Datasets:

Modalities:
Text
Formats:
json
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
License:
Dataset Viewer
Auto-converted to Parquet
query-id
stringlengths
7
9
corpus-id
stringclasses
46 values
score
int64
1
1
query_0
Olinda Posso
1
query_0
Wynona Meskell
1
query_1
Olinda Posso
1
query_1
Leslie Chueh
1
query_2
Olinda Posso
1
query_2
Ula Yann
1
query_3
Olinda Posso
1
query_3
Julia Matsil
1
query_4
Olinda Posso
1
query_4
Jamar Brugger
1
query_5
Olinda Posso
1
query_5
Celie Scherbert
1
query_6
Olinda Posso
1
query_6
Ken Palacz
1
query_7
Olinda Posso
1
query_7
Tyrone Datu
1
query_8
Olinda Posso
1
query_8
Mattie Puddy
1
query_9
Olinda Posso
1
query_9
Treva Penix
1
query_10
Olinda Posso
1
query_10
Carlyle Jee
1
query_11
Olinda Posso
1
query_11
Jerod Office
1
query_12
Olinda Posso
1
query_12
Kanye Goehner
1
query_13
Olinda Posso
1
query_13
Trevion Malasig
1
query_14
Olinda Posso
1
query_14
Dulce Pardieck
1
query_15
Olinda Posso
1
query_15
Thor Flandez
1
query_16
Olinda Posso
1
query_16
Charolette Ransbottom
1
query_17
Olinda Posso
1
query_17
Chaka Laham
1
query_18
Olinda Posso
1
query_18
Latosha Gorthy
1
query_19
Olinda Posso
1
query_19
Aubra Hokenson
1
query_20
Olinda Posso
1
query_20
Burl Corlis
1
query_21
Olinda Posso
1
query_21
Saniyah Jankowski
1
query_22
Olinda Posso
1
query_22
Judi Wion
1
query_23
Olinda Posso
1
query_23
Melissa Zanis
1
query_24
Olinda Posso
1
query_24
Dickie Delibero
1
query_25
Olinda Posso
1
query_25
Kallie Pavlovski
1
query_26
Olinda Posso
1
query_26
Juliana Helmold
1
query_27
Olinda Posso
1
query_27
Vincenza Otarola
1
query_28
Olinda Posso
1
query_28
Brent Connell
1
query_29
Olinda Posso
1
query_29
Dillie Newett
1
query_30
Olinda Posso
1
query_30
Deryl Falsey
1
query_31
Olinda Posso
1
query_31
Karyn Geyser
1
query_32
Olinda Posso
1
query_32
Ninnie Przybilla
1
query_33
Olinda Posso
1
query_33
Dejuan Topete
1
query_34
Olinda Posso
1
query_34
Kaydence Retuta
1
query_35
Olinda Posso
1
query_35
Arthur Tames
1
query_36
Olinda Posso
1
query_36
Vicie Dopp
1
query_37
Olinda Posso
1
query_37
Georgine Armwood
1
query_38
Olinda Posso
1
query_38
Lorie Dineen
1
query_39
Olinda Posso
1
query_39
Jaquez Windt
1
query_40
Olinda Posso
1
query_40
Alaina Shabaz
1
query_41
Olinda Posso
1
query_41
Lea Hatz
1
query_42
Olinda Posso
1
query_42
Milo Siddoway
1
query_43
Olinda Posso
1
query_43
Daphne Nosker
1
query_44
Olinda Posso
1
query_44
Shalonda Revelez
1
query_45
Wynona Meskell
1
query_45
Leslie Chueh
1
query_46
Wynona Meskell
1
query_46
Ula Yann
1
query_47
Wynona Meskell
1
query_47
Julia Matsil
1
query_48
Wynona Meskell
1
query_48
Jamar Brugger
1
query_49
Wynona Meskell
1
query_49
Celie Scherbert
1
End of preview. Expand in Data Studio

LIMIT

A retrieval dataset that exposes fundamental theoretical limitations of embedding-based retrieval models. Despite using simple queries like "Who likes Apples?", state-of-the-art embedding models achieve less than 20% recall@100 on LIMIT full and cannot solve LIMIT-small (46 docs).

Links

Dataset Details

Queries (1,000): Simple questions asking "Who likes [attribute]?"

  • Examples: "Who likes Quokkas?", "Who likes Joshua Trees?", "Who likes Disco Music?"

Corpus (50k documents): Short biographical texts describing people and their preferences

  • Format: "[Name] likes [attribute1] and [attribute2]."
  • Example: "Geneva Durben likes Quokkas and Apples."

Qrels (2,000): Each query has exactly 2 relevant documents (score=1), creating nearly all possible combinations of 2 documents from the 46 corpus documents (C(46,2) = 1,035 combinations).

Format

The dataset follows standard MTEB format with three configurations:

  • default: Query-document relevance judgments (qrels), keys: corpus-id, query-id, score (1 for relevant)
  • queries: Query texts with IDs , keys: _id, text
  • corpus: Document texts with IDs, keys: _id, title (empty), and text

Purpose

Tests whether embedding models can represent all top-k combinations of relevant documents, based on theoretical results connecting embedding dimension to representational capacity. Despite the simple nature of queries, state-of-the-art models struggle due to fundamental dimensional limitations.

Citation

@misc{weller2025theoreticallimit,
      title={On the Theoretical Limitations of Embedding-Based Retrieval}, 
      author={Orion Weller and Michael Boratko and Iftekhar Naim and Jinhyuk Lee},
      year={2025},
      eprint={2508.21038},
      archivePrefix={arXiv},
      primaryClass={cs.IR},
      url={https://arxiv.org/abs/2508.21038}, 
}
Downloads last month
117