You need to agree to share your contact information to access this dataset

This repository is publicly accessible, but you have to accept the conditions to access its files and content.

Log in or Sign Up to review the conditions and access this dataset content.

β™› Chess Evaluation-Based Feature Dataset

Dataset Description

This dataset contains over 5 million chess games sourced from Lichess.org, containing Stockfish Engine Evaluations and clock timings and moves and game metadata.

The dataset is composed of two files:

  • lichess_games_moves: Contains traditional PGN-style metadata and move sequences, stored in Parquet format for fast querying.

  • lichess_moves_sample.parquet: Contains per-player, per-game performance metrics derived from evaluations and timing data, including centipawn loss, move accuracy, and time usage.

Each game is uniquely identified by a game_id (UUID), which allows for seamless joins between the two datasets.

This structure enables researchers to analyze player behavior at both the game level and the player level, supporting tasks such as cheat detection, player profiling, skill progression analysis, and AI performance benchmarking. The dataset spans a wide range of game types, rating tiers, and event formats, offering a granular view into decision-making, precision, and time management across millions of chess games.


πŸ“Š Dataset Summary

Attribute Description
Total Games 5,000,000
ELO Range 400 to 3945
Time Controls Bullet (21%), Blitz (47%), Rapid (29%), Classical (2%), Ultrabullet (0.7%)
Unique Openings 142 openings, 100 variations
Event Types Game (88%), Tournament (11%), Swiss Tournament (1%)

πŸ“Œ Features

Field Description Calculation
total_cpl Total centipawn loss sum(abs(eval_after - eval_before))
acpl Average centipawn loss total_cpl / move_count
mcpl Median centipawn loss median(abs(eval_after - eval_before))
std_cpl Std deviation of CPL std(abs(eval_after - eval_before))
25%_cpl 25th percentile CPL percentile(abs(eval_after - eval_before), 25)
75%_cpl 75th percentile CPL percentile(abs(eval_after - eval_before), 75)
min_cpl Minimum CPL min(abs(eval_after - eval_before))
max_cpl Maximum CPL max(abs(eval_after - eval_before))
move_cnt Count of evaluated moves Count of moves with evaluations
inaccuracy_cnt Moves with win prob drop 5–10% 5 < delta_wp < 10
mistake_cnt Moves with win prob drop 10–15% 10 < delta_wp < 15
blunder_cnt Moves with win prob drop β‰₯15% delta_wp β‰₯ 15
best_cnt Moves with win prob drop ≀5% delta_wp ≀ 5
perfect_streak Longest best-move streak max(consecutive_moves where delta_wp ≀ 5)
mean_acc Mean move accuracy mean(accuracy_scores)
med_acc Median accuracy median(accuracy_scores)
std_acc Std deviation of accuracy std(accuracy_scores)
25%_acc 25th percentile accuracy percentile(accuracy_scores, 25)
75%_acc 75th percentile accuracy percentile(accuracy_scores, 75)
min_acc Minimum accuracy min(accuracy_scores)
max_acc Maximum accuracy max(accuracy_scores)
mean_win% Mean win probability mean(win_probs)
med_win% Median win probability median(win_probs)
std_win% Std deviation win prob std(win_probs)
25%_win% 25th percentile win prob percentile(win_probs, 25)
75%_win% 75th percentile win prob percentile(win_probs, 75)
min_win% Minimum win probability min(win_probs)
max_win% Maximum win probability max(win_probs)
avg_tpm Avg time per move (sec) mean(move_times)
med_tpm Median time per move median(move_times)
stdev_tpm Std deviation of time std(move_times)
25%_tpm 25th percentile time percentile(move_times, 25)
75%_tpm 75th percentile time percentile(move_times, 75)
min_tpm Minimum time per move min(move_times)
max_tpm Maximum time per move max(move_times)
instant_move_cnt Moves made in ≀1s count(time ≀ 1)
game_id Unique game identifier UUID format
player Player color white or black
username Player username From Lichess
elo Player rating ELO score
rating_diff Rating change Post-game change
title Chess title e.g., GM, IM, CM
Site Game URL Lichess link
Date Local game date YYYY.MM.DD
Round Game round Often -
Result Game result 1-0, 0-1, or 1/2-1/2
UTCDate UTC date Game timestamp
UTCTime UTC time Game start time
ECO ECO code e.g., A00, B01
Opening Opening name Named variation
TimeControl Raw control format e.g., 600+0
Termination End reason e.g., Normal, Timeout
timecontrol_type Time class Bullet, Blitz, etc.
event_type Event format Game, Tournament, Swiss
event_url Tournament link If applicable
  • Win Probability: WP(cp) = 50 + 50 Γ— ( 2 / (1 + e^(βˆ’0.00368208 Γ— cp)) βˆ’ 1 )

