conll2012_ontonotesv5 / conll2012_ontonotesv5.py
ArneBinder's picture
rename converter method
312df95
raw
history blame
12.7 kB
import dataclasses
from collections import defaultdict
from typing import Any, Callable, Dict, List, Optional, Tuple
import datasets
import pytorch_ie
from pytorch_ie.annotations import LabeledSpan, NaryRelation, Span
from pytorch_ie.core import Annotation, AnnotationList, Document, annotation_field
from pytorch_ie.documents import TextDocumentWithLabeledEntitiesAndLabeledPartitions
@dataclasses.dataclass(eq=True, frozen=True)
class SpanSet(Annotation):
spans: Tuple[Span, ...]
score: float = 1.0
def __post_init__(self) -> None:
# make the referenced spans unique, sort them and convert to tuples to make everything hashable
object.__setattr__(
self,
"spans",
tuple(sorted(set(s for s in self.spans), key=lambda s: (s.start, s.end))),
)
@dataclasses.dataclass(eq=True, frozen=True)
class Attribute(Annotation):
target_annotation: Annotation
label: str
value: Optional[str] = None
@dataclasses.dataclass(eq=True, frozen=True)
class Predicate(Span):
lemma: str
framenet_id: Optional[str] = None
@dataclasses.dataclass
class Conll2012OntonotesV5Document(Document):
tokens: List[str]
id: str
pos_tags: List[str]
sentences: AnnotationList[Span] = annotation_field(target="tokens")
parse_trees: AnnotationList[Attribute] = annotation_field(target="sentences")
speakers: AnnotationList[Attribute] = annotation_field(target="sentences")
parts: AnnotationList[LabeledSpan] = annotation_field(target="tokens")
coref_mentions: AnnotationList[Span] = annotation_field(target="tokens")
coref_clusters: AnnotationList[SpanSet] = annotation_field(target="coref_mentions")
srl_arguments: AnnotationList[Span] = annotation_field(target="tokens")
srl_relations: AnnotationList[NaryRelation] = annotation_field(target="srl_arguments")
entities: AnnotationList[LabeledSpan] = annotation_field(target="tokens")
predicates: AnnotationList[Predicate] = annotation_field(target="tokens")
word_senses: AnnotationList[LabeledSpan] = annotation_field(target="tokens")
def bio2spans(bio: List[str], offset: int = 0) -> List[LabeledSpan]:
"""Convert a BIO-encoded sequence of labels to a list of labeled spans.
Args:
bio: a BIO-encoded sequence of labels, e.g. ["B-PER", "I-PER", "O", "B-LOC", "I-LOC"]
offset: offset to add to the start and end indices of the spans
Returns:
a list of labeled spans
"""
spans = []
prev_start_and_label: Optional[int, str] = None
for idx, bio_value_and_label in enumerate(bio):
bio_value = bio_value_and_label[0]
bio_label = bio_value_and_label[2:] if bio_value != "O" else None
if bio_value == "B":
if prev_start_and_label is not None:
prev_start, prev_label = prev_start_and_label
spans.append(
LabeledSpan(start=prev_start + offset, end=idx + offset, label=prev_label)
)
prev_start_and_label = (idx, bio_label)
elif bio_value == "I":
if prev_start_and_label is None:
raise ValueError(f"Invalid BIO encoding: {bio}")
elif bio_value == "O":
if prev_start_and_label is not None:
prev_start, prev_label = prev_start_and_label
spans.append(
LabeledSpan(start=prev_start + offset, end=idx + offset, label=prev_label)
)
prev_start_and_label = None
if prev_start_and_label is not None:
prev_start, prev_label = prev_start_and_label
spans.append(
LabeledSpan(start=prev_start + offset, end=len(bio) + offset, label=prev_label)
)
return spans
def example_to_document(
example: Dict[str, Any],
entities_int2str: Callable[[int], str],
pos_tags_int2str: Optional[Callable[[int], str]] = None,
