1.671875,
1100
+ "learning_rate": 0.0001240506329113924,
1101
+ "loss": 3.8555,
1102
+ "step": 156
1103
+ },
1104
+ {
1105
+ "epoch": 1.1299638989169676,
1106
+ "grad_norm": 1.9921875,
1107
+ "learning_rate": 0.00012354430379746836,
1108
+ "loss": 3.8639,
1109
+ "step": 157
1110
+ },
1111
+ {
1112
+ "epoch": 1.1371841155234657,
1113
+ "grad_norm": 2.03125,
1114
+ "learning_rate": 0.0001230379746835443,
1115
+ "loss": 3.312,
1116
+ "step": 158
1117
+ },
1118
+ {
1119
+ "epoch": 1.144404332129964,
1120
+ "grad_norm": 1.4609375,
1121
+ "learning_rate": 0.00012253164556962027,
1122
+ "loss": 4.078,
1123
+ "step": 159
1124
+ },
1125
+ {
1126
+ "epoch": 1.151624548736462,
1127
+ "grad_norm": 1.59375,
1128
+ "learning_rate": 0.00012202531645569621,
1129
+ "loss": 3.7732,
1130
+ "step": 160
1131
+ },
1132
+ {
1133
+ "epoch": 1.1588447653429603,
1134
+ "grad_norm": 2.171875,
1135
+ "learning_rate": 0.00012151898734177217,
1136
+ "loss": 3.2931,
1137
+ "step": 161
1138
+ },
1139
+ {
1140
+ "epoch": 1.1660649819494584,
1141
+ "grad_norm": 1.6171875,
1142
+ "learning_rate": 0.00012101265822784811,
1143
+ "loss": 3.5801,
1144
+ "step": 162
1145
+ },
1146
+ {
1147
+ "epoch": 1.1732851985559567,
1148
+ "grad_norm": 1.8203125,
1149
+ "learning_rate": 0.00012050632911392405,
1150
+ "loss": 3.5026,
1151
+ "step": 163
1152
+ },
1153
+ {
1154
+ "epoch": 1.1805054151624548,
1155
+ "grad_norm": 1.90625,
1156
+ "learning_rate": 0.00012,
1157
+ "loss": 3.4076,
1158
+ "step": 164
1159
+ },
1160
+ {
1161
+ "epoch": 1.187725631768953,
1162
+ "grad_norm": 1.5390625,
1163
+ "learning_rate": 0.00011949367088607594,
1164
+ "loss": 4.0278,
1165
+ "step": 165
1166
+ },
1167
+ {
1168
+ "epoch": 1.1949458483754514,
1169
+ "grad_norm": 1.7421875,
1170
+ "learning_rate": 0.0001189873417721519,
1171
+ "loss": 3.7094,
1172
+ "step": 166
1173
+ },
1174
+ {
1175
+ "epoch": 1.2021660649819494,
1176
+ "grad_norm": 1.34375,
1177
+ "learning_rate": 0.00011848101265822787,
1178
+ "loss": 3.869,
1179
+ "step": 167
1180
+ },
1181
+ {
1182
+ "epoch": 1.2093862815884477,
1183
+ "grad_norm": 1.7578125,
1184
+ "learning_rate": 0.0001179746835443038,
1185
+ "loss": 3.5398,
1186
+ "step": 168
1187
+ },
1188
+ {
1189
+ "epoch": 1.2166064981949458,
1190
+ "grad_norm": 2.046875,
1191
+ "learning_rate": 0.00011746835443037976,
1192
+ "loss": 3.5865,
1193
+ "step": 169
1194
+ },
1195
+ {
1196
+ "epoch": 1.2238267148014441,
1197
+ "grad_norm": 1.59375,
1198
+ "learning_rate": 0.0001169620253164557,
1199
+ "loss": 4.1247,
1200
+ "step": 170
1201
+ },
1202
+ {
1203
+ "epoch": 1.2310469314079422,
1204
+ "grad_norm": 1.4921875,
1205
+ "learning_rate": 0.00011645569620253166,
1206
+ "loss": 3.7728,
1207
+ "step": 171
1208
+ },
1209
+ {
1210
+ "epoch": 1.2382671480144405,
1211
+ "grad_norm": 2.3125,
1212
+ "learning_rate": 0.0001159493670886076,
1213
+ "loss": 3.9022,
1214
+ "step": 172
1215
+ },
1216
+ {
1217
+ "epoch": 1.2454873646209386,
1218
+ "grad_norm": 2.03125,
1219
+ "learning_rate": 0.00011544303797468354,
1220
+ "loss": 4.4207,
1221
+ "step": 173
1222
+ },
1223
+ {
1224
+ "epoch": 1.2527075812274369,
1225
+ "grad_norm": 1.625,
1226
+ "learning_rate": 0.00011493670886075949,
1227
+ "loss": 3.7136,
1228
+ "step": 174
1229
+ },
1230
+ {
1231
+ "epoch": 1.259927797833935,
1232
+ "grad_norm": 1.8203125,
1233
+ "learning_rate": 0.00011443037974683546,
1234
+ "loss": 3.622,
1235
+ "step": 175
1236
+ },
1237
+ {
1238
+ "epoch": 1.2671480144404332,
1239
+ "grad_norm": 1.84375,
1240
+ "learning_rate": 0.0001139240506329114,
1241
+ "loss": 3.6439,
1242
+ "step": 176
1243
+ },
1244
+ {
1245
+ "epoch": 1.2743682310469313,
1246
+ "grad_norm": 1.8359375,
1247
+ "learning_rate": 0.00011341772151898735,
1248
+ "loss": 3.4,
1249
+ "step": 177
1250
+ },
1251
+ {
1252
+ "epoch": 1.2815884476534296,
1253
+ "grad_norm": 1.796875,
1254
+ "learning_rate": 0.0001129113924050633,
1255
+ "loss": 3.549,
1256
+ "step": 178
1257
+ },
1258
+ {
1259
+ "epoch": 1.288808664259928,
1260
+ "grad_norm": 2.421875,
1261
+ "learning_rate": 0.00011240506329113925,
1262
+ "loss": 3.6358,
1263
+ "step": 179
1264
+ },
1265
+ {
1266
+ "epoch": 1.296028880866426,
1267
+ "grad_norm": 1.7421875,
1268
+ "learning_rate": 0.00011189873417721519,
1269
+ "loss": 3.6867,
1270
+ "step": 180
1271
+ },
1272
+ {
1273
+ "epoch": 1.303249097472924,
1274
+ "grad_norm": 1.8671875,
1275
+ "learning_rate": 0.00011139240506329114,
1276
+ "loss": 3.1274,
1277
+ "step": 181
1278
+ },
1279
+ {
1280
+ "epoch": 1.3104693140794224,
1281
+ "grad_norm": 2.203125,
1282
+ "learning_rate": 0.00011088607594936708,
1283
+ "loss": 3.6901,
1284
+ "step": 182
1285
+ },
1286
+ {
1287
+ "epoch": 1.3176895306859207,
1288
+ "grad_norm": 1.4140625,
1289
+ "learning_rate": 0.00011037974683544305,
1290
+ "loss": 3.9856,
1291
+ "step": 183
1292
+ },
1293
+ {
1294
+ "epoch": 1.3249097472924187,
1295
+ "grad_norm": 1.8671875,
1296
+ "learning_rate": 0.000109873417721519,
1297
+ "loss": 3.1664,
1298
+ "step": 184
1299
+ },
1300
+ {
1301
+ "epoch": 1.332129963898917,
1302
+ "grad_norm": 1.59375,
1303
+ "learning_rate": 0.00010936708860759495,
1304
+ "loss": 4.0129,
1305
+ "step": 185
1306
+ },
1307
+ {
1308
+ "epoch": 1.339350180505415,
1309
+ "grad_norm": 2.03125,
1310
+ "learning_rate": 0.00010886075949367089,
1311
+ "loss": 3.6138,
1312
+ "step": 186
1313
+ },
1314
+ {
1315
+ "epoch": 1.3465703971119134,
1316
+ "grad_norm": 1.578125,
1317
+ "learning_rate": 0.00010835443037974684,
1318
+ "loss": 3.715,
1319
+ "step": 187
1320
+ },
1321
+ {
1322
+ "epoch": 1.3537906137184115,
1323
+ "grad_norm": 1.921875,
1324
+ "learning_rate": 0.00010784810126582278,
1325
+ "loss": 3.7897,
1326
+ "step": 188
1327
+ },
1328
+ {
1329
+ "epoch": 1.3610108303249098,
1330
+ "grad_norm": 1.953125,
1331
+ "learning_rate": 0.00010734177215189874,
1332
+ "loss": 3.7013,
1333
+ "step": 189
1334
+ },
1335
+ {
1336
+ "epoch": 1.3682310469314078,
1337
+ "grad_norm": 1.5234375,
1338
+ "learning_rate": 0.00010683544303797468,
1339
+ "loss": 3.772,
1340
+ "step": 190
1341
+ },
1342
+ {
1343
+ "epoch": 1.3754512635379061,
1344
+ "grad_norm": 1.375,
1345
+ "learning_rate": 0.00010632911392405063,
1346
+ "loss": 3.9533,
1347
+ "step": 191
1348
+ },
1349
+ {
1350
+ "epoch": 1.3826714801444044,
1351
+ "grad_norm": 1.828125,
1352
+ "learning_rate": 0.0001058227848101266,
1353
+ "loss": 3.4597,
1354
+ "step": 192
1355
+ },
1356
+ {
1357
+ "epoch": 1.3898916967509025,
1358
+ "grad_norm": 1.890625,
1359
+ "learning_rate": 0.00010531645569620254,
1360
+ "loss": 3.4312,
1361
+ "step": 193
1362
+ },
1363
+ {
1364
+ "epoch": 1.3971119133574006,
1365
+ "grad_norm": 2.09375,
1366
+ "learning_rate": 0.0001048101265822785,
1367
+ "loss": 3.5669,
1368
+ "step": 194
1369
+ },
1370
+ {
1371
+ "epoch": 1.404332129963899,
1372
+ "grad_norm": 2.40625,
1373
+ "learning_rate": 0.00010430379746835443,
1374
+ "loss": 3.4737,
1375
+ "step": 195
1376
+ },
1377
+ {
1378
+ "epoch": 1.4115523465703972,
1379
+ "grad_norm": 1.421875,
1380
+ "learning_rate": 0.00010379746835443039,
1381
+ "loss": 3.7205,
1382
+ "step": 196
1383
+ },
1384
+ {
1385
+ "epoch": 1.4187725631768953,
1386
+ "grad_norm": 1.5234375,
1387
+ "learning_rate": 0.00010329113924050633,
1388
+ "loss": 3.8879,
1389
+ "step": 197
1390
+ },
1391
+ {
1392
+ "epoch": 1.4259927797833936,
1393
+ "grad_norm": 1.59375,
1394
+ "learning_rate": 0.00010278481012658227,
1395
+ "loss": 4.2951,
1396
+ "step": 198
1397
+ },
1398
+ {
1399
+ "epoch": 1.4332129963898916,
1400
+ "grad_norm": 1.546875,
1401
+ "learning_rate": 0.00010227848101265822,
1402
+ "loss": 3.8631,
1403
+ "step": 199
1404
+ },
1405
+ {
1406
+ "epoch": 1.44043321299639,
1407
+ "grad_norm": 1.59375,
1408
+ "learning_rate": 0.00010177215189873419,
1409
+ "loss": 3.8355,
1410
+ "step": 200
1411
+ },
1412
+ {
1413
+ "epoch": 1.447653429602888,
1414
+ "grad_norm": 2.390625,
1415
+ "learning_rate": 0.00010126582278481013,
1416
+ "loss": 3.6728,
1417
+ "step": 201
1418
+ },
1419
+ {
1420
+ "epoch": 1.4548736462093863,
1421
+ "grad_norm": 2.1875,
1422
+ "learning_rate": 0.00010075949367088609,
1423
+ "loss": 3.993,
1424
+ "step": 202
1425
+ },
1426
+ {
1427
+ "epoch": 1.4620938628158844,
1428
+ "grad_norm": 1.859375,
1429
+ "learning_rate": 0.00010025316455696203,
1430
+ "loss": 3.5135,
1431
+ "step": 203
1432
+ },
1433
+ {
1434
+ "epoch": 1.4693140794223827,
1435
+ "grad_norm": 1.578125,
1436
+ "learning_rate": 9.974683544303798e-05,
1437
+ "loss": 3.8112,
1438
+ "step": 204
1439
+ },
1440
+ {
1441
+ "epoch": 1.476534296028881,
1442
+ "grad_norm": 1.6640625,
1443
+ "learning_rate": 9.924050632911392e-05,
1444
+ "loss": 3.7617,
1445
+ "step": 205
1446
+ },
1447
+ {
1448
+ "epoch": 1.483754512635379,
1449
+ "grad_norm": 1.6953125,
1450
+ "learning_rate": 9.873417721518988e-05,
1451
+ "loss": 3.1153,
1452
+ "step": 206
1453
+ },
1454
+ {
1455
+ "epoch": 1.4909747292418771,
1456
+ "grad_norm": 1.7578125,
1457
+ "learning_rate": 9.822784810126583e-05,
1458
+ "loss": 3.6744,
1459
+ "step": 207
1460
+ },
1461
+ {
1462
+ "epoch": 1.4981949458483754,
1463
+ "grad_norm": 1.8125,
1464
+ "learning_rate": 9.772151898734177e-05,
1465
+ "loss": 3.4118,
1466
+ "step": 208
1467
+ },
1468
+ {
1469
+ "epoch": 1.5054151624548737,
1470
+ "grad_norm": 1.96875,
1471
+ "learning_rate": 9.721518987341773e-05,
1472
+ "loss": 3.3429,
1473
+ "step": 209
1474
+ },
1475
+ {
1476
+ "epoch": 1.5126353790613718,
1477
+ "grad_norm": 2.09375,
1478
+ "learning_rate": 9.670886075949368e-05,
1479
+ "loss": 3.3113,
1480
+ "step": 210
1481
+ },
1482
+ {
1483
+ "epoch": 1.5198555956678699,
1484
+ "grad_norm": 1.9921875,
1485
+ "learning_rate": 9.620253164556962e-05,
1486
+ "loss": 4.2063,
1487
+ "step": 211
1488
+ },
1489
+ {
1490
+ "epoch": 1.5270758122743682,
1491
+ "grad_norm": 2.015625,
1492
+ "learning_rate": 9.569620253164557e-05,
1493
+ "loss": 3.6485,
1494
+ "step": 212
1495
+ },
1496
+ {
1497
+ "epoch": 1.5342960288808665,
1498
+ "grad_norm": 1.8203125,
1499
+ "learning_rate": 9.518987341772152e-05,
1500
+ "loss": 4.5475,
1501
+ "step": 213
1502
+ },
1503
+ {
1504
+ "epoch": 1.5415162454873648,
1505
+ "grad_norm": 2.296875,
1506
+ "learning_rate": 9.468354430379748e-05,
1507
+ "loss": 4.249,
1508
+ "step": 214
1509
+ },
1510
+ {
1511
+ "epoch": 1.5487364620938628,
1512
+ "grad_norm": 1.3515625,
1513
+ "learning_rate": 9.417721518987342e-05,
1514
+ "loss": 3.9347,
1515
+ "step": 215
1516
+ },
1517
+ {
1518
+ "epoch": 1.555956678700361,
1519
+ "grad_norm": 1.7734375,
1520
+ "learning_rate": 9.367088607594936e-05,
1521
+ "loss": 4.0629,
1522
+ "step": 216
1523
+ },
1524
+ {
1525
+ "epoch": 1.5631768953068592,
1526
+ "grad_norm": 1.8515625,
1527
+ "learning_rate": 9.316455696202532e-05,
1528
+ "loss": 3.53,
1529
+ "step": 217
1530
+ },
1531
+ {
1532
+ "epoch": 1.5703971119133575,
1533
+ "grad_norm": 1.3984375,
1534
+ "learning_rate": 9.265822784810127e-05,
1535
+ "loss": 3.7128,
1536
+ "step": 218
1537
+ },
1538
+ {
1539
+ "epoch": 1.5776173285198556,
1540
+ "grad_norm": 1.7109375,
1541
+ "learning_rate": 9.215189873417723e-05,
1542
+ "loss": 3.593,
1543
+ "step": 219
1544
+ },
1545
+ {
1546
+ "epoch": 1.5848375451263537,
1547
+ "grad_norm": 1.796875,
1548
+ "learning_rate": 9.164556962025317e-05,
1549
+ "loss": 3.6182,
1550
+ "step": 220
1551
+ },
1552
+ {
1553
+ "epoch": 1.592057761732852,
1554
+ "grad_norm": 1.671875,
1555
+ "learning_rate": 9.113924050632912e-05,
1556
+ "loss": 3.5994,
