Datasets:
Upload folder using huggingface_hub
Browse files- .DS_Store +0 -0
- .gitattributes +1 -0
- LICENSE +1 -0
- README.md +6 -10
- Version.txt +1 -0
- models/.DS_Store +0 -0
- models/nnunet_t1_wm/Dataset303_3TT1WMSegASHSGT/nnUNetTrainer__nnUNetPlans__3d_fullres/dataset.json +11 -0
- models/nnunet_t1_wm/Dataset303_3TT1WMSegASHSGT/nnUNetTrainer__nnUNetPlans__3d_fullres/dataset_fingerprint.json +598 -0
- models/nnunet_t1_wm/Dataset303_3TT1WMSegASHSGT/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_0/checkpoint_final.pth +3 -0
- models/nnunet_t1_wm/Dataset303_3TT1WMSegASHSGT/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_0/debug.json +52 -0
- models/nnunet_t1_wm/Dataset303_3TT1WMSegASHSGT/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_0/progress.png +3 -0
- models/nnunet_t1_wm/Dataset303_3TT1WMSegASHSGT/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_0/training_log_2023_8_2_21_58_27.txt +0 -0
- models/nnunet_t1_wm/Dataset303_3TT1WMSegASHSGT/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_1/checkpoint_final.pth +3 -0
- models/nnunet_t1_wm/Dataset303_3TT1WMSegASHSGT/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_1/debug.json +52 -0
- models/nnunet_t1_wm/Dataset303_3TT1WMSegASHSGT/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_1/progress.png +3 -0
- models/nnunet_t1_wm/Dataset303_3TT1WMSegASHSGT/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_1/training_log_2023_8_3_05_04_34.txt +0 -0
- models/nnunet_t1_wm/Dataset303_3TT1WMSegASHSGT/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_2/checkpoint_final.pth +3 -0
- models/nnunet_t1_wm/Dataset303_3TT1WMSegASHSGT/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_2/debug.json +52 -0
- models/nnunet_t1_wm/Dataset303_3TT1WMSegASHSGT/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_2/progress.png +3 -0
- models/nnunet_t1_wm/Dataset303_3TT1WMSegASHSGT/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_2/training_log_2023_8_3_11_44_51.txt +0 -0
- models/nnunet_t1_wm/Dataset303_3TT1WMSegASHSGT/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_3/checkpoint_final.pth +3 -0
- models/nnunet_t1_wm/Dataset303_3TT1WMSegASHSGT/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_3/debug.json +52 -0
- models/nnunet_t1_wm/Dataset303_3TT1WMSegASHSGT/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_3/progress.png +3 -0
- models/nnunet_t1_wm/Dataset303_3TT1WMSegASHSGT/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_3/training_log_2023_8_3_18_25_42.txt +0 -0
- models/nnunet_t1_wm/Dataset303_3TT1WMSegASHSGT/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_4/checkpoint_final.pth +3 -0
- models/nnunet_t1_wm/Dataset303_3TT1WMSegASHSGT/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_4/debug.json +52 -0
- models/nnunet_t1_wm/Dataset303_3TT1WMSegASHSGT/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_4/progress.png +3 -0
- models/nnunet_t1_wm/Dataset303_3TT1WMSegASHSGT/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_4/training_log_2023_8_4_01_06_51.txt +0 -0
- models/nnunet_t1_wm/Dataset303_3TT1WMSegASHSGT/nnUNetTrainer__nnUNetPlans__3d_fullres/plans.json +294 -0
- models/nnunet_t1_wm/config.json +7 -0
- models/upsample_ashs_pmc_t2/config.json +1 -0
- models/upsample_ashs_pmc_t2/model.dat +3 -0
- templates/.DS_Store +0 -0
- templates/ashs_pmc_alveus/template.json +19 -0
- templates/ashs_pmc_alveus/template_shoot_left.vtk +0 -0
- templates/ashs_pmc_alveus/template_shoot_right.vtk +0 -0
- templates/ashs_pmc_alveus/upsample.json +0 -0
- templates/ashs_pmc_t1/ashs_template_flip.mat +4 -0
- templates/ashs_pmc_t1/template.json +18 -0
- templates/ashs_pmc_t1/template_shoot_left.vtk +0 -0
- templates/ashs_pmc_t1/template_shoot_right.vtk +0 -0
- templates/exvivo_phg_94t/template.json +56 -0
- templates/exvivo_phg_94t/template_shoot_left.vtk +0 -0
- templates/exvivo_phg_94t/template_shoot_reduced_left.vtk +0 -0
.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
.gitattributes
CHANGED
@@ -57,3 +57,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
57 |
# Video files - compressed
|
58 |
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
59 |
*.webm filter=lfs diff=lfs merge=lfs -text
|
|
|
|
57 |
# Video files - compressed
|
58 |
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
59 |
*.webm filter=lfs diff=lfs merge=lfs -text
|
60 |
+
models/upsample_ashs_pmc_t2/model.dat filter=lfs diff=lfs merge=lfs -text
|
LICENSE
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
CRASHS Template and Model Package by Paul Yushkevich is marked with CC0 1.0 Universal. To view a copy of this license, visit https://creativecommons.org/publicdomain/zero/1.0/
|
README.md
CHANGED
@@ -1,10 +1,6 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
- CRASHS
|
8 |
-
- MRI
|
9 |
-
pretty_name: CRASHS Template Package
|
10 |
-
---
|
|
|
1 |
+
CRASHS Template and Model Package
|
2 |
+
=================================
|
3 |
+
|
4 |
+
This folder contains the templates and deep learning models needed to run CRASHS (cortical reconstruction for automated segmentation of hippocampal subfields). Please see [CRASHS github page](https://github.com/pyushkevich/crashs) for details on using this dataset.
