Datasets:

Modalities:
Text
Formats:
json
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
License:
Dataset Viewer
Auto-converted to Parquet
query-id
stringlengths
7
9
corpus-id
stringclasses
46 values
score
int64
1
1
query_0
Geneva Durben
1
query_0
Dorathea Bastress
1
query_1
Geneva Durben
1
query_1
Armand Schweda
1
query_2
Geneva Durben
1
query_2
Flor Lemaire
1
query_3
Geneva Durben
1
query_3
Pate Lindley
1
query_4
Geneva Durben
1
query_4
Shelvia Goike
1
query_5
Geneva Durben
1
query_5
Ovid Rahm
1
query_6
Geneva Durben
1
query_6
Bronson Saelee
1
query_7
Geneva Durben
1
query_7
Gladstone Oonk
1
query_8
Geneva Durben
1
query_8
Ofelia Rosselot
1
query_9
Geneva Durben
1
query_9
Tisha Ghent
1
query_10
Geneva Durben
1
query_10
Herminia Caranto
1
query_11
Geneva Durben
1
query_11
Linzy Recknor
1
query_12
Geneva Durben
1
query_12
Vinie Relford
1
query_13
Geneva Durben
1
query_13
Jerrod Dumpit
1
query_14
Geneva Durben
1
query_14
Amaris Grow
1
query_15
Geneva Durben
1
query_15
Marcellus Meachum
1
query_16
Geneva Durben
1
query_16
Wellington Hinn
1
query_17
Geneva Durben
1
query_17
Georgette Cagna
1
query_18
Geneva Durben
1
query_18
Laurine Bellizzi
1
query_19
Geneva Durben
1
query_19
Agnes Reap
1
query_20
Geneva Durben
1
query_20
Sheree Riddley
1
query_21
Geneva Durben
1
query_21
Mathew Weierke
1
query_22
Geneva Durben
1
query_22
Casimiro Steo
1
query_23
Geneva Durben
1
query_23
Maryann Bohnsack
1
query_24
Geneva Durben
1
query_24
Flo Zaugg
1
query_25
Geneva Durben
1
query_25
Nathen Saadia
1
query_26
Geneva Durben
1
query_26
Ruby Gaskin
1
query_27
Geneva Durben
1
query_27
Jerrie Roupe
1
query_28
Geneva Durben
1
query_28
Camisha Bogosian
1
query_29
Geneva Durben
1
query_29
Gaetano Argel
1
query_30
Geneva Durben
1
query_30
Nathaniel Robens
1
query_31
Geneva Durben
1
query_31
Tarik Hollfelder
1
query_32
Geneva Durben
1
query_32
Riya Hayhoe
1
query_33
Geneva Durben
1
query_33
Chaney Gertman
1
query_34
Geneva Durben
1
query_34
Cristy Walford
1
query_35
Geneva Durben
1
query_35
Eustace Comment
1
query_36
Geneva Durben
1
query_36
Terrell Varadarajan
1
query_37
Geneva Durben
1
query_37
Darwyn Raio
1
query_38
Geneva Durben
1
query_38
Eudora Cervero
1
query_39
Geneva Durben
1
query_39
Jacey Gnatek
1
query_40
Geneva Durben
1
query_40
Elam Mejiamejia
1
query_41
Geneva Durben
1
query_41
Celia Marszalek
1
query_42
Geneva Durben
1
query_42
Aliza Uhlrich
1
query_43
Geneva Durben
1
query_43
Chadwick Frisella
1
query_44
Geneva Durben
1
query_44
Theola Laudermilk
1
query_45
Dorathea Bastress
1
query_45
Armand Schweda
1
query_46
Dorathea Bastress
1
query_46
Flor Lemaire
1
query_47
Dorathea Bastress
1
query_47
Pate Lindley
1
query_48
Dorathea Bastress
1
query_48
Shelvia Goike
1
query_49
Dorathea Bastress
1
query_49
Ovid Rahm
1
End of preview. Expand in Data Studio

LIMIT-small

A retrieval dataset that exposes fundamental theoretical limitations of embedding-based retrieval models. Despite using simple queries like "Who likes Apples?", state-of-the-art embedding models achieve less than 20% recall@100 on LIMIT full and cannot solve LIMIT-small (46 docs).

Links

Dataset Details

Queries (1,000): Simple questions asking "Who likes [attribute]?"

  • Examples: "Who likes Quokkas?", "Who likes Joshua Trees?", "Who likes Disco Music?"

Corpus (46 documents): Short biographical texts describing people and their preferences

  • Format: "[Name] likes [attribute1] and [attribute2]."
  • Example: "Geneva Durben likes Quokkas and Apples."

Qrels (2,000): Each query has exactly 2 relevant documents (score=1), creating nearly all possible combinations of 2 documents from the 46 corpus documents (C(46,2) = 1,035 combinations).

Format

The dataset follows standard MTEB format with three configurations:

  • default: Query-document relevance judgments (qrels), keys: corpus-id, query-id, score (1 for relevant)
  • queries: Query texts with IDs , keys: _id, text
  • corpus: Document texts with IDs, keys: _id, title (empty), and text

Purpose

Tests whether embedding models can represent all top-k combinations of relevant documents, based on theoretical results connecting embedding dimension to representational capacity. Despite the simple nature of queries, state-of-the-art models struggle due to fundamental dimensional limitations.

Citation

@misc{weller2025theoreticallimit,
      title={On the Theoretical Limitations of Embedding-Based Retrieval}, 
      author={Orion Weller and Michael Boratko and Iftekhar Naim and Jinhyuk Lee},
      year={2025},
      eprint={2508.21038},
      archivePrefix={arXiv},
      primaryClass={cs.IR},
      url={https://arxiv.org/abs/2508.21038}, 
}
Downloads last month
89