orionweller commited on
Commit
903103c
·
verified ·
1 Parent(s): 1bb26b7

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +42 -1
README.md CHANGED
@@ -54,4 +54,45 @@ size_categories:
54
 
55
  # LIMIT
56
 
57
- This dataset is an MTEB-compatible version of the [original dataset](https://github.com/google-deepmind/limit). Please see that link for more details.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
54
 
55
  # LIMIT
56
 
57
+ A retrieval dataset that exposes fundamental theoretical limitations of embedding-based retrieval models. Despite using simple queries like "Who likes Apples?", state-of-the-art embedding models achieve less than 20% recall@100 on LIMIT full and cannot solve LIMIT-small (46 docs).
58
+
59
+ ## Links
60
+
61
+ - **Paper**: [On the Theoretical Limitations of Embedding-Based Retrieval](https://arxiv.org/abs/2508.21038)
62
+ - **Code**: [github.com/google-deepmind/limit](https://github.com/google-deepmind/limit)
63
+ - **Full version**: [LIMIT](https://huggingface.co/datasets/orionweller/LIMIT/) (50k documents)
64
+ - **Small version**: [LIMIT-small](https://huggingface.co/datasets/orionweller/LIMIT-small/) (46 documents only)
65
+
66
+ ## Dataset Details
67
+
68
+ **Queries** (1,000): Simple questions asking "Who likes [attribute]?"
69
+ - Examples: "Who likes Quokkas?", "Who likes Joshua Trees?", "Who likes Disco Music?"
70
+
71
+ **Corpus** (50k documents): Short biographical texts describing people and their preferences
72
+ - Format: "[Name] likes [attribute1] and [attribute2]."
73
+ - Example: "Geneva Durben likes Quokkas and Apples."
74
+
75
+ **Qrels** (2,000): Each query has exactly 2 relevant documents (score=1), creating nearly all possible combinations of 2 documents from the 46 corpus documents (C(46,2) = 1,035 combinations).
76
+
77
+ ### Format
78
+ The dataset follows standard MTEB format with three configurations:
79
+ - `default`: Query-document relevance judgments (qrels), keys: `corpus-id`, `query-id`, `score` (1 for relevant)
80
+ - `queries`: Query texts with IDs , keys: `_id`, `text`
81
+ - `corpus`: Document texts with IDs, keys: `_id`, `title` (empty), and `text`
82
+
83
+ ### Purpose
84
+ Tests whether embedding models can represent all top-k combinations of relevant documents, based on theoretical results connecting embedding dimension to representational capacity. Despite the simple nature of queries, state-of-the-art models struggle due to fundamental dimensional limitations.
85
+
86
+ ## Citation
87
+
88
+ ```bibtex
89
+ @misc{weller2025theoreticallimitationsembeddingbasedretrieval,
90
+ title={On the Theoretical Limitations of Embedding-Based Retrieval},
91
+ author={Orion Weller and Michael Boratko and Iftekhar Naim and Jinhyuk Lee},
92
+ year={2025},
93
+ eprint={2508.21038},
94
+ archivePrefix={arXiv},
95
+ primaryClass={cs.IR},
96
+ url={https://arxiv.org/abs/2508.21038},
97
+ }
98
+ ```