Datasets:
Dataset Viewer
text
stringlengths 0
1.22k
|
---|
####################################################################### |
Please cite the following paper when using nnU-Net: |
Isensee, F., Jaeger, P. F., Kohl, S. A., Petersen, J., & Maier-Hein, K. H. (2021). nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nature methods, 18(2), 203-211. |
####################################################################### |
This is the configuration used by this training: |
Configuration name: 3d_fullres |
{'data_identifier': 'nnUNetPlans_3d_fullres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [64, 128, 128], 'median_image_size_in_voxels': [64.0, 113.0, 113.0], 'spacing': [0.9765625, 0.5, 0.48828125], 'normalization_schemes': ['ZScoreNormalization'], 'use_mask_for_norm': [False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'num_pool_per_axis': [4, 5, 5], 'pool_op_kernel_sizes': [[1, 1, 1], [1, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2]], 'conv_kernel_sizes': [[1, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'unet_max_num_features': 320, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': False} |
These are the global plan.json settings: |
{'dataset_name': 'Dataset303_3TT1WMSegASHSGT', 'plans_name': 'nnUNetPlans', 'original_median_spacing_after_transp': [0.9765625, 0.5, 0.48828125], 'original_median_shape_after_transp': [64, 113, 113], 'image_reader_writer': 'SimpleITKIO', 'transpose_forward': [1, 0, 2], 'transpose_backward': [1, 0, 2], 'experiment_planner_used': 'ExperimentPlanner', 'label_manager': 'LabelManager', 'foreground_intensity_properties_per_channel': {'0': {'max': 685.0, 'mean': 356.69915771484375, 'median': 396.0, 'min': 117.0, 'percentile_00_5': 149.0, 'percentile_99_5': 570.0, 'std': 120.57451629638672}}} |
2023-08-02 21:58:34.149126: unpacking dataset... |
2023-08-02 21:58:34.473478: unpacking done... |
2023-08-02 21:58:34.474119: do_dummy_2d_data_aug: False |
2023-08-02 21:58:34.474694: Using splits from existing split file: /data/liyue7/Data/M1_nnUNet/nnUNet_preprocessed/Dataset303_3TT1WMSegASHSGT/splits_final.json |
2023-08-02 21:58:34.474854: The split file contains 5 splits. |
2023-08-02 21:58:34.474900: Desired fold for training: 0 |
2023-08-02 21:58:34.474939: This split has 46 training and 12 validation cases. |
2023-08-02 21:58:34.480075: Unable to plot network architecture: |
2023-08-02 21:58:34.480146: No module named 'hiddenlayer' |
2023-08-02 21:58:34.519761: |
2023-08-02 21:58:34.519815: Epoch 0 |
2023-08-02 21:58:34.519891: Current learning rate: 0.01 |
2023-08-02 22:00:03.004448: train_loss -0.1602 |
2023-08-02 22:00:03.004621: val_loss -0.6431 |
2023-08-02 22:00:03.004667: Pseudo dice [0.7123] |
2023-08-02 22:00:03.004718: Epoch time: 88.49 s |
2023-08-02 22:00:03.004757: Yayy! New best EMA pseudo Dice: 0.7123 |
2023-08-02 22:00:04.079823: |
2023-08-02 22:00:04.079919: Epoch 1 |
2023-08-02 22:00:04.080002: Current learning rate: 0.00998 |
2023-08-02 22:01:06.331137: train_loss -0.6851 |
2023-08-02 22:01:06.331275: val_loss -0.7601 |
2023-08-02 22:01:06.331314: Pseudo dice [0.8097] |
2023-08-02 22:01:06.331359: Epoch time: 62.25 s |
2023-08-02 22:01:06.331396: Yayy! New best EMA pseudo Dice: 0.7221 |
2023-08-02 22:01:08.636403: |
2023-08-02 22:01:08.636506: Epoch 2 |