1557
+ "step": 221
1558
+ },
1559
+ {
1560
+ "epoch": 1.5992779783393503,
1561
+ "grad_norm": 1.875,
1562
+ "learning_rate": 9.063291139240506e-05,
1563
+ "loss": 3.6642,
1564
+ "step": 222
1565
+ },
1566
+ {
1567
+ "epoch": 1.6064981949458483,
1568
+ "grad_norm": 1.7265625,
1569
+ "learning_rate": 9.012658227848102e-05,
1570
+ "loss": 4.0336,
1571
+ "step": 223
1572
+ },
1573
+ {
1574
+ "epoch": 1.6137184115523464,
1575
+ "grad_norm": 1.671875,
1576
+ "learning_rate": 8.962025316455697e-05,
1577
+ "loss": 3.6879,
1578
+ "step": 224
1579
+ },
1580
+ {
1581
+ "epoch": 1.6209386281588447,
1582
+ "grad_norm": 2.234375,
1583
+ "learning_rate": 8.911392405063291e-05,
1584
+ "loss": 4.1057,
1585
+ "step": 225
1586
+ },
1587
+ {
1588
+ "epoch": 1.628158844765343,
1589
+ "grad_norm": 1.6484375,
1590
+ "learning_rate": 8.860759493670887e-05,
1591
+ "loss": 3.8698,
1592
+ "step": 226
1593
+ },
1594
+ {
1595
+ "epoch": 1.6353790613718413,
1596
+ "grad_norm": 1.8359375,
1597
+ "learning_rate": 8.810126582278482e-05,
1598
+ "loss": 3.6507,
1599
+ "step": 227
1600
+ },
1601
+ {
1602
+ "epoch": 1.6425992779783394,
1603
+ "grad_norm": 1.5,
1604
+ "learning_rate": 8.759493670886076e-05,
1605
+ "loss": 3.7771,
1606
+ "step": 228
1607
+ },
1608
+ {
1609
+ "epoch": 1.6498194945848375,
1610
+ "grad_norm": 1.9609375,
1611
+ "learning_rate": 8.708860759493672e-05,
1612
+ "loss": 3.8486,
1613
+ "step": 229
1614
+ },
1615
+ {
1616
+ "epoch": 1.6570397111913358,
1617
+ "grad_norm": 1.8046875,
1618
+ "learning_rate": 8.658227848101266e-05,
1619
+ "loss": 3.9982,
1620
+ "step": 230
1621
+ },
1622
+ {
1623
+ "epoch": 1.664259927797834,
1624
+ "grad_norm": 1.359375,
1625
+ "learning_rate": 8.607594936708861e-05,
1626
+ "loss": 3.9051,
1627
+ "step": 231
1628
+ },
1629
+ {
1630
+ "epoch": 1.6714801444043321,
1631
+ "grad_norm": 1.6328125,
1632
+ "learning_rate": 8.556962025316456e-05,
1633
+ "loss": 3.7408,
1634
+ "step": 232
1635
+ },
1636
+ {
1637
+ "epoch": 1.6787003610108302,
1638
+ "grad_norm": 1.59375,
1639
+ "learning_rate": 8.50632911392405e-05,
1640
+ "loss": 3.6938,
1641
+ "step": 233
1642
+ },
1643
+ {
1644
+ "epoch": 1.6859205776173285,
1645
+ "grad_norm": 1.8828125,
1646
+ "learning_rate": 8.455696202531646e-05,
1647
+ "loss": 3.5545,
1648
+ "step": 234
1649
+ },
1650
+ {
1651
+ "epoch": 1.6931407942238268,
1652
+ "grad_norm": 1.5625,
1653
+ "learning_rate": 8.405063291139241e-05,
1654
+ "loss": 3.8048,
1655
+ "step": 235
1656
+ },
1657
+ {
1658
+ "epoch": 1.7003610108303249,
1659
+ "grad_norm": 1.8515625,
1660
+ "learning_rate": 8.354430379746835e-05,
1661
+ "loss": 3.5198,
1662
+ "step": 236
1663
+ },
1664
+ {
1665
+ "epoch": 1.707581227436823,
1666
+ "grad_norm": 1.453125,
1667
+ "learning_rate": 8.303797468354431e-05,
1668
+ "loss": 3.7941,
1669
+ "step": 237
1670
+ },
1671
+ {
1672
+ "epoch": 1.7148014440433212,
1673
+ "grad_norm": 1.65625,
1674
+ "learning_rate": 8.253164556962025e-05,
1675
+ "loss": 3.7732,
1676
+ "step": 238
1677
+ },
1678
+ {
1679
+ "epoch": 1.7220216606498195,
1680
+ "grad_norm": 1.1953125,
1681
+ "learning_rate": 8.202531645569622e-05,
1682
+ "loss": 4.062,
1683
+ "step": 239
1684
+ },
1685
+ {
1686
+ "epoch": 1.7292418772563178,
1687
+ "grad_norm": 1.828125,
1688
+ "learning_rate": 8.151898734177216e-05,
1689
+ "loss": 3.8665,
1690
+ "step": 240
1691
+ },
1692
+ {
1693
+ "epoch": 1.736462093862816,
1694
+ "grad_norm": 1.8046875,
1695
+ "learning_rate": 8.10126582278481e-05,
1696
+ "loss": 3.683,
1697
+ "step": 241
1698
+ },
1699
+ {
1700
+ "epoch": 1.743682310469314,
1701
+ "grad_norm": 1.7734375,
1702
+ "learning_rate": 8.050632911392405e-05,
1703
+ "loss": 3.7656,
1704
+ "step": 242
1705
+ },
1706
+ {
1707
+ "epoch": 1.7509025270758123,
1708
+ "grad_norm": 1.578125,
1709
+ "learning_rate": 8e-05,
1710
+ "loss": 4.1376,
1711
+ "step": 243
1712
+ },
1713
+ {
1714
+ "epoch": 1.7581227436823106,
1715
+ "grad_norm": 2.078125,
1716
+ "learning_rate": 7.949367088607596e-05,
1717
+ "loss": 3.6366,
1718
+ "step": 244
1719
+ },
1720
+ {
1721
+ "epoch": 1.7653429602888087,
1722
+ "grad_norm": 1.859375,
1723
+ "learning_rate": 7.89873417721519e-05,
1724
+ "loss": 3.3191,
1725
+ "step": 245
1726
+ },
1727
+ {
1728
+ "epoch": 1.7725631768953067,
1729
+ "grad_norm": 1.9609375,
1730
+ "learning_rate": 7.848101265822784e-05,
1731
+ "loss": 3.9182,
1732
+ "step": 246
1733
+ },
1734
+ {
1735
+ "epoch": 1.779783393501805,
1736
+ "grad_norm": 1.5625,
1737
+ "learning_rate": 7.797468354430381e-05,
1738
+ "loss": 3.7345,
1739
+ "step": 247
1740
+ },
1741
+ {
1742
+ "epoch": 1.7870036101083033,
1743
+ "grad_norm": 1.7109375,
1744
+ "learning_rate": 7.746835443037975e-05,
1745
+ "loss": 3.3648,
1746
+ "step": 248
1747
+ },
1748
+ {
1749
+ "epoch": 1.7942238267148014,
1750
+ "grad_norm": 1.6171875,
1751
+ "learning_rate": 7.69620253164557e-05,
1752
+ "loss": 3.8746,
1753
+ "step": 249
1754
+ },
1755
+ {
1756
+ "epoch": 1.8014440433212995,
1757
+ "grad_norm": 1.90625,
1758
+ "learning_rate": 7.645569620253165e-05,
1759
+ "loss": 3.6713,
1760
+ "step": 250
1761
+ },
1762
+ {
1763
+ "epoch": 1.8086642599277978,
1764
+ "grad_norm": 2.109375,
1765
+ "learning_rate": 7.59493670886076e-05,
1766
+ "loss": 3.4882,
1767
+ "step": 251
1768
+ },
1769
+ {
1770
+ "epoch": 1.815884476534296,
1771
+ "grad_norm": 1.359375,
1772
+ "learning_rate": 7.544303797468355e-05,
1773
+ "loss": 3.8126,
1774
+ "step": 252
1775
+ },
1776
+ {
1777
+ "epoch": 1.8231046931407944,
1778
+ "grad_norm": 2.15625,
1779
+ "learning_rate": 7.49367088607595e-05,
1780
+ "loss": 3.2965,
1781
+ "step": 253
1782
+ },
1783
+ {
1784
+ "epoch": 1.8303249097472925,
1785
+ "grad_norm": 1.6328125,
1786
+ "learning_rate": 7.443037974683545e-05,
1787
+ "loss": 3.7695,
1788
+ "step": 254
1789
+ },
1790
+ {
1791
+ "epoch": 1.8375451263537905,
1792
+ "grad_norm": 1.5234375,
1793
+ "learning_rate": 7.39240506329114e-05,
1794
+ "loss": 3.7909,
1795
+ "step": 255
1796
+ },
1797
+ {
1798
+ "epoch": 1.8447653429602888,
1799
+ "grad_norm": 1.578125,
1800
+ "learning_rate": 7.341772151898734e-05,
1801
+ "loss": 3.8332,
1802
+ "step": 256
1803
+ },
1804
+ {
1805
+ "epoch": 1.8519855595667871,
1806
+ "grad_norm": 1.9921875,
1807
+ "learning_rate": 7.29113924050633e-05,
1808
+ "loss": 3.3339,
1809
+ "step": 257
1810
+ },
1811
+ {
1812
+ "epoch": 1.8592057761732852,
1813
+ "grad_norm": 1.578125,
1814
+ "learning_rate": 7.240506329113924e-05,
1815
+ "loss": 3.848,
1816
+ "step": 258
1817
+ },
1818
+ {
1819
+ "epoch": 1.8664259927797833,
1820
+ "grad_norm": 1.7890625,
1821
+ "learning_rate": 7.189873417721519e-05,
1822
+ "loss": 3.7378,
1823
+ "step": 259
1824
+ },
1825
+ {
1826
+ "epoch": 1.8736462093862816,
1827
+ "grad_norm": 1.265625,
1828
+ "learning_rate": 7.139240506329115e-05,
1829
+ "loss": 3.9616,
1830
+ "step": 260
1831
+ },
1832
+ {
1833
+ "epoch": 1.8808664259927799,
1834
+ "grad_norm": 1.3984375,
1835
+ "learning_rate": 7.088607594936709e-05,
1836
+ "loss": 3.7079,
1837
+ "step": 261
1838
+ },
1839
+ {
1840
+ "epoch": 1.888086642599278,
1841
+ "grad_norm": 1.484375,
1842
+ "learning_rate": 7.037974683544304e-05,
1843
+ "loss": 3.8294,
1844
+ "step": 262
1845
+ },
1846
+ {
1847
+ "epoch": 1.895306859205776,
1848
+ "grad_norm": 1.2890625,
1849
+ "learning_rate": 6.987341772151898e-05,
1850
+ "loss": 3.8394,
1851
+ "step": 263
1852
+ },
1853
+ {
1854
+ "epoch": 1.9025270758122743,
1855
+ "grad_norm": 1.8046875,
1856
+ "learning_rate": 6.936708860759494e-05,
1857
+ "loss": 3.7544,
1858
+ "step": 264
1859
+ },
1860
+ {
1861
+ "epoch": 1.9097472924187726,
1862
+ "grad_norm": 1.453125,
1863
+ "learning_rate": 6.886075949367089e-05,
1864
+ "loss": 4.0049,
1865
+ "step": 265
1866
+ },
1867
+ {
1868
+ "epoch": 1.916967509025271,
1869
+ "grad_norm": 1.625,
1870
+ "learning_rate": 6.835443037974683e-05,
1871
+ "loss": 3.9103,
1872
+ "step": 266
1873
+ },
1874
+ {
1875
+ "epoch": 1.924187725631769,
1876
+ "grad_norm": 1.6015625,
1877
+ "learning_rate": 6.784810126582279e-05,
1878
+ "loss": 3.3686,
1879
+ "step": 267
1880
+ },
1881
+ {
1882
+ "epoch": 1.931407942238267,
1883
+ "grad_norm": 1.1796875,
1884
+ "learning_rate": 6.734177215189874e-05,
1885
+ "loss": 4.2751,
1886
+ "step": 268
1887
+ },
1888
+ {
1889
+ "epoch": 1.9386281588447654,
1890
+ "grad_norm": 1.5859375,
1891
+ "learning_rate": 6.68354430379747e-05,
1892
+ "loss": 3.7901,
1893
+ "step": 269
1894
+ },
1895
+ {
1896
+ "epoch": 1.9458483754512637,
1897
+ "grad_norm": 1.40625,
1898
+ "learning_rate": 6.632911392405063e-05,
1899
+ "loss": 3.6516,
1900
+ "step": 270
1901
+ },
1902
+ {
1903
+ "epoch": 1.9530685920577617,
1904
+ "grad_norm": 1.8671875,
1905
+ "learning_rate": 6.582278481012658e-05,
1906
+ "loss": 3.5991,
1907
+ "step": 271
1908
+ },
1909
+ {
1910
+ "epoch": 1.9602888086642598,
1911
+ "grad_norm": 1.3671875,
1912
+ "learning_rate": 6.531645569620254e-05,
1913
+ "loss": 3.5493,
1914
+ "step": 272
1915
+ },
1916
+ {
1917
+ "epoch": 1.967509025270758,
1918
+ "grad_norm": 1.71875,
1919
+ "learning_rate": 6.481012658227848e-05,
1920
+ "loss": 3.4709,
1921
+ "step": 273
1922
+ },
1923
+ {
1924
+ "epoch": 1.9747292418772564,
1925
+ "grad_norm": 2.203125,
1926
+ "learning_rate": 6.430379746835444e-05,
1927
+ "loss": 3.076,
1928
+ "step": 274
1929
+ },
1930
+ {
1931
+ "epoch": 1.9819494584837545,
1932
+ "grad_norm": 2.0,
1933
+ "learning_rate": 6.379746835443038e-05,
1934
+ "loss": 3.6199,
1935
+ "step": 275
1936
+ },
1937
+ {
1938
+ "epoch": 1.9891696750902526,
1939
+ "grad_norm": 1.390625,
1940
+ "learning_rate": 6.329113924050633e-05,
1941
+ "loss": 4.0342,
1942
+ "step": 276
1943
+ },
1944
+ {
1945
+ "epoch": 1.9963898916967509,
1946
+ "grad_norm": 1.8359375,
1947
+ "learning_rate": 6.278481012658229e-05,
1948
+ "loss": 3.5061,
1949
+ "step": 277
1950
+ },
1951
+ {
1952
+ "epoch": 2.0,
1953
+ "grad_norm": 2.828125,
1954
+ "learning_rate": 6.227848101265823e-05,
1955
+ "loss": 3.2343,
1956
+ "step": 278
1957
+ },
1958
+ {
1959
+ "epoch": 2.0072202166064983,
1960
+ "grad_norm": 1.7890625,
1961
+ "learning_rate": 6.177215189873418e-05,
1962
+ "loss": 2.7874,
1963
+ "step": 279
1964
+ },
1965
+ {
1966
+ "epoch": 2.0144404332129966,
1967
+ "grad_norm": 1.8515625,
1968
+ "learning_rate": 6.126582278481014e-05,
1969
+ "loss": 2.3487,
1970
+ "step": 280
1971
+ },
1972
+ {
1973
+ "epoch": 2.0216606498194944,
1974
+ "grad_norm": 1.4296875,
1975
+ "learning_rate": 6.0759493670886084e-05,
1976
+ "loss": 3.1884,
1977
+ "step": 281
1978
+ },
1979
+ {
1980
+ "epoch": 2.0288808664259927,
1981
+ "grad_norm": 1.7109375,
1982
+ "learning_rate": 6.0253164556962024e-05,
1983
+ "loss": 3.5309,
1984
+ "step": 282
1985
+ },
1986
+ {
1987
+ "epoch": 2.036101083032491,
1988
+ "grad_norm": 1.6875,
1989
+ "learning_rate": 5.974683544303797e-05,
1990
+ "loss": 2.6136,
1991
+ "step": 283
1992
+ },
1993
+ {
1994
+ "epoch": 2.0433212996389893,
1995
+ "grad_norm": 1.84375,
1996
+ "learning_rate": 5.924050632911393e-05,
1997
+ "loss": 2.6029,
1998
+ "step": 284
1999
+ },
2000
+ {
2001
+ "epoch": 2.050541516245487,
2002
+ "grad_norm": 1.796875,
2003
+ "learning_rate": 5.873417721518988e-05,
2004
+ "loss": 2.8965,
2005
+ "step": 285
2006
+ },
2007
+ {
2008
+ "epoch": 2.0577617328519855,
2009
+ "grad_norm": 2.078125,
2010
+ "learning_rate": 5.822784810126583e-05,
2011
+ "loss": 2.5276,
2012
+ "step": 286
2013
+ },
2014
+ {
2015
+ "epoch": 2.064981949458484,
2016
+ "grad_norm": 1.8671875,
2017