  • Accuracy: Ξ”WP = WP_before βˆ’ WP_after Accuracy(Ξ”WP) = clamp( 103.1668 Γ— e^(βˆ’0.04354 Γ— Ξ”WP) βˆ’ 3.1669 , 0, 100 )


πŸ” Sample Observation from lichess_metrics_sample.parquet

{
    "total_cpl": 1436.0,
    "acpl": 27.615384615384617,
    "mcpl": 10.0,
    "std_cpl": 75.82777901934035,
    "25%_cpl": 4.0,
    "75%_cpl": 16.25,
    "min_cpl": 0.0,
    "max_cpl": 474.0,
    "move_cnt": 52,
    "inaccuracy_cnt": 0,
    "mistake_cnt": 0,
    "blunder_cnt": 2,
    "best_cnt": 50,
    "perfect_streak": 37,
    "mean_acc": 95.04878233982011,
    "med_acc": 99.06330947144633,
    "std_acc": 14.906050942960489,
    "25%_acc": 97.21119376075846,
    "75%_acc": 100.0,
    "min_acc": 16.396635484120793,
    "max_acc": 100.0,
    "mean_win%": 75.49193923600627,
    "med_win%": 85.45913904456496,
    "std_win%": 18.60559724644749,
    "25%_win%": 52.46040066101623,
    "75%_win%": 87.16445709539632,
    "min_win%": 35.17797456776559,
    "max_win%": 97.54474363414323,
    "avg_tpm": 13.257142857142858,
    "med_tpm": 12.0,
    "stdev_tpm": 7.904222586306483,
    "25%_tpm": 7.0,
    "75%_tpm": 20.0,
    "min_tpm": 2.0,
    "max_tpm": 29.0,
    "instant_move_cnt": 0,
    "game_id": "3c2687ff-b368-4ab0-8018-05346ccd16e9",
    "player": "white",
    "username": "TIBURONCHILENO",
    "elo": "2366",
    "rating_diff": "+1",
    "title": "FM",
    "Site": "https://lichess.org/v0oGqi2g",
    "Date": "2025.02.20",
    "Round": "-",
    "Result": "1-0",
    "UTCDate": "2025.02.20",
    "UTCTime": "00:48:50",
    "ECO": "A45",
    "Opening": "Indian Defense",
    "TimeControl": "180+2",
    "Termination": "Normal",
    "timecontrol_type": "Blitz",
    "event_type": "tournament",
    "event_url": "https://lichess.org/tournament/oeFqsJi9",
    "moves":
}

