Dataset Viewer
The dataset viewer is not available for this split.
Cannot extract the features (columns) for the split 'train' of the config 'default' of the dataset.
Error code: FeaturesError Exception: ArrowInvalid Message: Schema at index 1 was different: scout_state: struct<next_scan_start_date: timestamp[s]> miner_state: struct<is_drilling: bool, drilling_date: timestamp[s], last_completed_page: int64, total_pages: int64> failed_pages: list<item: null> vs fees: struct<world: struct<value: int64, currency: string>, russia: struct<value: int64, currency: string>, usa: struct<value: int64, currency: string>> status: null externalId: struct<imdb: string, tmdb: int64, kpHD: string> rating: struct<kp: double, imdb: double, filmCritics: double, russianFilmCritics: double, await: null> votes: struct<kp: int64, imdb: int64, filmCritics: int64, russianFilmCritics: int64, await: int64> backdrop: struct<url: string, previewUrl: string> movieLength: int64 images: struct<framesCount: int64, postersCount: int64, backdropsCount: int64> productionCompanies: list<item: struct<name: string, url: string, previewUrl: string>> spokenLanguages: list<item: struct<name: string, nameEn: string>> id: int64 type: string name: string description: string distributors: struct<distributor: string, distributorRelease: string> premiere: struct<world: string, russia: string, bluray: string, dvd: string, cinema: null, digital: string, country: null> slogan: string year: int64 budget: struct<value: int64, currency: string> poster: struct<url: string, previewUrl: string> facts: list<item: struct<value: string, type: string, spoiler: bool>> genres: list<item: struct<name: string>> countries: list<item: struct<name: string>> seasonsInfo: list<item: null> persons: list<item: struct<id: int64, photo: string, name: string, enName: string, description: string, profession: string, enProfession: string>> lists: list<item: string> typeNumber: int64 alternativeName: string enName: null names: list<item: struct<name: string, language: string, type: string, $set: struct<language: string, type: string>>> ageRating: int64 ratingMpaa: string updatedAt: string imagesInfo: struct<framesCount: int64> sequelsAndPrequels: list<item: struct<id: int64, name: string, alternativeName: string, enName: string, type: string, poster: struct<url: string, previewUrl: string>, rating: struct<kp: double, imdb: double, filmCritics: double, russianFilmCritics: double, await: double>, year: int64>> similarMovies: list<item: struct<id: int64, name: string, enName: null, alternativeName: string, type: string, poster: struct<url: string, previewUrl: string>, year: int64, rating: struct<kp: double, imdb: double, filmCritics: double, russianFilmCritics: double, await: int64>>> shortDescription: string technology: struct<hasImax: bool, has3D: bool> ticketsOnSale: bool logo: struct<url: string, previewUrl: string> top10: null top250: int64 audience: list<item: struct<count: int64, country: string>> deletedAt: null isSeries: bool seriesLength: null totalSeriesLength: null networks: null videos: struct<trailers: list<item: struct<url: string, name: string, site: string, type: string>>> isTmdbChecked: bool watchability: struct<items: list<item: struct<name: string, logo: struct<url: string>, url: string>>> userRatingsParsed: bool keywordsParsed: bool studioParsed: bool createdAt: string watchabilityParsed: bool subType: null collections: list<item: null> Traceback: Traceback (most recent call last): File "/src/services/worker/src/worker/job_runners/split/first_rows.py", line 228, in compute_first_rows_from_streaming_response iterable_dataset = iterable_dataset._resolve_features() File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 3357, in _resolve_features features = _infer_features_from_batch(self.with_format(None)._head()) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 2111, in _head return next(iter(self.iter(batch_size=n))) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 2315, in iter for key, example in iterator: File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 1856, in __iter__ for key, pa_table in self._iter_arrow(): File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 1878, in _iter_arrow yield from self.ex_iterable._iter_arrow() File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 520, in _iter_arrow yield new_key, pa.Table.from_batches(chunks_buffer) File "pyarrow/table.pxi", line 4116, in pyarrow.lib.Table.from_batches File "pyarrow/error.pxi", line 154, in pyarrow.lib.pyarrow_internal_check_status File "pyarrow/error.pxi", line 91, in pyarrow.lib.check_status pyarrow.lib.ArrowInvalid: Schema at index 1 was different: scout_state: struct<next_scan_start_date: timestamp[s]> miner_state: struct<is_drilling: bool, drilling_date: timestamp[s], last_completed_page: int64, total_pages: int64> failed_pages: list<item: null> vs fees: struct<world: struct<value: int64, currency: string>, russia: struct<value: int64, currency: string>, usa: struct<value: int64, currency: string>> status: null externalId: struct<imdb: string, tmdb: int64, kpHD: string> rating: struct<kp: double, imdb: double, filmCritics: double, russianFilmCritics: double, await: null> votes: struct<kp: int64, imdb: int64, filmCritics: int64, russianFilmCritics: int64, await: int64> backdrop: struct<url: string, previewUrl: string> movieLength: int64 images: struct<framesCount: int64, postersCount: int64, backdropsCount: int64> productionCompanies: list<item: struct<name: string, url: string, previewUrl: string>> spokenLanguages: list<item: struct<name: string, nameEn: string>> id: int64 type: string name: string description: string distributors: struct<distributor: string, distributorRelease: string> premiere: struct<world: string, russia: string, bluray: string, dvd: string, cinema: null, digital: string, country: null> slogan: string year: int64 budget: struct<value: int64, currency: string> poster: struct<url: string, previewUrl: string> facts: list<item: struct<value: string, type: string, spoiler: bool>> genres: list<item: struct<name: string>> countries: list<item: struct<name: string>> seasonsInfo: list<item: null> persons: list<item: struct<id: int64, photo: string, name: string, enName: string, description: string, profession: string, enProfession: string>> lists: list<item: string> typeNumber: int64 alternativeName: string enName: null names: list<item: struct<name: string, language: string, type: string, $set: struct<language: string, type: string>>> ageRating: int64 ratingMpaa: string updatedAt: string imagesInfo: struct<framesCount: int64> sequelsAndPrequels: list<item: struct<id: int64, name: string, alternativeName: string, enName: string, type: string, poster: struct<url: string, previewUrl: string>, rating: struct<kp: double, imdb: double, filmCritics: double, russianFilmCritics: double, await: double>, year: int64>> similarMovies: list<item: struct<id: int64, name: string, enName: null, alternativeName: string, type: string, poster: struct<url: string, previewUrl: string>, year: int64, rating: struct<kp: double, imdb: double, filmCritics: double, russianFilmCritics: double, await: int64>>> shortDescription: string technology: struct<hasImax: bool, has3D: bool> ticketsOnSale: bool logo: struct<url: string, previewUrl: string> top10: null top250: int64 audience: list<item: struct<count: int64, country: string>> deletedAt: null isSeries: bool seriesLength: null totalSeriesLength: null networks: null videos: struct<trailers: list<item: struct<url: string, name: string, site: string, type: string>>> isTmdbChecked: bool watchability: struct<items: list<item: struct<name: string, logo: struct<url: string>, url: string>>> userRatingsParsed: bool keywordsParsed: bool studioParsed: bool createdAt: string watchabilityParsed: bool subType: null collections: list<item: null>
Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
No dataset card yet
- Downloads last month
- 801