+ "learning_rate": 5.772151898734177e-05,
2018
+ "loss": 3.0242,
2019
+ "step": 287
2020
+ },
2021
+ {
2022
+ "epoch": 2.072202166064982,
2023
+ "grad_norm": 1.7421875,
2024
+ "learning_rate": 5.721518987341773e-05,
2025
+ "loss": 2.6799,
2026
+ "step": 288
2027
+ },
2028
+ {
2029
+ "epoch": 2.07942238267148,
2030
+ "grad_norm": 1.8671875,
2031
+ "learning_rate": 5.670886075949368e-05,
2032
+ "loss": 2.8526,
2033
+ "step": 289
2034
+ },
2035
+ {
2036
+ "epoch": 2.0866425992779782,
2037
+ "grad_norm": 1.625,
2038
+ "learning_rate": 5.6202531645569624e-05,
2039
+ "loss": 2.5677,
2040
+ "step": 290
2041
+ },
2042
+ {
2043
+ "epoch": 2.0938628158844765,
2044
+ "grad_norm": 1.8046875,
2045
+ "learning_rate": 5.569620253164557e-05,
2046
+ "loss": 2.8311,
2047
+ "step": 291
2048
+ },
2049
+ {
2050
+ "epoch": 2.101083032490975,
2051
+ "grad_norm": 2.203125,
2052
+ "learning_rate": 5.5189873417721526e-05,
2053
+ "loss": 2.6156,
2054
+ "step": 292
2055
+ },
2056
+ {
2057
+ "epoch": 2.108303249097473,
2058
+ "grad_norm": 2.015625,
2059
+ "learning_rate": 5.468354430379747e-05,
2060
+ "loss": 2.595,
2061
+ "step": 293
2062
+ },
2063
+ {
2064
+ "epoch": 2.115523465703971,
2065
+ "grad_norm": 2.171875,
2066
+ "learning_rate": 5.417721518987342e-05,
2067
+ "loss": 2.729,
2068
+ "step": 294
2069
+ },
2070
+ {
2071
+ "epoch": 2.1227436823104693,
2072
+ "grad_norm": 2.203125,
2073
+ "learning_rate": 5.367088607594937e-05,
2074
+ "loss": 2.7042,
2075
+ "step": 295
2076
+ },
2077
+ {
2078
+ "epoch": 2.1299638989169676,
2079
+ "grad_norm": 2.046875,
2080
+ "learning_rate": 5.3164556962025316e-05,
2081
+ "loss": 2.6504,
2082
+ "step": 296
2083
+ },
2084
+ {
2085
+ "epoch": 2.137184115523466,
2086
+ "grad_norm": 2.015625,
2087
+ "learning_rate": 5.265822784810127e-05,
2088
+ "loss": 3.8121,
2089
+ "step": 297
2090
+ },
2091
+ {
2092
+ "epoch": 2.1444043321299637,
2093
+ "grad_norm": 2.234375,
2094
+ "learning_rate": 5.215189873417722e-05,
2095
+ "loss": 2.7692,
2096
+ "step": 298
2097
+ },
2098
+ {
2099
+ "epoch": 2.151624548736462,
2100
+ "grad_norm": 1.890625,
2101
+ "learning_rate": 5.1645569620253165e-05,
2102
+ "loss": 2.6051,
2103
+ "step": 299
2104
+ },
2105
+ {
2106
+ "epoch": 2.1588447653429603,
2107
+ "grad_norm": 2.515625,
2108
+ "learning_rate": 5.113924050632911e-05,
2109
+ "loss": 2.4464,
2110
+ "step": 300
2111
+ },
2112
+ {
2113
+ "epoch": 2.1660649819494586,
2114
+ "grad_norm": 1.984375,
2115
+ "learning_rate": 5.0632911392405066e-05,
2116
+ "loss": 2.6669,
2117
+ "step": 301
2118
+ },
2119
+ {
2120
+ "epoch": 2.1732851985559565,
2121
+ "grad_norm": 2.421875,
2122
+ "learning_rate": 5.0126582278481014e-05,
2123
+ "loss": 2.2895,
2124
+ "step": 302
2125
+ },
2126
+ {
2127
+ "epoch": 2.1805054151624548,
2128
+ "grad_norm": 2.390625,
2129
+ "learning_rate": 4.962025316455696e-05,
2130
+ "loss": 2.0865,
2131
+ "step": 303
2132
+ },
2133
+ {
2134
+ "epoch": 2.187725631768953,
2135
+ "grad_norm": 2.484375,
2136
+ "learning_rate": 4.9113924050632915e-05,
2137
+ "loss": 2.4476,
2138
+ "step": 304
2139
+ },
2140
+ {
2141
+ "epoch": 2.1949458483754514,
2142
+ "grad_norm": 1.875,
2143
+ "learning_rate": 4.860759493670886e-05,
2144
+ "loss": 3.3113,
2145
+ "step": 305
2146
+ },
2147
+ {
2148
+ "epoch": 2.2021660649819497,
2149
+ "grad_norm": 2.53125,
2150
+ "learning_rate": 4.810126582278481e-05,
2151
+ "loss": 3.1045,
2152
+ "step": 306
2153
+ },
2154
+ {
2155
+ "epoch": 2.2093862815884475,
2156
+ "grad_norm": 2.703125,
2157
+ "learning_rate": 4.759493670886076e-05,
2158
+ "loss": 2.1498,
2159
+ "step": 307
2160
+ },
2161
+ {
2162
+ "epoch": 2.216606498194946,
2163
+ "grad_norm": 2.125,
2164
+ "learning_rate": 4.708860759493671e-05,
2165
+ "loss": 2.6692,
2166
+ "step": 308
2167
+ },
2168
+ {
2169
+ "epoch": 2.223826714801444,
2170
+ "grad_norm": 2.265625,
2171
+ "learning_rate": 4.658227848101266e-05,
2172
+ "loss": 2.2656,
2173
+ "step": 309
2174
+ },
2175
+ {
2176
+ "epoch": 2.2310469314079424,
2177
+ "grad_norm": 2.046875,
2178
+ "learning_rate": 4.6075949367088614e-05,
2179
+ "loss": 2.5764,
2180
+ "step": 310
2181
+ },
2182
+ {
2183
+ "epoch": 2.2382671480144403,
2184
+ "grad_norm": 2.609375,
2185
+ "learning_rate": 4.556962025316456e-05,
2186
+ "loss": 2.5957,
2187
+ "step": 311
2188
+ },
2189
+ {
2190
+ "epoch": 2.2454873646209386,
2191
+ "grad_norm": 2.03125,
2192
+ "learning_rate": 4.506329113924051e-05,
2193
+ "loss": 2.6055,
2194
+ "step": 312
2195
+ },
2196
+ {
2197
+ "epoch": 2.252707581227437,
2198
+ "grad_norm": 2.375,
2199
+ "learning_rate": 4.4556962025316456e-05,
2200
+ "loss": 2.1026,
2201
+ "step": 313
2202
+ },
2203
+ {
2204
+ "epoch": 2.259927797833935,
2205
+ "grad_norm": 1.6875,
2206
+ "learning_rate": 4.405063291139241e-05,
2207
+ "loss": 2.7341,
2208
+ "step": 314
2209
+ },
2210
+ {
2211
+ "epoch": 2.2671480144404335,
2212
+ "grad_norm": 2.390625,
2213
+ "learning_rate": 4.354430379746836e-05,
2214
+ "loss": 2.6776,
2215
+ "step": 315
2216
+ },
2217
+ {
2218
+ "epoch": 2.2743682310469313,
2219
+ "grad_norm": 2.296875,
2220
+ "learning_rate": 4.3037974683544305e-05,
2221
+ "loss": 2.8664,
2222
+ "step": 316
2223
+ },
2224
+ {
2225
+ "epoch": 2.2815884476534296,
2226
+ "grad_norm": 2.28125,
2227
+ "learning_rate": 4.253164556962025e-05,
2228
+ "loss": 2.1954,
2229
+ "step": 317
2230
+ },
2231
+ {
2232
+ "epoch": 2.288808664259928,
2233
+ "grad_norm": 1.75,
2234
+ "learning_rate": 4.202531645569621e-05,
2235
+ "loss": 3.1065,
2236
+ "step": 318
2237
+ },
2238
+ {
2239
+ "epoch": 2.2960288808664258,
2240
+ "grad_norm": 2.421875,
2241
+ "learning_rate": 4.1518987341772154e-05,
2242
+ "loss": 2.5329,
2243
+ "step": 319
2244
+ },
2245
+ {
2246
+ "epoch": 2.303249097472924,
2247
+ "grad_norm": 2.234375,
2248
+ "learning_rate": 4.101265822784811e-05,
2249
+ "loss": 2.6462,
2250
+ "step": 320
2251
+ },
2252
+ {
2253
+ "epoch": 2.3104693140794224,
2254
+ "grad_norm": 2.0625,
2255
+ "learning_rate": 4.050632911392405e-05,
2256
+ "loss": 2.8546,
2257
+ "step": 321
2258
+ },
2259
+ {
2260
+ "epoch": 2.3176895306859207,
2261
+ "grad_norm": 1.78125,
2262
+ "learning_rate": 4e-05,
2263
+ "loss": 2.3367,
2264
+ "step": 322
2265
+ },
2266
+ {
2267
+ "epoch": 2.324909747292419,
2268
+ "grad_norm": 2.109375,
2269
+ "learning_rate": 3.949367088607595e-05,
2270
+ "loss": 2.3497,
2271
+ "step": 323
2272
+ },
2273
+ {
2274
+ "epoch": 2.332129963898917,
2275
+ "grad_norm": 2.328125,
2276
+ "learning_rate": 3.8987341772151905e-05,
2277
+ "loss": 2.2056,
2278
+ "step": 324
2279
+ },
2280
+ {
2281
+ "epoch": 2.339350180505415,
2282
+ "grad_norm": 1.8203125,
2283
+ "learning_rate": 3.848101265822785e-05,
2284
+ "loss": 2.716,
2285
+ "step": 325
2286
+ },
2287
+ {
2288
+ "epoch": 2.3465703971119134,
2289
+ "grad_norm": 1.53125,
2290
+ "learning_rate": 3.79746835443038e-05,
2291
+ "loss": 3.3764,
2292
+ "step": 326
2293
+ },
2294
+ {
2295
+ "epoch": 2.3537906137184117,
2296
+ "grad_norm": 2.171875,
2297
+ "learning_rate": 3.746835443037975e-05,
2298
+ "loss": 2.3887,
2299
+ "step": 327
2300
+ },
2301
+ {
2302
+ "epoch": 2.3610108303249095,
2303
+ "grad_norm": 2.0,
2304
+ "learning_rate": 3.69620253164557e-05,
2305
+ "loss": 2.4711,
2306
+ "step": 328
2307
+ },
2308
+ {
2309
+ "epoch": 2.368231046931408,
2310
+ "grad_norm": 2.078125,
2311
+ "learning_rate": 3.645569620253165e-05,
2312
+ "loss": 2.4816,
2313
+ "step": 329
2314
+ },
2315
+ {
2316
+ "epoch": 2.375451263537906,
2317
+ "grad_norm": 1.9140625,
2318
+ "learning_rate": 3.5949367088607596e-05,
2319
+ "loss": 2.5257,
2320
+ "step": 330
2321
+ },
2322
+ {
2323
+ "epoch": 2.3826714801444044,
2324
+ "grad_norm": 2.3125,
2325
+ "learning_rate": 3.5443037974683544e-05,
2326
+ "loss": 2.2746,
2327
+ "step": 331
2328
+ },
2329
+ {
2330
+ "epoch": 2.3898916967509027,
2331
+ "grad_norm": 2.25,
2332
+ "learning_rate": 3.493670886075949e-05,
2333
+ "loss": 2.3043,
2334
+ "step": 332
2335
+ },
2336
+ {
2337
+ "epoch": 2.3971119133574006,
2338
+ "grad_norm": 1.6015625,
2339
+ "learning_rate": 3.4430379746835445e-05,
2340
+ "loss": 3.5631,
2341
+ "step": 333
2342
+ },
2343
+ {
2344
+ "epoch": 2.404332129963899,
2345
+ "grad_norm": 2.28125,
2346
+ "learning_rate": 3.392405063291139e-05,
2347
+ "loss": 2.2915,
2348
+ "step": 334
2349
+ },
2350
+ {
2351
+ "epoch": 2.411552346570397,
2352
+ "grad_norm": 2.203125,
2353
+ "learning_rate": 3.341772151898735e-05,
2354
+ "loss": 2.4138,
2355
+ "step": 335
2356
+ },
2357
+ {
2358
+ "epoch": 2.4187725631768955,
2359
+ "grad_norm": 1.5859375,
2360
+ "learning_rate": 3.291139240506329e-05,
2361
+ "loss": 2.9386,
2362
+ "step": 336
2363
+ },
2364
+ {
2365
+ "epoch": 2.4259927797833933,
2366
+ "grad_norm": 1.7734375,
2367
+ "learning_rate": 3.240506329113924e-05,
2368
+ "loss": 2.9306,
2369
+ "step": 337
2370
+ },
2371
+ {
2372
+ "epoch": 2.4332129963898916,
2373
+ "grad_norm": 1.7265625,
2374
+ "learning_rate": 3.189873417721519e-05,
2375
+ "loss": 2.8899,
2376
+ "step": 338
2377
+ },
2378
+ {
2379
+ "epoch": 2.44043321299639,
2380
+ "grad_norm": 2.546875,
2381
+ "learning_rate": 3.1392405063291144e-05,
2382
+ "loss": 2.4473,
2383
+ "step": 339
2384
+ },
2385
+ {
2386
+ "epoch": 2.4476534296028882,
2387
+ "grad_norm": 1.921875,
2388
+ "learning_rate": 3.088607594936709e-05,
2389
+ "loss": 2.4131,
2390
+ "step": 340
2391
+ },
2392
+ {
2393
+ "epoch": 2.4548736462093865,
2394
+ "grad_norm": 1.7734375,
2395
+ "learning_rate": 3.0379746835443042e-05,
2396
+ "loss": 2.5254,
2397
+ "step": 341
2398
+ },
2399
+ {
2400
+ "epoch": 2.4620938628158844,
2401
+ "grad_norm": 2.328125,
2402
+ "learning_rate": 2.9873417721518986e-05,
2403
+ "loss": 2.3986,
2404
+ "step": 342
2405
+ },
2406
+ {
2407
+ "epoch": 2.4693140794223827,
2408
+ "grad_norm": 1.6953125,
2409
+ "learning_rate": 2.936708860759494e-05,
2410
+ "loss": 2.9602,
2411
+ "step": 343
2412
+ },
2413
+ {
2414
+ "epoch": 2.476534296028881,
2415
+ "grad_norm": 1.828125,
2416
+ "learning_rate": 2.8860759493670884e-05,
2417
+ "loss": 2.5737,
2418
+ "step": 344
2419
+ },
2420
+ {
2421
+ "epoch": 2.483754512635379,
2422
+ "grad_norm": 2.28125,
2423
+ "learning_rate": 2.835443037974684e-05,
2424
+ "loss": 2.3626,
2425
+ "step": 345
2426
+ },
2427
+ {
2428
+ "epoch": 2.490974729241877,
2429
+ "grad_norm": 2.359375,
2430
+ "learning_rate": 2.7848101265822786e-05,
2431
+ "loss": 2.3419,
2432
+ "step": 346
2433
+ },
2434
+ {
2435
+ "epoch": 2.4981949458483754,
2436
+ "grad_norm": 2.390625,
2437
+ "learning_rate": 2.7341772151898737e-05,
2438
+ "loss": 2.4175,
2439
+ "step": 347
2440
+ },
2441
+ {
2442
+ "epoch": 2.5054151624548737,
2443
+ "grad_norm": 2.390625,
2444
+ "learning_rate": 2.6835443037974684e-05,
2445
+ "loss": 1.8414,
2446
+ "step": 348
2447
+ },
2448
+ {
2449
+ "epoch": 2.512635379061372,
2450
+ "grad_norm": 2.734375,
2451
+ "learning_rate": 2.6329113924050635e-05,
2452
+ "loss": 2.0426,
2453
+ "step": 349
2454
+ },
2455
+ {
2456
+ "epoch": 2.51985559566787,
2457
+ "grad_norm": 2.15625,
2458
+ "learning_rate": 2.5822784810126582e-05,
2459
+ "loss": 1.8897,
2460
+ "step": 350
2461
+ },
2462
+ {
2463
+ "epoch": 2.527075812274368,
2464
+ "grad_norm": 2.46875,
2465
+ "learning_rate": 2.5316455696202533e-05,
2466
+ "loss": 2.6594,
2467
+ "step": 351
2468
+ },
2469
+ {
2470
+ "epoch": 2.5342960288808665,
2471
+ "grad_norm": 2.046875,
2472
+ "learning_rate": 2.481012658227848e-05,
2473
+ "loss": 2.8821,
2474
+ "step": 352
2475
+ },
2476
+ {
2477
+ "epoch": 2.5415162454873648,