) -> Conll2012OntonotesV5Document:
sentences = []
tokens = []
pos_tags = []
parse_trees = []
speakers = []
entities = []
predicates = []
coref_mentions = []
coref_clusters = []
srl_arguments = []
srl_relations = []
word_senses = []
parts = []
last_part_id_and_start: Optional[Tuple[int, int]] = None
for sentence_idx, sentence_dict in enumerate(example["sentences"]):
sentence_offset = len(tokens)
current_tokens = sentence_dict["words"]
current_sentence = Span(start=sentence_offset, end=sentence_offset + len(current_tokens))
sentences.append(current_sentence)
if pos_tags_int2str is not None:
pos_tags.extend(
[pos_tags_int2str(pos_tag_id) for pos_tag_id in sentence_dict["pos_tags"]]
)
else:
pos_tags.extend(sentence_dict["pos_tags"])
parse_trees.append(
Attribute(target_annotation=current_sentence, label=sentence_dict["parse_tree"])
)
speakers.append(
Attribute(target_annotation=current_sentence, label=sentence_dict["speaker"])
)
named_entities_bio = [
entities_int2str(entity_id) for entity_id in sentence_dict["named_entities"]
]
entities.extend(bio2spans(bio=named_entities_bio, offset=len(tokens)))
for idx, (predicate_lemma_value, predicate_framenet_id) in enumerate(
zip(sentence_dict["predicate_lemmas"], sentence_dict["predicate_framenet_ids"])
):
token_idx = sentence_offset + idx
if predicate_lemma_value is not None:
predicate = Predicate(
start=token_idx,
end=token_idx + 1,
lemma=predicate_lemma_value,
framenet_id=predicate_framenet_id,
)
predicates.append(predicate)
coref_clusters_dict = defaultdict(list)
for cluster_id, start, end in sentence_dict["coref_spans"]:
current_coref_mention = Span(
start=start + sentence_offset, end=end + 1 + sentence_offset
)
coref_mentions.append(current_coref_mention)
coref_clusters_dict[cluster_id].append(current_coref_mention)
current_coref_clusters = [
SpanSet(spans=tuple(spans)) for spans in coref_clusters_dict.values()
]
coref_clusters.extend(current_coref_clusters)
# handle srl_frames
for frame_dict in sentence_dict["srl_frames"]:
current_srl_arguments_with_roles = bio2spans(
bio=frame_dict["frames"], offset=sentence_offset
)
current_srl_arguments = [
Span(start=arg.start, end=arg.end) for arg in current_srl_arguments_with_roles
]
current_srl_roles = [arg.label for arg in current_srl_arguments_with_roles]
current_srl_relation = NaryRelation(
arguments=tuple(current_srl_arguments),
roles=tuple(current_srl_roles),
label="",
)
srl_arguments.extend(current_srl_arguments)
srl_relations.append(current_srl_relation)
# handle word senses
for idx, word_sense in enumerate(sentence_dict["word_senses"]):
token_idx = sentence_offset + idx
if word_sense is not None:
word_senses.append(
LabeledSpan(start=token_idx, end=token_idx + 1, label=str(int(word_sense)))
)
# handle parts
if last_part_id_and_start is not None:
last_part_id, last_start = last_part_id_and_start
if last_part_id != sentence_dict["part_id"]:
parts.append(
LabeledSpan(start=last_start, end=sentence_offset, label=str(last_part_id))
)
last_part_id_and_start = (sentence_dict["part_id"], sentence_offset)
else:
last_part_id_and_start = (sentence_dict["part_id"], sentence_offset)
tokens.extend(current_tokens)
if last_part_id_and_start is not None:
last_part_id, last_start = last_part_id_and_start
parts.append(LabeledSpan(start=last_start, end=len(tokens), label=str(last_part_id)))
doc = Conll2012OntonotesV5Document(
tokens=tokens,
id=example["document_id"],
pos_tags=pos_tags,
)
# add the annotations to the document
doc.sentences.extend(sentences)
doc.parse_trees.extend(parse_trees)
