MMMED / README.md
giuseppericcio's picture
Update README.md
a872e34 verified
---
license: cc-by-nc-4.0
configs:
- config_name: default
data_files:
- split: English
path: "MMMED_English.csv"
- split: Spanish
path: "MMMED_Spanish.csv"
- split: Italian
path: "MMMED_Italian.csv"
task_categories:
- visual-question-answering
language:
- en
- es
- it
tags:
- medical
---
# ๐Ÿฅ *M*ultilingual *M*ultimodal *M*edical *E*xam *D*ataset for Visual Question Answering in Healthcare
[![CC BY-NC 4.0][cc-by-nc-shield]][cc-by-nc]
The **Multilingual Multimodal Medical Exam Dataset** (MMMED) is a comprehensive benchmark designed to evaluate Vision-Language Models (VLMs) on _medical multiple-choice question answering (MCQA) tasks_. This dataset combines medical images and multiple-choice questions in **Spanish**, **English**, and **Italian**, derived from the **Mรฉdico Interno Residente (MIR)** residency exams in Spain.
The dataset includes challenging, real-world medical content, with images from various diagnostic scenarios, making it ideal for assessing VLMs in cross-lingual medical tasks.
### ๐Ÿ”’ **How to Access the Dataset**
You can access the **MMMED** dataset via [Hugging Face](https://huggingface.co/datasets/praiselab-picuslab/MMMED). Follow these steps to download it:
**_โš ๏ธ Disclaimer: This dataset contains medical images that may be sensitive for some users. Viewer discretion is advised, especially if the content may evoke strong emotional reactions or be distressing._**
```python
from datasets import load_dataset
# Login using e.g. `huggingface-cli login` to access this dataset
ds = load_dataset("praiselab-picuslab/MMMED")
```
### ๐ŸŒŸ **Key Features**:
- **Languages**: ๐Ÿ‡ช๐Ÿ‡ธ Spanish, ๐Ÿ‡ฌ๐Ÿ‡ง English, ๐Ÿ‡ฎ๐Ÿ‡น Italian
- **Medical Content**: Questions based on real Spanish residency exams
- **Image Types**: Diagnostic medical images (e.g., CT scans, X-rays)
- **Categories**: 24 medical specialties (e.g., Digestive Surgery, Cardiology)
- **Multimodal**: Each question comes with a medical image ๐Ÿ“ธ
### ๐Ÿ› ๏ธ **Dataset Workflow**
Here is the general workflow for building the MMMED dataset for Vision-Language Model (VLM) evaluation:
![image/png](https://cdn-uploads.huggingface.co/production/uploads/64f04aba2fe30f121240a85a/Vw3eVjVkZCa4kUvcYfGh0.png)
### ๐Ÿ“Š **Dataset Overview**
The MMMED dataset contains 194 questions from the MIR exams and features images from real-world medical contexts. The dataset is organized into 24 medical categories, each with corresponding textual questions and image-based choices.
| **Statistic** | **๐Ÿ‡ช๐Ÿ‡ธ Spanish** | **๐Ÿ‡ฌ๐Ÿ‡ง English** | **๐Ÿ‡ฎ๐Ÿ‡น Italian** |
|-----------------------------|-----------------|-----------------|----------------|
| **# Questions** | 194 | 194 | 194 |
| **# Categories** | 24 | 24 | 24 |
| **Last Update** | 2024 | 2024 | 2024 |
| **Avg. Option Length** | 6.85 | 6.57 | 6.71 |
| **Max. Option Length** | 41 | 39 | 39 |
| **Total Question Tokens** | 10,898 | 10,213 | 10,545 |
| **Total Option Tokens** | 5,644 | 5,417 | 5,528 |
| **Avg. Question Length** | 56.18 | 52.64 | 54.36 |
| **Max. Question Length** | 223 | 190 | 197 |
### ๐Ÿ–ผ๏ธ **Image Types**
Categorization of Image Types in the MMMED Dataset. This figure presents the four main categories of images included in the dataset and their respective distributions.