2478
+ "grad_norm": 2.234375,
2479
+ "learning_rate": 2.430379746835443e-05,
2480
+ "loss": 2.3877,
2481
+ "step": 353
2482
+ },
2483
+ {
2484
+ "epoch": 2.5487364620938626,
2485
+ "grad_norm": 2.328125,
2486
+ "learning_rate": 2.379746835443038e-05,
2487
+ "loss": 2.5515,
2488
+ "step": 354
2489
+ },
2490
+ {
2491
+ "epoch": 2.555956678700361,
2492
+ "grad_norm": 2.34375,
2493
+ "learning_rate": 2.329113924050633e-05,
2494
+ "loss": 2.3001,
2495
+ "step": 355
2496
+ },
2497
+ {
2498
+ "epoch": 2.563176895306859,
2499
+ "grad_norm": 2.5625,
2500
+ "learning_rate": 2.278481012658228e-05,
2501
+ "loss": 1.9456,
2502
+ "step": 356
2503
+ },
2504
+ {
2505
+ "epoch": 2.5703971119133575,
2506
+ "grad_norm": 2.15625,
2507
+ "learning_rate": 2.2278481012658228e-05,
2508
+ "loss": 1.9083,
2509
+ "step": 357
2510
+ },
2511
+ {
2512
+ "epoch": 2.577617328519856,
2513
+ "grad_norm": 2.296875,
2514
+ "learning_rate": 2.177215189873418e-05,
2515
+ "loss": 2.1718,
2516
+ "step": 358
2517
+ },
2518
+ {
2519
+ "epoch": 2.5848375451263537,
2520
+ "grad_norm": 2.484375,
2521
+ "learning_rate": 2.1265822784810126e-05,
2522
+ "loss": 2.3666,
2523
+ "step": 359
2524
+ },
2525
+ {
2526
+ "epoch": 2.592057761732852,
2527
+ "grad_norm": 2.8125,
2528
+ "learning_rate": 2.0759493670886077e-05,
2529
+ "loss": 2.9496,
2530
+ "step": 360
2531
+ },
2532
+ {
2533
+ "epoch": 2.5992779783393503,
2534
+ "grad_norm": 3.59375,
2535
+ "learning_rate": 2.0253164556962025e-05,
2536
+ "loss": 2.25,
2537
+ "step": 361
2538
+ },
2539
+ {
2540
+ "epoch": 2.606498194945848,
2541
+ "grad_norm": 2.28125,
2542
+ "learning_rate": 1.9746835443037975e-05,
2543
+ "loss": 1.7384,
2544
+ "step": 362
2545
+ },
2546
+ {
2547
+ "epoch": 2.6137184115523464,
2548
+ "grad_norm": 2.078125,
2549
+ "learning_rate": 1.9240506329113926e-05,
2550
+ "loss": 2.5226,
2551
+ "step": 363
2552
+ },
2553
+ {
2554
+ "epoch": 2.6209386281588447,
2555
+ "grad_norm": 2.453125,
2556
+ "learning_rate": 1.8734177215189874e-05,
2557
+ "loss": 2.3281,
2558
+ "step": 364
2559
+ },
2560
+ {
2561
+ "epoch": 2.628158844765343,
2562
+ "grad_norm": 1.8125,
2563
+ "learning_rate": 1.8227848101265824e-05,
2564
+ "loss": 2.7288,
2565
+ "step": 365
2566
+ },
2567
+ {
2568
+ "epoch": 2.6353790613718413,
2569
+ "grad_norm": 2.59375,
2570
+ "learning_rate": 1.7721518987341772e-05,
2571
+ "loss": 1.8057,
2572
+ "step": 366
2573
+ },
2574
+ {
2575
+ "epoch": 2.6425992779783396,
2576
+ "grad_norm": 2.046875,
2577
+ "learning_rate": 1.7215189873417723e-05,
2578
+ "loss": 2.506,
2579
+ "step": 367
2580
+ },
2581
+ {
2582
+ "epoch": 2.6498194945848375,
2583
+ "grad_norm": 2.34375,
2584
+ "learning_rate": 1.6708860759493674e-05,
2585
+ "loss": 2.32,
2586
+ "step": 368
2587
+ },
2588
+ {
2589
+ "epoch": 2.6570397111913358,
2590
+ "grad_norm": 2.1875,
2591
+ "learning_rate": 1.620253164556962e-05,
2592
+ "loss": 2.4102,
2593
+ "step": 369
2594
+ },
2595
+ {
2596
+ "epoch": 2.664259927797834,
2597
+ "grad_norm": 2.28125,
2598
+ "learning_rate": 1.5696202531645572e-05,
2599
+ "loss": 2.503,
2600
+ "step": 370
2601
+ },
2602
+ {
2603
+ "epoch": 2.671480144404332,
2604
+ "grad_norm": 2.359375,
2605
+ "learning_rate": 1.5189873417721521e-05,
2606
+ "loss": 2.3481,
2607
+ "step": 371
2608
+ },
2609
+ {
2610
+ "epoch": 2.67870036101083,
2611
+ "grad_norm": 2.5625,
2612
+ "learning_rate": 1.468354430379747e-05,
2613
+ "loss": 2.2022,
2614
+ "step": 372
2615
+ },
2616
+ {
2617
+ "epoch": 2.6859205776173285,
2618
+ "grad_norm": 2.234375,
2619
+ "learning_rate": 1.417721518987342e-05,
2620
+ "loss": 1.6966,
2621
+ "step": 373
2622
+ },
2623
+ {
2624
+ "epoch": 2.693140794223827,
2625
+ "grad_norm": 2.046875,
2626
+ "learning_rate": 1.3670886075949368e-05,
2627
+ "loss": 2.1885,
2628
+ "step": 374
2629
+ },
2630
+ {
2631
+ "epoch": 2.700361010830325,
2632
+ "grad_norm": 2.453125,
2633
+ "learning_rate": 1.3164556962025317e-05,
2634
+ "loss": 2.0535,
2635
+ "step": 375
2636
+ },
2637
+ {
2638
+ "epoch": 2.707581227436823,
2639
+ "grad_norm": 2.375,
2640
+ "learning_rate": 1.2658227848101267e-05,
2641
+ "loss": 2.1403,
2642
+ "step": 376
2643
+ },
2644
+ {
2645
+ "epoch": 2.7148014440433212,
2646
+ "grad_norm": 2.078125,
2647
+ "learning_rate": 1.2151898734177216e-05,
2648
+ "loss": 2.9985,
2649
+ "step": 377
2650
+ },
2651
+ {
2652
+ "epoch": 2.7220216606498195,
2653
+ "grad_norm": 2.734375,
2654
+ "learning_rate": 1.1645569620253165e-05,
2655
+ "loss": 2.3887,
2656
+ "step": 378
2657
+ },
2658
+ {
2659
+ "epoch": 2.729241877256318,
2660
+ "grad_norm": 2.296875,
2661
+ "learning_rate": 1.1139240506329114e-05,
2662
+ "loss": 2.1809,
2663
+ "step": 379
2664
+ },
2665
+ {
2666
+ "epoch": 2.7364620938628157,
2667
+ "grad_norm": 1.7890625,
2668
+ "learning_rate": 1.0632911392405063e-05,
2669
+ "loss": 2.8387,
2670
+ "step": 380
2671
+ },
2672
+ {
2673
+ "epoch": 2.743682310469314,
2674
+ "grad_norm": 1.8828125,
2675
+ "learning_rate": 1.0126582278481012e-05,
2676
+ "loss": 3.0279,
2677
+ "step": 381
2678
+ },
2679
+ {
2680
+ "epoch": 2.7509025270758123,
2681
+ "grad_norm": 2.59375,
2682
+ "learning_rate": 9.620253164556963e-06,
2683
+ "loss": 2.7515,
2684
+ "step": 382
2685
+ },
2686
+ {
2687
+ "epoch": 2.7581227436823106,
2688
+ "grad_norm": 2.578125,
2689
+ "learning_rate": 9.113924050632912e-06,
2690
+ "loss": 2.4884,
2691
+ "step": 383
2692
+ },
2693
+ {
2694
+ "epoch": 2.765342960288809,
2695
+ "grad_norm": 1.5390625,
2696
+ "learning_rate": 8.607594936708861e-06,
2697
+ "loss": 2.9991,
2698
+ "step": 384
2699
+ },
2700
+ {
2701
+ "epoch": 2.7725631768953067,
2702
+ "grad_norm": 1.9609375,
2703
+ "learning_rate": 8.10126582278481e-06,
2704
+ "loss": 2.4975,
2705
+ "step": 385
2706
+ },
2707
+ {
2708
+ "epoch": 2.779783393501805,
2709
+ "grad_norm": 1.7421875,
2710
+ "learning_rate": 7.5949367088607605e-06,
2711
+ "loss": 2.8586,
2712
+ "step": 386
2713
+ },
2714
+ {
2715
+ "epoch": 2.7870036101083033,
2716
+ "grad_norm": 2.3125,
2717
+ "learning_rate": 7.08860759493671e-06,
2718
+ "loss": 1.9417,
2719
+ "step": 387
2720
+ },
2721
+ {
2722
+ "epoch": 2.794223826714801,
2723
+ "grad_norm": 2.3125,
2724
+ "learning_rate": 6.582278481012659e-06,
2725
+ "loss": 2.0125,
2726
+ "step": 388
2727
+ },
2728
+ {
2729
+ "epoch": 2.8014440433212995,
2730
+ "grad_norm": 2.28125,
2731
+ "learning_rate": 6.075949367088608e-06,
2732
+ "loss": 2.3319,
2733
+ "step": 389
2734
+ },
2735
+ {
2736
+ "epoch": 2.808664259927798,
2737
+ "grad_norm": 2.515625,
2738
+ "learning_rate": 5.569620253164557e-06,
2739
+ "loss": 2.5923,
2740
+ "step": 390
2741
+ },
2742
+ {
2743
+ "epoch": 2.815884476534296,
2744
+ "grad_norm": 2.453125,
2745
+ "learning_rate": 5.063291139240506e-06,
2746
+ "loss": 2.6714,
2747
+ "step": 391
2748
+ },
2749
+ {
2750
+ "epoch": 2.8231046931407944,
2751
+ "grad_norm": 2.171875,
2752
+ "learning_rate": 4.556962025316456e-06,
2753
+ "loss": 2.8553,
2754
+ "step": 392
2755
+ },
2756
+ {
2757
+ "epoch": 2.8303249097472927,
2758
+ "grad_norm": 1.9921875,
2759
+ "learning_rate": 4.050632911392405e-06,
2760
+ "loss": 2.1111,
2761
+ "step": 393
2762
+ },
2763
+ {
2764
+ "epoch": 2.8375451263537905,
2765
+ "grad_norm": 1.9921875,
2766
+ "learning_rate": 3.544303797468355e-06,
2767
+ "loss": 2.3,
2768
+ "step": 394
2769
+ },
2770
+ {
2771
+ "epoch": 2.844765342960289,
2772
+ "grad_norm": 2.15625,
2773
+ "learning_rate": 3.037974683544304e-06,
2774
+ "loss": 2.3765,
2775
+ "step": 395
2776
+ },
2777
+ {
2778
+ "epoch": 2.851985559566787,
2779
+ "grad_norm": 2.640625,
2780
+ "learning_rate": 2.531645569620253e-06,
2781
+ "loss": 1.8,
2782
+ "step": 396
2783
+ },
2784
+ {
2785
+ "epoch": 2.859205776173285,
2786
+ "grad_norm": 2.3125,
2787
+ "learning_rate": 2.0253164556962026e-06,
2788
+ "loss": 2.6958,
2789
+ "step": 397
2790
+ },
2791
+ {
2792
+ "epoch": 2.8664259927797833,
2793
+ "grad_norm": 1.984375,
2794
+ "learning_rate": 1.518987341772152e-06,
2795
+ "loss": 3.1506,
2796
+ "step": 398
2797
+ },
2798
+ {
2799
+ "epoch": 2.8736462093862816,
2800
+ "grad_norm": 2.375,
2801
+ "learning_rate": 1.0126582278481013e-06,
2802
+ "loss": 2.1459,
2803
+ "step": 399
2804
+ },
2805
+ {
2806
+ "epoch": 2.88086642599278,
2807
+ "grad_norm": 2.6875,
2808
+ "learning_rate": 5.063291139240507e-07,
2809
+ "loss": 2.4266,
2810
+ "step": 400
2811
+ }
2812
+ ],
2813
+ "logging_steps": 1,
2814
+ "max_steps": 400,
2815
+ "num_input_tokens_seen": 0,
2816
+ "num_train_epochs": 3,
2817
+ "save_steps": 500,
2818
+ "stateful_callbacks": {
2819
+ "TrainerControl": {
2820
+ "args": {
2821
+ "should_epoch_stop": false,
2822
+ "should_evaluate": false,
2823
+ "should_log": false,
2824
+ "should_save": true,
2825
+ "should_training_stop": true
2826
+ },
2827
+ "attributes": {}
2828
+ }
2829
+ },
2830
+ "total_flos": 6354227604824064.0,
2831
+ "train_batch_size": 1,
2832
+ "trial_name": null,
2833
+ "trial_params": null
2834
+ }
checkpoint-400/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cccf53c2b9fc254268d7e4d2f417c5b9bfb174ddae2106b810c81af667b2642c
3
+ size 5713
checkpoint-4000/model-00001-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7807fac35af842471d414ac534d7d86daaf49193b1c47a24226a864417e4307b
3
+ size 4991031824
checkpoint-4000/model-00002-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e775e0081cc8716caf7c7eb3019da50cdc45502ebf093e450ec6e0b5fc86a664
3
+ size 1610725592
checkpoint-4000/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1f6fd7746b067b29b7dde37e94057628ee70cbb7cf383b7e9f5579c3c2bb4b4e
3
+ size 2589131192
checkpoint-4500/model-00002-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fd70be29eded1de4a3c3e6593a9de5dc3459a86318e4b18ad1138d5c14157e8b
3
+ size 1610725592
checkpoint-4500/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f2d6293140a8f8ae4be5f446c91731fffa6d679f584adda89810633b00aca9a9
3
+ size 2589131192
checkpoint-4500/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fc3fecb199b4170636dbfab986d25f628157268d37b861f9cadaca60b1353bce
3
+ size 22849547
checkpoint-500/model-00001-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a757cf3024666017fef87b7f0e762c9eacd38cb080a283345aa7371fef6ff3c8
3
+ size 4991031824
checkpoint-5000/model-00002-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0e344227622c52362640380aa35cedd56aac0b6e3c2d7daffcbb631067763cfc
3
+ size 1610725592
checkpoint-5000/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7d2e64bf71a643b2f46636980fa27fb546f9ac74653dbc2911fd3dc2be16890f
3
+ size 2589131192
checkpoint-5000/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:181c5f0270cf39930062ddfa3767a2481d0c360f120b11f8e25dbf533a1cdaba
3
+ size 14645
checkpoint-5000/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:603a363fd1e5a24efc7bf912c6e94dce30ceec6f7fd8c85402f12adb55325d41
3
+ size 1465
checkpoint-5000/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fc3fecb199b4170636dbfab986d25f628157268d37b861f9cadaca60b1353bce
3
+ size 22849547
checkpoint-5000/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b8040193c5b74e2442575cb75407cc1b7ae4e1c7c98400fab63e59606dc8a3f6
3
+ size 5713
checkpoint-5500/chat_template.jinja ADDED
@@ -0,0 +1,93 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {{- bos_token }}
2
+ {%- if custom_tools is defined %}
3
+ {%- set tools = custom_tools %}
4
+ {%- endif %}
5
+ {%- if not tools_in_user_message is defined %}
6
+ {%- set tools_in_user_message = true %}
7
+ {%- endif %}
