Dataset Viewer
Auto-converted to Parquet
Search is not available for this dataset
image
imagewidth (px)
224
224
label
class label
2 classes
0Human
0Human
0Human
0Human
0Human
0Human
0Human
0Human
0Human
0Human
0Human
0Human
0Human
0Human
0Human
0Human
0Human
0Human
0Human
0Human
0Human
0Human
0Human
0Human
0Human
0Human
0Human
0Human
0Human
0Human
0Human
0Human
0Human
0Human
0Human
0Human
0Human
0Human
0Human
0Human
0Human
0Human
0Human
0Human
0Human
0Human
0Human
0Human
0Human
0Human
0Human
0Human
0Human
0Human
0Human
0Human
0Human
0Human
0Human
0Human
0Human
0Human
0Human
0Human
0Human
0Human
0Human
0Human
0Human
0Human
0Human
0Human
0Human
0Human
0Human
0Human
0Human
0Human
0Human
0Human
0Human
0Human
0Human
0Human
0Human
0Human
0Human
0Human
0Human
0Human
0Human
0Human
0Human
0Human
0Human
0Human
0Human
0Human
0Human
0Human
End of preview. Expand in Data Studio

Human-vs-NonHuman Dataset

Dataset Description

The Human-vs-NonHuman dataset is a collection of images designed for image classification tasks. The dataset consists of labeled images categorized into two classes:

  1. Human (Label: 0)
  2. Non-Human (Label: 1)

The dataset is useful for training and evaluating models in tasks such as human detection, biological classification, and AI-assisted filtering systems.

Dataset Details

  • Total Samples: 15,635 images
  • Image Size: 224x224 pixels
  • Classes:
    • Human (0)
    • Non-Human (1)
  • File Format: PNG/JPG (Auto-converted to Parquet)
  • Dataset Size: 116MB

Usage

You can use this dataset with Hugging Face's datasets library as follows:

from datasets import load_dataset

dataset = load_dataset("prithivMLmods/Human-vs-NonHuman")
Downloads last month
1

Models trained or fine-tuned on prithivMLmods/Human-vs-NonHuman