Datasets:
query-id
stringlengths 7
9
| corpus-id
stringclasses 46
values | score
int64 1
1
|
---|---|---|
query_0
|
Olinda Posso
| 1 |
query_0
|
Wynona Meskell
| 1 |
query_1
|
Olinda Posso
| 1 |
query_1
|
Leslie Chueh
| 1 |
query_2
|
Olinda Posso
| 1 |
query_2
|
Ula Yann
| 1 |
query_3
|
Olinda Posso
| 1 |
query_3
|
Julia Matsil
| 1 |
query_4
|
Olinda Posso
| 1 |
query_4
|
Jamar Brugger
| 1 |
query_5
|
Olinda Posso
| 1 |
query_5
|
Celie Scherbert
| 1 |
query_6
|
Olinda Posso
| 1 |
query_6
|
Ken Palacz
| 1 |
query_7
|
Olinda Posso
| 1 |
query_7
|
Tyrone Datu
| 1 |
query_8
|
Olinda Posso
| 1 |
query_8
|
Mattie Puddy
| 1 |
query_9
|
Olinda Posso
| 1 |
query_9
|
Treva Penix
| 1 |
query_10
|
Olinda Posso
| 1 |
query_10
|
Carlyle Jee
| 1 |
query_11
|
Olinda Posso
| 1 |
query_11
|
Jerod Office
| 1 |
query_12
|
Olinda Posso
| 1 |
query_12
|
Kanye Goehner
| 1 |
query_13
|
Olinda Posso
| 1 |
query_13
|
Trevion Malasig
| 1 |
query_14
|
Olinda Posso
| 1 |
query_14
|
Dulce Pardieck
| 1 |
query_15
|
Olinda Posso
| 1 |
query_15
|
Thor Flandez
| 1 |
query_16
|
Olinda Posso
| 1 |
query_16
|
Charolette Ransbottom
| 1 |
query_17
|
Olinda Posso
| 1 |
query_17
|
Chaka Laham
| 1 |
query_18
|
Olinda Posso
| 1 |
query_18
|
Latosha Gorthy
| 1 |
query_19
|
Olinda Posso
| 1 |
query_19
|
Aubra Hokenson
| 1 |
query_20
|
Olinda Posso
| 1 |
query_20
|
Burl Corlis
| 1 |
query_21
|
Olinda Posso
| 1 |
query_21
|
Saniyah Jankowski
| 1 |
query_22
|
Olinda Posso
| 1 |
query_22
|
Judi Wion
| 1 |
query_23
|
Olinda Posso
| 1 |
query_23
|
Melissa Zanis
| 1 |
query_24
|
Olinda Posso
| 1 |
query_24
|
Dickie Delibero
| 1 |
query_25
|
Olinda Posso
| 1 |
query_25
|
Kallie Pavlovski
| 1 |
query_26
|
Olinda Posso
| 1 |
query_26
|
Juliana Helmold
| 1 |
query_27
|
Olinda Posso
| 1 |
query_27
|
Vincenza Otarola
| 1 |
query_28
|
Olinda Posso
| 1 |
query_28
|
Brent Connell
| 1 |
query_29
|
Olinda Posso
| 1 |
query_29
|
Dillie Newett
| 1 |
query_30
|
Olinda Posso
| 1 |
query_30
|
Deryl Falsey
| 1 |
query_31
|
Olinda Posso
| 1 |
query_31
|
Karyn Geyser
| 1 |
query_32
|
Olinda Posso
| 1 |
query_32
|
Ninnie Przybilla
| 1 |
query_33
|
Olinda Posso
| 1 |
query_33
|
Dejuan Topete
| 1 |
query_34
|
Olinda Posso
| 1 |
query_34
|
Kaydence Retuta
| 1 |
query_35
|
Olinda Posso
| 1 |
query_35
|
Arthur Tames
| 1 |
query_36
|
Olinda Posso
| 1 |
query_36
|
Vicie Dopp
| 1 |
query_37
|
Olinda Posso
| 1 |
query_37
|
Georgine Armwood
| 1 |
query_38
|
Olinda Posso
| 1 |
query_38
|
Lorie Dineen
| 1 |
query_39
|
Olinda Posso
| 1 |
query_39
|
Jaquez Windt
| 1 |
query_40
|
Olinda Posso
| 1 |
query_40
|
Alaina Shabaz
| 1 |
query_41
|
Olinda Posso
| 1 |
query_41
|
Lea Hatz
| 1 |
query_42
|
Olinda Posso
| 1 |
query_42
|
Milo Siddoway
| 1 |
query_43
|
Olinda Posso
| 1 |
query_43
|
Daphne Nosker
| 1 |
query_44
|
Olinda Posso
| 1 |
query_44
|
Shalonda Revelez
| 1 |
query_45
|
Wynona Meskell
| 1 |
query_45
|
Leslie Chueh
| 1 |
query_46
|
Wynona Meskell
| 1 |
query_46
|
Ula Yann
| 1 |
query_47
|
Wynona Meskell
| 1 |
query_47
|
Julia Matsil
| 1 |
query_48
|
Wynona Meskell
| 1 |
query_48
|
Jamar Brugger
| 1 |
query_49
|
Wynona Meskell
| 1 |
query_49
|
Celie Scherbert
| 1 |
LIMIT
A retrieval dataset that exposes fundamental theoretical limitations of embedding-based retrieval models. Despite using simple queries like "Who likes Apples?", state-of-the-art embedding models achieve less than 20% recall@100 on LIMIT full and cannot solve LIMIT-small (46 docs).
Links
- Paper: On the Theoretical Limitations of Embedding-Based Retrieval
- Code: github.com/google-deepmind/limit
- Full version: LIMIT (50k documents)
- Small version: LIMIT-small (46 documents only)
Dataset Details
Queries (1,000): Simple questions asking "Who likes [attribute]?"
- Examples: "Who likes Quokkas?", "Who likes Joshua Trees?", "Who likes Disco Music?"
Corpus (50k documents): Short biographical texts describing people and their preferences
- Format: "[Name] likes [attribute1] and [attribute2]."
- Example: "Geneva Durben likes Quokkas and Apples."
Qrels (2,000): Each query has exactly 2 relevant documents (score=1), creating nearly all possible combinations of 2 documents from the 46 corpus documents (C(46,2) = 1,035 combinations).
Format
The dataset follows standard MTEB format with three configurations:
default
: Query-document relevance judgments (qrels), keys:corpus-id
,query-id
,score
(1 for relevant)queries
: Query texts with IDs , keys:_id
,text
corpus
: Document texts with IDs, keys:_id
,title
(empty), andtext
Purpose
Tests whether embedding models can represent all top-k combinations of relevant documents, based on theoretical results connecting embedding dimension to representational capacity. Despite the simple nature of queries, state-of-the-art models struggle due to fundamental dimensional limitations.
Citation
@misc{weller2025theoreticallimit,
title={On the Theoretical Limitations of Embedding-Based Retrieval},
author={Orion Weller and Michael Boratko and Iftekhar Naim and Jinhyuk Lee},
year={2025},
eprint={2508.21038},
archivePrefix={arXiv},
primaryClass={cs.IR},
url={https://arxiv.org/abs/2508.21038},
}
- Downloads last month
- 117