8
+ {%- if not date_string is defined %}
9
+ {%- if strftime_now is defined %}
10
+ {%- set date_string = strftime_now("%d %b %Y") %}
11
+ {%- else %}
12
+ {%- set date_string = "26 Jul 2024" %}
13
+ {%- endif %}
14
+ {%- endif %}
15
+ {%- if not tools is defined %}
16
+ {%- set tools = none %}
17
+ {%- endif %}
18
+
19
+ {#- This block extracts the system message, so we can slot it into the right place. #}
20
+ {%- if messages[0]['role'] == 'system' %}
21
+ {%- set system_message = messages[0]['content']|trim %}
22
+ {%- set messages = messages[1:] %}
23
+ {%- else %}
24
+ {%- set system_message = "" %}
25
+ {%- endif %}
26
+
27
+ {#- System message #}
28
+ {{- "<|start_header_id|>system<|end_header_id|>\n\n" }}
29
+ {%- if tools is not none %}
30
+ {{- "Environment: ipython\n" }}
31
+ {%- endif %}
32
+ {{- "Cutting Knowledge Date: December 2023\n" }}
33
+ {{- "Today Date: " + date_string + "\n\n" }}
34
+ {%- if tools is not none and not tools_in_user_message %}
35
+ {{- "You have access to the following functions. To call a function, please respond with JSON for a function call." }}
36
+ {{- 'Respond in the format {"name": function name, "parameters": dictionary of argument name and its value}.' }}
37
+ {{- "Do not use variables.\n\n" }}
38
+ {%- for t in tools %}
39
+ {{- t | tojson(indent=4) }}
40
+ {{- "\n\n" }}
41
+ {%- endfor %}
42
+ {%- endif %}
43
+ {{- system_message }}
44
+ {{- "<|eot_id|>" }}
45
+
46
+ {#- Custom tools are passed in a user message with some extra guidance #}
47
+ {%- if tools_in_user_message and not tools is none %}
48
+ {#- Extract the first user message so we can plug it in here #}
49
+ {%- if messages | length != 0 %}
50
+ {%- set first_user_message = messages[0]['content']|trim %}
51
+ {%- set messages = messages[1:] %}
52
+ {%- else %}
53
+ {{- raise_exception("Cannot put tools in the first user message when there's no first user message!") }}
54
+ {%- endif %}
55
+ {{- '<|start_header_id|>user<|end_header_id|>\n\n' -}}
56
+ {{- "Given the following functions, please respond with a JSON for a function call " }}
57
+ {{- "with its proper arguments that best answers the given prompt.\n\n" }}
58
+ {{- 'Respond in the format {"name": function name, "parameters": dictionary of argument name and its value}.' }}
59
+ {{- "Do not use variables.\n\n" }}
60
+ {%- for t in tools %}
61
+ {{- t | tojson(indent=4) }}
62
+ {{- "\n\n" }}
63
+ {%- endfor %}
64
+ {{- first_user_message + "<|eot_id|>"}}
65
+ {%- endif %}
66
+
67
+ {%- for message in messages %}
68
+ {%- if not (message.role == 'ipython' or message.role == 'tool' or 'tool_calls' in message) %}
69
+ {{- '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n'+ message['content'] | trim + '<|eot_id|>' }}
70
+ {%- elif 'tool_calls' in message %}
71
+ {%- if not message.tool_calls|length == 1 %}
72
+ {{- raise_exception("This model only supports single tool-calls at once!") }}
73
+ {%- endif %}
74
+ {%- set tool_call = message.tool_calls[0].function %}
75
+ {{- '<|start_header_id|>assistant<|end_header_id|>\n\n' -}}
76
+ {{- '{"name": "' + tool_call.name + '", ' }}
77
+ {{- '"parameters": ' }}
78
+ {{- tool_call.arguments | tojson }}
79
+ {{- "}" }}
80
+ {{- "<|eot_id|>" }}
81
+ {%- elif message.role == "tool" or message.role == "ipython" %}
82
+ {{- "<|start_header_id|>ipython<|end_header_id|>\n\n" }}
83
+ {%- if message.content is mapping or message.content is iterable %}
84
+ {{- message.content | tojson }}
85
+ {%- else %}
86
+ {{- message.content }}
87
+ {%- endif %}
88
+ {{- "<|eot_id|>" }}
89
+ {%- endif %}
90
+ {%- endfor %}
91
+ {%- if add_generation_prompt %}
92
+ {{- '<|start_header_id|>assistant<|end_header_id|>\n\n' }}
93
+ {%- endif %}
checkpoint-5500/config.json ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "LlamaForCausalLM"
4
+ ],
5
+ "attention_bias": false,
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 128000,
8
+ "eos_token_id": 128009,
9
+ "head_dim": 128,
10
+ "hidden_act": "silu",
11
+ "hidden_size": 3072,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 8192,
14
+ "max_position_embeddings": 131072,
15
+ "mlp_bias": false,
16
+ "model_type": "llama",
17
+ "num_attention_heads": 24,
18
+ "num_hidden_layers": 28,
19
+ "num_key_value_heads": 8,
20
+ "pad_token_id": 128004,
21
+ "pretraining_tp": 1,
22
+ "rms_norm_eps": 1e-05,
23
+ "rope_scaling": {
24
+ "factor": 32.0,
25
+ "high_freq_factor": 4.0,
26
+ "low_freq_factor": 1.0,
27
+ "original_max_position_embeddings": 8192,
28
+ "rope_type": "llama3"
29
+ },
30
+ "rope_theta": 500000.0,
31
+ "tie_word_embeddings": true,
32
+ "torch_dtype": "bfloat16",
33
+ "transformers_version": "4.53.3",
34
+ "unsloth_fixed": true,
35
+ "unsloth_version": "2025.7.8",
36
+ "use_cache": true,
37
+ "vocab_size": 156939
38
+ }
checkpoint-5500/generation_config.json ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 128000,
4
+ "do_sample": true,
5
+ "eos_token_id": 128009,
6
+ "max_length": 131072,
7
+ "pad_token_id": 128004,
8
+ "temperature": 0.6,
9
+ "top_p": 0.9,
10
+ "transformers_version": "4.53.3"
11
+ }
checkpoint-5500/model.safetensors.index.json ADDED
@@ -0,0 +1,262 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_parameters": 3300864000,
4
+ "total_size": 6601728000
5
+ },
6
+ "weight_map": {
7
+ "model.embed_tokens.weight": "model-00001-of-00002.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
13
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
14
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
15
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
16
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
17
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
18
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
19
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
20
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
21
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
22
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
23
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
24
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
25
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
26
+ "model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
27
+ "model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
28
+ "model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
29
+ "model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
30
+ "model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
31
+ "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
32
+ "model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
33
+ "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
34
+ "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
35
+ "model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
36
+ "model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
37
+ "model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
38
+ "model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
39
+ "model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
40
+ "model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
41
+ "model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
42
+ "model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
43
+ "model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
44
+ "model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
45
+ "model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
46
+ "model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
47
+ "model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
48
+ "model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
49
+ "model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
50
+ "model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
51
+ "model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
52
+ "model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
53
+ "model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
54
+ "model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
55
+ "model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
56
+ "model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
57
+ "model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
58
+ "model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
59
+ "model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
60
+ "model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
61
+ "model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
62
+ "model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
63
+ "model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
64
+ "model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
65
+ "model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
66
+ "model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
67
+ "model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
68
+ "model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
69
+ "model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
70
+ "model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
71
+ "model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
72
+ "model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
73
+ "model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
74
+ "model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
75
+ "model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
76
+ "model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
77
+ "model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
78
+ "model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
79
+ "model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
80
+ "model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
81
+ "model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
82
+ "model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
83
+ "model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
84
+ "model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
85
+ "model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
86
+ "model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
87
+ "model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
88
+ "model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
89
+ "model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
90
+ "model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
91
+ "model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
92
+ "model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
93
+ "model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
94
+ "model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
95
+ "model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
96
+ "model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
97
+ "model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
98
+ "model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
99
+ "model.layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
100
+ "model.layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
101
+ "model.layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
102
+ "model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
103
+ "model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
104
+ "model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
105
+ "model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
106
+ "model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
