metadata
license: cc-by-4.0
tags:
- audio-diarization
- speaker-segmentation
language:
- kk
Diarizations Dataset
Aggregated speaker segmentation outputs.
Videos
ecx7ywj89m4
- Segments: 54
- Speakers: SPEAKER_00, SPEAKER_01
- Duration: 2369.59s
Config
- Trimmed: none
- Diarize model:
pyannote/speaker-diarization
- ASR model:
akuzdeuov/whisper-base.kk
chunk30s
, langkk
- Batch:
16
FWmr-zrGK_w
- Segments: 206
- Speakers: SPEAKER_00, SPEAKER_01, SPEAKER_02
- Duration: 3071.74s
Config
- Trimmed: none
- Diarize model:
pyannote/speaker-diarization
- ASR model:
akuzdeuov/whisper-base.kk
chunk30s
, langkk
- Batch:
16
FzeUEbA6j4E
- Segments: 535
- Speakers: SPEAKER_00, SPEAKER_01, SPEAKER_02, SPEAKER_03
- Duration: 4425.93s
Config
- Trimmed: none
- Diarize model:
pyannote/speaker-diarization
- ASR model:
akuzdeuov/whisper-base.kk
chunk30s
, langkk
- Batch:
16
WC_8foLpFbE
- Segments: 158
- Speakers: SPEAKER_00, SPEAKER_01, SPEAKER_02
- Duration: 3605.37s
Config
- Trimmed: none
- Diarize model:
pyannote/speaker-diarization
- ASR model:
akuzdeuov/whisper-base.kk
chunk30s
, langkk
- Batch:
16
Usage
from datasets import load_dataset
ds = load_dataset('pushthetempo/diarizations')
print(ds)