πŸ” Sample Observation from lichess_moves_sample.parquet

{
    "game_id": "3c2687ff-b368-4ab0-8018-05346ccd16e9",
    "Site": "https://lichess.org/v0oGqi2g",
    "Date": "2025.02.20",
    "Round": "-",
    "White": "TIBURONCHILENO",
    "Black": "Gran_Maestro2756",
    "Result": "1-0",
    "UTCDate": "2025.02.20",
    "UTCTime": "00:48:50",
    "WhiteElo": "2366",
    "BlackElo": "1940",
    "WhiteRatingDiff": "+1",
    "BlackRatingDiff": "-1",
    "ECO": "A45",
    "Opening": "Indian Defense",
    "TimeControl": "180+2",
    "Termination": "Normal",
    "BlackTitle": None,
    "WhiteTitle": "FM",
    "event_url": "https://lichess.org/tournament/oeFqsJi9",
    "timecontrol_type": "Blitz",
    "event_type": "tournament",
    "has_eval": "1",
    "moves": "1. d4 { [%eval 0.17] [%clk 0:03:00] } 1... Nf6 { [%eval 0.19] [%clk 0:03:00] } 2. Bf4 { [%eval 0.05] [%clk 
    0:03:01] } 2... e6 { [%eval 0.11] [%clk 0:03:01] } 3. e3 { [%eval 0.0]  [%clk 0:03:03] } 3... c5 { [%eval 0.0] [%clk 0:03:02] }
    4. Nd2 { [%eval 0.1] [%clk 0:03:04] } 4... cxd4 { [%eval 0.37] [%clk    0:03:03] } 5. exd4 { [%eval 0.15] [%clk 0:03:04] } 5... 
    b6 { [%eval 0.19] [%clk 0:03:04] } 6. c3 { [%eval 0.16] [%clk 0:03:06] }    6... Bb7 { [%eval 0.2] [%clk 0:03:05] } 7. Ngf3 { 
    [%eval 0.15] [%clk 0:03:07] } 7... d6 { [%eval 0.27] [%clk 0:03:06] } 8.    Bd3 { [%eval 0.25] [%clk 0:03:08] } 8... Be7 { [%eval
    0.29] [%clk 0:03:07] } 9. Qe2 { [%eval 0.26] [%clk 0:03:10] } 9... O-O {    [%eval 0.24] [%clk 0:03:07] } 10. h3 { [%eval 0.28] 
    [%clk 0:03:11] } 10... Nbd7 { [%eval 0.27] [%clk 0:03:08] } 11. O-O {   [%eval 0.27] [%clk 0:03:13] } 11... Re8 { [%eval 0.25] 
    [%clk 0:03:09] } 12. Rfe1 { [%eval 0.28] [%clk 0:03:14] } 12... Qc7 {   [%eval 0.28] [%clk 0:03:10] } 13. Ng5 { [%eval 0.14] 
    [%clk 0:03:15] } 13... h6? { [%eval 1.37] [%clk 0:03:10] } 14. Nxe6?? {     [%eval -1.66] [%clk 0:03:13] } 14... fxe6 { [%eval 
    -1.39] [%clk 0:03:04] } 15. Qxe6+ { [%eval -1.38] [%clk 0:03:15] } 15...    Kf8?? { [%eval 3.98] [%clk 0:03:05] } 16. Bg6?? { 
    [%eval -0.76] [%clk 0:03:15] } 16... Bd5 { [%eval -0.75] [%clk 0:02:58] }   17. Qf5 { [%eval -0.51] [%clk 0:03:16] } 17... Red8?
    { [%eval 2.48] [%clk 0:02:57] } 18. c4 { [%eval 2.62] [%clk 0:03:09] }  18... Bf7? { [%eval 4.93] [%clk 0:02:57] } 19. Bxf7 { 
    [%eval 4.89] [%clk 0:02:50] } 19... Kxf7 { [%eval 4.91] [%clk 0:02:58] }    20. Qe6+ { [%eval 4.88] [%clk 0:02:52] } 20... Kg6 { 
    [%eval 4.86] [%clk 0:02:58] } 21. Qxe7 { [%eval 4.64] [%clk 0:02:51] }  21... Re8 { [%eval 4.87] [%clk 0:02:56] } 22. Qxd6 { 
    [%eval 4.97] [%clk 0:02:52] } 22... Qxd6 { [%eval 4.86] [%clk 0:02:57] }    23. Bxd6 { [%eval 4.92] [%clk 0:02:45] } 23... Rad8 {
    [%eval 5.05] [%clk 0:02:56] } 24. Bc7 { [%eval 4.95] [%clk 0:02:43] }   24... Rc8 { [%eval 4.97] [%clk 0:02:56] } 25. Bg3 { 
    [%eval 4.8] [%clk 0:02:45] } 25... Nh5 { [%eval 4.99] [%clk 0:02:55] }  26. Bd6 { [%eval 5.09] [%clk 0:02:39] } 26... Nhf6 { 
    [%eval 4.95] [%clk 0:02:53] } 27. f3 { [%eval 4.82] [%clk 0:02:40] }    27... Rcd8 { [%eval 5.1] [%clk 0:02:46] } 28. Kf2 { 