107
+ "model.layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors",
108
+ "model.layers.19.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
109
+ "model.layers.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
110
+ "model.layers.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
111
+ "model.layers.19.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
112
+ "model.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
113
+ "model.layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
114
+ "model.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
115
+ "model.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
116
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
117
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
118
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
119
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
120
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
121
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
122
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
123
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
124
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
125
+ "model.layers.20.input_layernorm.weight": "model-00002-of-00002.safetensors",
126
+ "model.layers.20.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
127
+ "model.layers.20.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
128
+ "model.layers.20.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
129
+ "model.layers.20.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
130
+ "model.layers.20.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
131
+ "model.layers.20.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
132
+ "model.layers.20.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
133
+ "model.layers.20.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
134
+ "model.layers.21.input_layernorm.weight": "model-00002-of-00002.safetensors",
135
+ "model.layers.21.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
136
+ "model.layers.21.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
137
+ "model.layers.21.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
138
+ "model.layers.21.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
139
+ "model.layers.21.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
140
+ "model.layers.21.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
141
+ "model.layers.21.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
142
+ "model.layers.21.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
143
+ "model.layers.22.input_layernorm.weight": "model-00002-of-00002.safetensors",
144
+ "model.layers.22.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
145
+ "model.layers.22.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
146
+ "model.layers.22.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
147
+ "model.layers.22.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
148
+ "model.layers.22.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
149
+ "model.layers.22.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
150
+ "model.layers.22.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
151
+ "model.layers.22.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
152
+ "model.layers.23.input_layernorm.weight": "model-00002-of-00002.safetensors",
153
+ "model.layers.23.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
154
+ "model.layers.23.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
155
+ "model.layers.23.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
156
+ "model.layers.23.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
157
+ "model.layers.23.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
158
+ "model.layers.23.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
159
+ "model.layers.23.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
160
+ "model.layers.23.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
161
+ "model.layers.24.input_layernorm.weight": "model-00002-of-00002.safetensors",
162
+ "model.layers.24.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
163
+ "model.layers.24.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
164
+ "model.layers.24.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
165
+ "model.layers.24.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
166
+ "model.layers.24.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
167
+ "model.layers.24.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
168
+ "model.layers.24.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
169
+ "model.layers.24.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
170
+ "model.layers.25.input_layernorm.weight": "model-00002-of-00002.safetensors",
171
+ "model.layers.25.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
172
+ "model.layers.25.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
173
+ "model.layers.25.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
174
+ "model.layers.25.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
175
+ "model.layers.25.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
176
+ "model.layers.25.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
177
+ "model.layers.25.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
178
+ "model.layers.25.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
179
+ "model.layers.26.input_layernorm.weight": "model-00002-of-00002.safetensors",
180
+ "model.layers.26.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
181
+ "model.layers.26.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
182
+ "model.layers.26.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
183
+ "model.layers.26.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
184
+ "model.layers.26.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
185
+ "model.layers.26.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
186
+ "model.layers.26.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
187
+ "model.layers.26.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
188
+ "model.layers.27.input_layernorm.weight": "model-00002-of-00002.safetensors",
189
+ "model.layers.27.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
190
+ "model.layers.27.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
191
+ "model.layers.27.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
192
+ "model.layers.27.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
193
+ "model.layers.27.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
194
+ "model.layers.27.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
195
+ "model.layers.27.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
196
+ "model.layers.27.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
197
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
198
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
199
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
200
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
201
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
202
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
203
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
204
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
205
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
206
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
207
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
208
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
209
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
210
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
211
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
212
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
213
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
214
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
215
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
216
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
217
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
218
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
219
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
220
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
221
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
222
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
223
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
224
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
225
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
226
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
227
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
228
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
229
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
230
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
231
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
232
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
233
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
234
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
235
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
236
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
237
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
238
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
239
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
240
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
241
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
242
+ "model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
243
+ "model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
244
+ "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
245
+ "model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
246
+ "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
247
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
248
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
249
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
250
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
251
+ "model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
252
+ "model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
253
+ "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
254
+ "model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
255
+ "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
256
+ "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
257
+ "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
258
+ "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
259
+ "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
260
+ "model.norm.weight": "model-00002-of-00002.safetensors"
261
+ }
262
+ }
checkpoint-5500/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:181c5f0270cf39930062ddfa3767a2481d0c360f120b11f8e25dbf533a1cdaba
3
+ size 14645
checkpoint-5500/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:74ba05ba0a3736cb3199b709844a30988921f239fdf13964ec5c173266bcc40a
3
+ size 1465
checkpoint-5500/special_tokens_map.json ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|audio|>"
4
+ ],
5
+ "bos_token": {
6
+ "content": "<|begin_of_text|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false
11
+ },
12
+ "eos_token": {
13
+ "content": "<|eot_id|>",
14
+ "lstrip": false,
15
+ "normalized": false,
16
+ "rstrip": false,
17
+ "single_word": false
18
+ }
19
+ }
checkpoint-5500/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fc3fecb199b4170636dbfab986d25f628157268d37b861f9cadaca60b1353bce