![image/png](https://cdn-uploads.huggingface.co/production/uploads/64f04aba2fe30f121240a85a/WDCOUueEtnrCV-k5ESG2w.png)
### โœจ **Example MMCQA**
Each multimodal multiple-choice question-answer (MMCQA) pair integrates three essential components with the following structure:
- **Category**: C
- **Question**: Q
- **Image URL**: I
- **Answer Options**: O
- **Correct Answer**: ๐Ÿ’ก
Hereโ€™s an illustrative example of multimodal QA in three languages:
![image/png](https://cdn-uploads.huggingface.co/production/uploads/64f04aba2fe30f121240a85a/nG8jNSxWB7vxtjNu9MOTz.png)
### ๐Ÿ” **List of Open-Source and Closed-Source Vision-Language Models (VLMs) Used**
This table shows the parameter sizes, language models, vision models, and average scores of VLMs evaluated on the OpenVLM Leaderboard.
| **Rank** | **Method** | **Param (B)** | **Language Model** | **Vision Model** | **Avg Score (%)** |
|----------|--------------------------|---------------|---------------------|-------------------------|-------------------|
| **Open-Source Models** |
| 167 | PaliGemma-3B-mix-448 | 3 | Gemma-2B | SigLIP-400M | 46.5 |
| 108 | DeepSeek-VL2-Tiny | 3.4 | DeepSeekMoE-3B | SigLIP-400M | 58.1 |
| 135 | Phi-3.5-Vision | 4 | Phi-3.5 | CLIP ViT-L/14 | 53.0 |
| 209 | LLaVA-v1.5-7B | 7.2 | Vicuna-v1.5-7B | CLIP ViT-L/14 | 36.9 |
| **Closed-Source Models** |
| 34 | Claude3.5-Sonnet-20241022 | Unknown | Closed-Source | Closed-Source | 70.6 |
| 24 | GPT-4o (1120, detail-high) | Unknown | Closed-Source | Closed-Source | 72.0 |
| 20 | Gemini-2.0-Flash | Unknown | Closed-Source | Closed-Source | 72.6 |
### ๐Ÿ“ˆ **VLM Performance on MMMED**
The following figure presents the accuracy of different VLMs in each language tested:
![image/png](https://cdn-uploads.huggingface.co/production/uploads/64f04aba2fe30f121240a85a/TIEMRC3t7kOMnYNeCsyNJ.png)
### ๐Ÿ–‹๏ธ **Citation**
Please cite this work as follows:
```bibtex
@inproceedings{riccio2025multilingual,
title={A Multilingual Multimodal Medical Examination Dataset for Visual Question Answering in Healthcare},
author={Riccio, Giuseppe and Romano, Antonio and Barone, Mariano and Orlando, Gian Marco and Russo, Diego and
Postiglione, Marco and La Gatta, Valerio and Moscato, Vincenzo},
booktitle={2025 IEEE 38th International Symposium on Computer-Based Medical Systems (CBMS)},
pages={435--440},
year={2025},
organization={IEEE Computer Society}
}
```
### ๐ŸŒ **Notes**
**Dataset Usage**: The dataset is intended for academic and research purposes only. It is not recommended for clinical decision-making or commercial use.
๐Ÿ‘จโ€๐Ÿ’ป This project was developed by Antonio Romano, Giuseppe Riccio, Mariano Barone, Gian Marco Orlando, Diego Russo, Marco Postiglione, and Vincenzo Moscato
*University of Naples, Federico II*
## ๐Ÿ“ **License**
This work is licensed under a
[Creative Commons Attribution-NonCommercial 4.0 International License][cc-by-nc].
[![CC BY-NC 4.0][cc-by-nc-image]][cc-by-nc]
[cc-by-nc]: https://creativecommons.org/licenses/by-nc/4.0/
[cc-by-nc-image]: https://licensebuttons.net/l/by-nc/4.0/88x31.png
[cc-by-nc-shield]: https://img.shields.io/badge/License-CC%20BY--NC%204.0-lightgrey.svg