    [%eval 4.96] [%clk 0:02:38] } 28... Nf8 { [%eval 5.29] [%clk 0:02:41] }     29. Rxe8 { [%eval 5.19] [%clk 0:02:37] } 29... Rxe8 { 
    [%eval 5.25] [%clk 0:02:41] } 30. Bxf8 { [%eval 5.0] [%clk 0:02:33] }   30... Rxf8 { [%eval 4.9] [%clk 0:02:42] } 31. Re1 { 
    [%eval 4.86] [%clk 0:02:34] } 31... Rd8 { [%eval 5.0] [%clk 0:02:43] }  32. d5 { [%eval 5.03] [%clk 0:02:36] } 32... Nd7 { 
    [%eval 5.37] [%clk 0:02:43] } 33. Ne4 { [%eval 4.42] [%clk 0:02:35] }   33... Ne5 { [%eval 4.39] [%clk 0:02:43] } 34. Rd1 { 
    [%eval 3.9] [%clk 0:02:14] } 34... Nxc4 { [%eval 3.75] [%clk 0:02:43] }     35. b3 { [%eval 3.66] [%clk 0:02:15] } 35... Nd6 { 
    [%eval 4.41] [%clk 0:02:41] } 36. Nxd6 { [%eval 4.36] [%clk 0:02:16] }  36... Rxd6 { [%eval 4.13] [%clk 0:02:42] } 37. Ke3 { 
    [%eval 4.35] [%clk 0:02:17] } 37... Kf5 { [%eval 4.57] [%clk 0:02:42] }     38. Kd4 { [%eval 4.42] [%clk 0:02:18] } 38... a6 { 
    [%eval 4.89] [%clk 0:02:41] } 39. Re1 { [%eval 4.77] [%clk 0:02:19] }   39... g6 { [%eval 5.07] [%clk 0:02:41] } 40. g3 { [%eval
    4.92] [%clk 0:02:19] } 40... h5 { [%eval 5.35] [%clk 0:02:39] } 41. h4 {    [%eval 5.32] [%clk 0:02:19] } 41... Kf6 { [%eval 5.3]
    [%clk 0:02:38] } 42. Re8 { [%eval 5.36] [%clk 0:02:18] } 42... Kf7 {    [%eval 5.08] [%clk 0:02:39] } 43. Rc8 { [%eval 5.24] 
    [%clk 0:02:19] } 43... Rf6 { [%eval 5.8] [%clk 0:02:35] } 44. f4 { [%eval   5.76] [%clk 0:02:19] } 44... Ke7 { [%eval 5.63] 
    [%clk 0:02:30] } 45. b4 { [%eval 5.7] [%clk 0:02:10] } 45... a5 { [%eval    5.93] [%clk 0:02:29] } 46. b5 { [%eval 5.82] [%clk 
    0:02:11] } 46... Kd7 { [%eval 5.89] [%clk 0:02:27] } 47. Rc6 { [%eval 5.    85] [%clk 0:02:11] } 47... Rd6?? { [%eval 9.74] [%clk 
    0:02:20] } 48. Ke5 { [%eval 9.51] [%clk 0:02:11] } 48... Rxc6 { [%eval 9.   77] [%clk 0:02:18] } 49. bxc6+ { [%eval 9.58] [%clk 
    0:02:13] } 49... Kc7 { [%eval 10.01] [%clk 0:02:18] } 50. Ke6 { [%eval 9.   37] [%clk 0:02:15] } 50... Kd8 { [%eval 10.67] [%clk 
    0:02:19] } 51. d6 { [%eval 10.36] [%clk 0:02:14] } 51... b5 { [%eval 10.    49] [%clk 0:02:19] } 52. d7 { [%eval 10.26] [%clk 
    0:02:16] } 52... b4?! { [%eval #2] [%clk 0:02:19] } 53. Kd6 { [%eval #1]    [%clk 0:02:17] } 53... b3 { [%eval #1] [%clk 0:02:20]
    } 54. c7# { [%clk 0:02:17] } 1-0"
}

Dataset Sources

Lichess: [https://database.lichess.org/]

Dataset Card Contact

If you are interested in accessing the full dataset, reach out to [email protected]. Proceeds from the sales of the full dataset will be directed to the The Gift of Chess Inc a 501(c)(3) nonprofit organization transforming lives through the universal language of chess.

We are currently expanding our augmented dataset offerings and are working closely with data consumers to match them directly to high-quality real-world, augmented, and synthetic data sources.

Whether you are pre or post-training models, fine tuning, conducting evals or just looking for novel datasets to assist in your AI development, Portex would like to partner with you.

Downloads last month
9