3
+ size 22849547
checkpoint-5500/tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-5500/trainer_state.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-5500/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b8040193c5b74e2442575cb75407cc1b7ae4e1c7c98400fab63e59606dc8a3f6
3
+ size 5713
checkpoint-6000/chat_template.jinja ADDED
@@ -0,0 +1,93 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {{- bos_token }}
2
+ {%- if custom_tools is defined %}
3
+ {%- set tools = custom_tools %}
4
+ {%- endif %}
5
+ {%- if not tools_in_user_message is defined %}
6
+ {%- set tools_in_user_message = true %}
7
+ {%- endif %}
8
+ {%- if not date_string is defined %}
9
+ {%- if strftime_now is defined %}
10
+ {%- set date_string = strftime_now("%d %b %Y") %}
11
+ {%- else %}
12
+ {%- set date_string = "26 Jul 2024" %}
13
+ {%- endif %}
14
+ {%- endif %}
15
+ {%- if not tools is defined %}
16
+ {%- set tools = none %}
17
+ {%- endif %}
18
+
19
+ {#- This block extracts the system message, so we can slot it into the right place. #}
20
+ {%- if messages[0]['role'] == 'system' %}
21
+ {%- set system_message = messages[0]['content']|trim %}
22
+ {%- set messages = messages[1:] %}
23
+ {%- else %}
24
+ {%- set system_message = "" %}
25
+ {%- endif %}
26
+
27
+ {#- System message #}
28
+ {{- "<|start_header_id|>system<|end_header_id|>\n\n" }}
29
+ {%- if tools is not none %}
30
+ {{- "Environment: ipython\n" }}
31
+ {%- endif %}
32
+ {{- "Cutting Knowledge Date: December 2023\n" }}
33
+ {{- "Today Date: " + date_string + "\n\n" }}
34
+ {%- if tools is not none and not tools_in_user_message %}
35
+ {{- "You have access to the following functions. To call a function, please respond with JSON for a function call." }}
36
+ {{- 'Respond in the format {"name": function name, "parameters": dictionary of argument name and its value}.' }}
37
+ {{- "Do not use variables.\n\n" }}
38
+ {%- for t in tools %}
39
+ {{- t | tojson(indent=4) }}
40
+ {{- "\n\n" }}
41
+ {%- endfor %}
42
+ {%- endif %}
43
+ {{- system_message }}
44
+ {{- "<|eot_id|>" }}
45
+
46
+ {#- Custom tools are passed in a user message with some extra guidance #}
47
+ {%- if tools_in_user_message and not tools is none %}
48
+ {#- Extract the first user message so we can plug it in here #}
49
+ {%- if messages | length != 0 %}
50
+ {%- set first_user_message = messages[0]['content']|trim %}
51
+ {%- set messages = messages[1:] %}
52
+ {%- else %}
53
+ {{- raise_exception("Cannot put tools in the first user message when there's no first user message!") }}
54
+ {%- endif %}
55
+ {{- '<|start_header_id|>user<|end_header_id|>\n\n' -}}
56
+ {{- "Given the following functions, please respond with a JSON for a function call " }}
57
+ {{- "with its proper arguments that best answers the given prompt.\n\n" }}
58
+ {{- 'Respond in the format {"name": function name, "parameters": dictionary of argument name and its value}.' }}
59
+ {{- "Do not use variables.\n\n" }}
60
+ {%- for t in tools %}
61
+ {{- t | tojson(indent=4) }}
62
+ {{- "\n\n" }}
63
+ {%- endfor %}
64
+ {{- first_user_message + "<|eot_id|>"}}
65
+ {%- endif %}
66
+
67
+ {%- for message in messages %}
68
+ {%- if not (message.role == 'ipython' or message.role == 'tool' or 'tool_calls' in message) %}
69
+ {{- '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n'+ message['content'] | trim + '<|eot_id|>' }}
70
+ {%- elif 'tool_calls' in message %}
71
+ {%- if not message.tool_calls|length == 1 %}
72
+ {{- raise_exception("This model only supports single tool-calls at once!") }}
73
+ {%- endif %}
74
+ {%- set tool_call = message.tool_calls[0].function %}
75
+ {{- '<|start_header_id|>assistant<|end_header_id|>\n\n' -}}
76
+ {{- '{"name": "' + tool_call.name + '", ' }}
77
+ {{- '"parameters": ' }}
78
+ {{- tool_call.arguments | tojson }}
79
+ {{- "}" }}
80
+ {{- "<|eot_id|>" }}
81
+ {%- elif message.role == "tool" or message.role == "ipython" %}
82
+ {{- "<|start_header_id|>ipython<|end_header_id|>\n\n" }}
83
+ {%- if message.content is mapping or message.content is iterable %}
84
+ {{- message.content | tojson }}
85
+ {%- else %}
86
+ {{- message.content }}
87
+ {%- endif %}
88
+ {{- "<|eot_id|>" }}
89
+ {%- endif %}
90
+ {%- endfor %}
91
+ {%- if add_generation_prompt %}
92
+ {{- '<|start_header_id|>assistant<|end_header_id|>\n\n' }}
93
+ {%- endif %}
checkpoint-6000/config.json ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "LlamaForCausalLM"
4
+ ],
5
+ "attention_bias": false,
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 128000,
8
+ "eos_token_id": 128009,
9
+ "head_dim": 128,
10
+ "hidden_act": "silu",
11
+ "hidden_size": 3072,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 8192,
14
+ "max_position_embeddings": 131072,
15
+ "mlp_bias": false,
16
+ "model_type": "llama",
17
+ "num_attention_heads": 24,
18
+ "num_hidden_layers": 28,
19
+ "num_key_value_heads": 8,
20
+ "pad_token_id": 128004,
21
+ "pretraining_tp": 1,
22
+ "rms_norm_eps": 1e-05,
23
+ "rope_scaling": {
24
+ "factor": 32.0,
25
+ "high_freq_factor": 4.0,
26
+ "low_freq_factor": 1.0,
27
+ "original_max_position_embeddings": 8192,
28
+ "rope_type": "llama3"
29
+ },
30
+ "rope_theta": 500000.0,
31
+ "tie_word_embeddings": true,
32
+ "torch_dtype": "bfloat16",
33
+ "transformers_version": "4.53.3",
34
+ "unsloth_fixed": true,
35
+ "unsloth_version": "2025.7.8",
36
+ "use_cache": true,
37
+ "vocab_size": 156939
38
+ }
checkpoint-6000/generation_config.json ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 128000,
4
+ "do_sample": true,
5
+ "eos_token_id": 128009,
6
+ "max_length": 131072,
7
+ "pad_token_id": 128004,
8
+ "temperature": 0.6,
9
+ "top_p": 0.9,
10
+ "transformers_version": "4.53.3"
11
+ }
checkpoint-6000/model.safetensors.index.json ADDED
@@ -0,0 +1,262 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_parameters": 3300864000,
4
+ "total_size": 6601728000
5
+ },
6
+ "weight_map": {
7
+ "model.embed_tokens.weight": "model-00001-of-00002.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
13
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
14
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
15
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
16
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
17
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
18
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
19
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
20
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
21
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
22
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
23
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
24
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
25
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
26
+ "model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
27
+ "model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
28
+ "model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
29
+ "model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
30
+ "model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
31
+ "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
32
+ "model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
33
+ "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
34
+ "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
35
+ "model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
36
+ "model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
37
+ "model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
38
+ "model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
39
+ "model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
40
+ "model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
41
+ "model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
42
+ "model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
43
+ "model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
44
+ "model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
45
+ "model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
46
+ "model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
47
+ "model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
48
+ "model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
49
+ "model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
50
+ "model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
51
+ "model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
52
+ "model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
53
+ "model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
54
+ "model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
55
+ "model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
56
+ "model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
57
+ "model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
58
+ "model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
59
+ "model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
60
+ "model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
61
+ "model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
62
+ "model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
63
+ "model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
64
+ "model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
65
+ "model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
66
+ "model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
67
+ "model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
68
+ "model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
69
+ "model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
70
+ "model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
71
+ "model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
72
+ "model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
73
+ "model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
74
+ "model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
75
+ "model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
76
+ "model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
77
+ "model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
78
+ "model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
79
+ "model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
80
+ "model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
81
+ "model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
82
+ "model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
83
+ "model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
84
+ "model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
85
+ "model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
86
+ "model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
87
+ "model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
88
+ "model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
89
+ "model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
90
+ "model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
91
+ "model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
92
+ "model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
93
+ "model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
94
+ "model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
95
+ "model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
96
+ "model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
97