2023-08-02 22:01:08.636586: Current learning rate: 0.00995 |
2023-08-02 22:02:11.011815: train_loss -0.7477 |
2023-08-02 22:02:11.011961: val_loss -0.8005 |
2023-08-02 22:02:11.012002: Pseudo dice [0.8433] |
2023-08-02 22:02:11.012047: Epoch time: 62.38 s |
2023-08-02 22:02:11.012084: Yayy! New best EMA pseudo Dice: 0.7342 |
2023-08-02 22:02:13.056767: |
2023-08-02 22:02:13.056870: Epoch 3 |
2023-08-02 22:02:13.056954: Current learning rate: 0.00993 |
2023-08-02 22:03:15.491260: train_loss -0.7857 |
2023-08-02 22:03:15.491742: val_loss -0.8215 |
2023-08-02 22:03:15.491786: Pseudo dice [0.8605] |
2023-08-02 22:03:15.491831: Epoch time: 62.44 s |
2023-08-02 22:03:15.491870: Yayy! New best EMA pseudo Dice: 0.7468 |
2023-08-02 22:03:17.505135: |
2023-08-02 22:03:17.505237: Epoch 4 |
2023-08-02 22:03:17.505322: Current learning rate: 0.00991 |
2023-08-02 22:04:19.921209: train_loss -0.8016 |
2023-08-02 22:04:19.921346: val_loss -0.8273 |
2023-08-02 22:04:19.921388: Pseudo dice [0.8615] |
2023-08-02 22:04:19.921433: Epoch time: 62.42 s |
2023-08-02 22:04:19.921470: Yayy! New best EMA pseudo Dice: 0.7583 |
2023-08-02 22:04:21.908744: |
2023-08-02 22:04:21.908846: Epoch 5 |
2023-08-02 22:04:21.908923: Current learning rate: 0.00989 |
2023-08-02 22:05:24.340911: train_loss -0.8115 |
2023-08-02 22:05:24.341050: val_loss -0.8428 |
2023-08-02 22:05:24.341090: Pseudo dice [0.8746] |
2023-08-02 22:05:24.341135: Epoch time: 62.43 s |
2023-08-02 22:05:24.341172: Yayy! New best EMA pseudo Dice: 0.7699 |
2023-08-02 22:05:26.416294: |
2023-08-02 22:05:26.416399: Epoch 6 |
2023-08-02 22:05:26.416478: Current learning rate: 0.00986 |
2023-08-02 22:06:28.831770: train_loss -0.8274 |
2023-08-02 22:06:28.831909: val_loss -0.8475 |
2023-08-02 22:06:28.831949: Pseudo dice [0.8801] |
2023-08-02 22:06:28.831995: Epoch time: 62.42 s |
2023-08-02 22:06:28.832032: Yayy! New best EMA pseudo Dice: 0.7809 |
2023-08-02 22:06:30.999928: |
2023-08-02 22:06:31.000031: Epoch 7 |
2023-08-02 22:06:31.000112: Current learning rate: 0.00984 |
2023-08-02 22:07:33.432782: train_loss -0.8394 |
2023-08-02 22:07:33.432915: val_loss -0.8555 |
2023-08-02 22:07:33.432956: Pseudo dice [0.8845] |
2023-08-02 22:07:33.433001: Epoch time: 62.43 s |
2023-08-02 22:07:33.433038: Yayy! New best EMA pseudo Dice: 0.7913 |
2023-08-02 22:07:35.622762: |
2023-08-02 22:07:35.622863: Epoch 8 |
2023-08-02 22:07:35.622944: Current learning rate: 0.00982 |
2023-08-02 22:08:38.060140: train_loss -0.838 |
2023-08-02 22:08:38.060285: val_loss -0.8542 |
2023-08-02 22:08:38.060333: Pseudo dice [0.883] |
2023-08-02 22:08:38.060412: Epoch time: 62.44 s |
2023-08-02 22:08:38.060493: Yayy! New best EMA pseudo Dice: 0.8005 |
2023-08-02 22:08:40.178575: |
2023-08-02 22:08:40.178674: Epoch 9 |
2023-08-02 22:08:40.178754: Current learning rate: 0.0098 |
2023-08-02 22:09:42.615384: train_loss -0.8516 |
2023-08-02 22:09:42.615526: val_loss -0.8548 |
End of preview. Expand
in Data Studio
CRASHS Template and Model Package
This folder contains the templates and deep learning models needed to run CRASHS (cortical reconstruction for automated segmentation of hippocampal subfields). Please see CRASHS github page for details on using this dataset.
This package is compatible with CRASHS version 0.2.10 and later
- Downloads last month
- 94