BnW-vs-Colored-10K / README.md
prithivMLmods's picture
Update README.md
84d4706 verified
metadata
license: apache-2.0
task_categories:
  - image-classification
language:
  - en
tags:
  - B&W
  - Colored
  - Classification
  - art
  - BnW
  - 10K
size_categories:
  - 1K<n<10K

ChatGPT Image Apr 24, 2025, 09_44_31 AM.png

BnW-vs-Colored-10K

BnW-vs-Colored-10K is a curated dataset of 10,000 images designed for binary image classification tasks distinguishing between black & white (BnW) and colored images. This dataset can be used for training models in visual recognition, restoration, or filtering pipelines involving grayscale and color detection.

Dataset Summary

  • Task: Binary Image Classification
  • Modalities: Image
  • Formats: Parquet
  • Split: Train (10,000 images)
  • Labels: B & W (Black and White), Colored
  • Language: English
  • License: Apache 2.0
  • Size: 4.15 GB

Features

Column Type Description
image Image Input image (JPEG format)
label Class Binary label: B & W or Colored

Label Information

Label ID Class Name
0 B & W
1 Colored

Example Entries

Image Label
B & W
Colored

Usage

You can load the dataset using the datasets library from Hugging Face:

from datasets import load_dataset

dataset = load_dataset("prithivMLmods/BnW-vs-Colored-10K")

To visualize an example:

import matplotlib.pyplot as plt

example = dataset["train"][0]
plt.imshow(example["image"])
plt.title(example["label"])
plt.axis("off")
plt.show()

Applications

  • Colorization model pre/post-processing
  • Restoration of old photos
  • Image enhancement and filtering
  • Historical document processing
  • AI art stylization models

License

This dataset is made available under the Apache 2.0 License.


Curated & Maintained by @prithivMLmods. For inquiries or contributions, please open an issue or submit a pull request.