+ "model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
98
+ "model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
99
+ "model.layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
100
+ "model.layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
101
+ "model.layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
102
+ "model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
103
+ "model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
104
+ "model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
105
+ "model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
106
+ "model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
107
+ "model.layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors",
108
+ "model.layers.19.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
109
+ "model.layers.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
110
+ "model.layers.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
111
+ "model.layers.19.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
112
+ "model.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
113
+ "model.layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
114
+ "model.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
115
+ "model.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
116
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
117
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
118
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
119
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
120
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
121
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
122
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
123
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
124
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
125
+ "model.layers.20.input_layernorm.weight": "model-00002-of-00002.safetensors",
126
+ "model.layers.20.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
127
+ "model.layers.20.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
128
+ "model.layers.20.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
129
+ "model.layers.20.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
130
+ "model.layers.20.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
131
+ "model.layers.20.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
132
+ "model.layers.20.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
133
+ "model.layers.20.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
134
+ "model.layers.21.input_layernorm.weight": "model-00002-of-00002.safetensors",
135
+ "model.layers.21.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
136
+ "model.layers.21.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
137
+ "model.layers.21.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
138
+ "model.layers.21.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
139
+ "model.layers.21.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
140
+ "model.layers.21.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
141
+ "model.layers.21.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
142
+ "model.layers.21.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
143
+ "model.layers.22.input_layernorm.weight": "model-00002-of-00002.safetensors",
144
+ "model.layers.22.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
145
+ "model.layers.22.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
146
+ "model.layers.22.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
147
+ "model.layers.22.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
148
+ "model.layers.22.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
149
+ "model.layers.22.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
150
+ "model.layers.22.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
151
+ "model.layers.22.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
152
+ "model.layers.23.input_layernorm.weight": "model-00002-of-00002.safetensors",
153
+ "model.layers.23.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
154
+ "model.layers.23.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
155
+ "model.layers.23.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
156
+ "model.layers.23.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
157
+ "model.layers.23.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
158
+ "model.layers.23.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
159
+ "model.layers.23.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
160
+ "model.layers.23.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
161
+ "model.layers.24.input_layernorm.weight": "model-00002-of-00002.safetensors",
162
+ "model.layers.24.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
163
+ "model.layers.24.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
164
+ "model.layers.24.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
165
+ "model.layers.24.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
166
+ "model.layers.24.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
167
+ "model.layers.24.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
168
+ "model.layers.24.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
169
+ "model.layers.24.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
170
+ "model.layers.25.input_layernorm.weight": "model-00002-of-00002.safetensors",
171
+ "model.layers.25.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
172
+ "model.layers.25.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
173
+ "model.layers.25.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
174
+ "model.layers.25.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
175
+ "model.layers.25.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
176
+ "model.layers.25.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
177
+ "model.layers.25.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
178
+ "model.layers.25.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
179
+ "model.layers.26.input_layernorm.weight": "model-00002-of-00002.safetensors",
180
+ "model.layers.26.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
181
+ "model.layers.26.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
182
+ "model.layers.26.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
183
+ "model.layers.26.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
184
+ "model.layers.26.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
185
+ "model.layers.26.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
186
+ "model.layers.26.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
187
+ "model.layers.26.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
188
+ "model.layers.27.input_layernorm.weight": "model-00002-of-00002.safetensors",
189
+ "model.layers.27.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
190
+ "model.layers.27.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
191
+ "model.layers.27.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
192
+ "model.layers.27.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
193
+ "model.layers.27.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
194
+ "model.layers.27.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
195
+ "model.layers.27.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
196
+ "model.layers.27.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
197
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
198
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
199
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
200
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
201
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
202
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
203
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
204
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
205
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
206
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
207
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
208
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
209
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
210
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
211
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
212
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
213
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
214
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
215
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
216
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
217
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
218
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
219
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
220
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
221
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
222
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
223
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
224
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
225
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
226
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
227
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
228
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
229
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
230
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
231
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
232
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
233
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
234
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
235
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
236
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
237
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
238
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
239
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
240
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
241
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
242
+ "model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
243
+ "model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
244
+ "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
245
+ "model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
246
+ "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
247
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
248
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
249
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
250
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
251
+ "model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
252
+ "model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
253
+ "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
254
+ "model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
255
+ "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
256
+ "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
257
+ "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
258
+ "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
259
+ "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
260
+ "model.norm.weight": "model-00002-of-00002.safetensors"
261
+ }
262
+ }
checkpoint-6000/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:181c5f0270cf39930062ddfa3767a2481d0c360f120b11f8e25dbf533a1cdaba
3
+ size 14645