doc.speakers.extend(speakers)
doc.entities.extend(entities)
doc.predicates.extend(predicates)
doc.coref_mentions.extend(coref_mentions)
doc.coref_clusters.extend(coref_clusters)
doc.srl_arguments.extend(srl_arguments)
doc.srl_relations.extend(srl_relations)
doc.word_senses.extend(word_senses)
return doc
def convert_to_text_document_with_labeled_entities_and_labeled_partitions(
doc: Conll2012OntonotesV5Document,
token_separator: str = " ",
) -> TextDocumentWithLabeledEntitiesAndLabeledPartitions:
start = 0
token_offsets: List[Tuple[int, int]] = []
for token in doc.tokens:
end = start + len(token)
token_offsets.append((start, end))
# we add the separator after each token
start = end + len(token_separator)
text = token_separator.join([token for token in doc.tokens])
entity_map: Dict[Tuple[int, int], LabeledSpan] = {}
for entity in doc.entities:
char_start = token_offsets[entity.start][0]
char_end = token_offsets[entity.end - 1][1]
char_offset_entity = LabeledSpan(start=char_start, end=char_end, label=entity.label)
entity_map[(entity.start, entity.end)] = char_offset_entity
sentence_map: Dict[Tuple[int, int], LabeledSpan] = {}
for sentence in doc.sentences:
char_start = token_offsets[sentence.start][0]
char_end = token_offsets[sentence.end - 1][1]
char_offset_sentence = LabeledSpan(start=char_start, end=char_end, label="sentence")
sentence_map[(sentence.start, sentence.end)] = char_offset_sentence
new_doc = TextDocumentWithLabeledEntitiesAndLabeledPartitions(text=text, id=doc.id)
new_doc.entities.extend(entity_map.values())
new_doc.partitions.extend(sentence_map.values())
return new_doc
class Conll2012OntonotesV5Config(datasets.BuilderConfig):
"""BuilderConfig for the CoNLL formatted OntoNotes dataset."""
def __init__(self, language=None, conll_version=None, **kwargs):
"""BuilderConfig for the CoNLL formatted OntoNotes dataset.
Args:
language: string, one of the language {"english", "chinese", "arabic"} .
conll_version: string, "v4" or "v12". Note there is only English v12.
**kwargs: keyword arguments forwarded to super.
"""
assert language in ["english", "chinese", "arabic"]
assert conll_version in ["v4", "v12"]
if conll_version == "v12":
assert language == "english"
super(Conll2012OntonotesV5Config, self).__init__(
name=f"{language}_{conll_version}",
description=f"{conll_version} of CoNLL formatted OntoNotes dataset for {language}.",
version=datasets.Version("1.0.0"), # hf dataset script version
**kwargs,
)
self.language = language
self.conll_version = conll_version
class Conll2012Ontonotesv5(pytorch_ie.data.builder.GeneratorBasedBuilder):
DOCUMENT_TYPE = Conll2012OntonotesV5Document
DOCUMENT_CONVERTERS = {
TextDocumentWithLabeledEntitiesAndLabeledPartitions: convert_to_text_document_with_labeled_entities_and_labeled_partitions
}
BASE_DATASET_PATH = "DFKI-SLT/conll2012_ontonotesv5"
BUILDER_CONFIGS = [
Conll2012OntonotesV5Config(
language=lang,
conll_version="v4",
)
for lang in ["english", "chinese", "arabic"]
] + [
Conll2012OntonotesV5Config(
language="english",
conll_version="v12",
)
]
def _generate_document_kwargs(self, dataset):
pos_tags_feature = dataset.features["sentences"][0]["pos_tags"].feature
return dict(
entities_int2str=dataset.features["sentences"][0]["named_entities"].feature.int2str,
pos_tags_int2str=pos_tags_feature.int2str
if isinstance(pos_tags_feature, datasets.ClassLabel)
else None,
)
def _generate_document(self, example, entities_int2str, pos_tags_int2str):
return example_to_document(
example, entities_int2str=entities_int2str, pos_tags_int2str=pos_tags_int2str
)