|
5 |
+
|
6 |
+
This package is compatible with CRASHS version 0.2.5 and later
|
|
|
|
|
|
|
|
Version.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2024-08-30
|
models/.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
models/nnunet_t1_wm/Dataset303_3TT1WMSegASHSGT/nnUNetTrainer__nnUNetPlans__3d_fullres/dataset.json
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"channel_names": {
|
3 |
+
"0": "3TT1"
|
4 |
+
},
|
5 |
+
"labels": {
|
6 |
+
"background": 0,
|
7 |
+
"WM": 1
|
8 |
+
},
|
9 |
+
"numTraining": 58,
|
10 |
+
"file_ending": ".nii.gz"
|
11 |
+
}
|
models/nnunet_t1_wm/Dataset303_3TT1WMSegASHSGT/nnUNetTrainer__nnUNetPlans__3d_fullres/dataset_fingerprint.json
ADDED
@@ -0,0 +1,598 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"foreground_intensity_properties_per_channel": {
|
3 |
+
"0": {
|
4 |
+
"max": 685.0,
|
5 |
+
"mean": 356.69915771484375,
|
6 |
+
"median": 396.0,
|
7 |
+
"min": 117.0,
|
8 |
+
"percentile_00_5": 149.0,
|
9 |
+
"percentile_99_5": 570.0,
|
10 |
+
"std": 120.57451629638672
|
11 |
+
}
|
12 |
+
},
|
13 |
+
"median_relative_size_after_cropping": 1.0,
|
14 |
+
"shapes_after_crop": [
|
15 |
+
[
|
16 |
+
109,
|
17 |
+
62,
|
18 |
+
106
|
19 |
+
],
|
20 |
+
[
|
21 |
+
113,
|
22 |
+
62,
|
23 |
+
108
|
24 |
+
],
|
25 |
+
[
|
26 |
+
121,
|
27 |
+
65,
|
28 |
+
114
|
29 |
+
],
|
30 |
+
[
|
31 |
+
126,
|
32 |
+
68,
|
33 |
+
110
|
34 |
+
],
|
35 |
+
[
|
36 |
+
87,
|
37 |
+
68,
|
38 |
+
119
|
39 |
+
],
|
40 |
+
[
|
41 |
+
89,
|
42 |
+
70,
|
43 |
+
119
|
44 |
+
],
|
45 |
+
[
|
46 |
+
121,
|
47 |
+
67,
|
48 |
+
122
|
49 |
+
],
|
50 |
+
[
|
51 |
+
125,
|
52 |
+
69,
|
53 |
+
123
|
54 |
+
],
|
55 |
+
[
|
56 |
+
107,
|
57 |
+
64,
|
58 |
+
115
|
59 |
+
],
|
60 |
+
[
|
61 |
+
119,
|
62 |
+
63,
|
63 |
+
112
|
64 |
+
],
|
65 |
+
[
|
66 |
+
120,
|
67 |
+
56,
|
68 |
+
115
|
69 |
+
],
|
70 |
+
[
|
71 |
+
120,
|
72 |
+
55,
|
73 |
+
119
|
74 |
+
],
|
75 |
+
[
|
76 |
+
124,
|
77 |
+
66,
|
78 |
+
116
|
79 |
+
],
|
80 |
+
[
|
81 |
+
133,
|
82 |
+
64,
|
83 |
+
116
|
84 |
+
],
|
85 |
+
[
|
86 |
+
108,
|
87 |
+
61,
|
88 |
+
114
|
89 |
+
],
|
90 |
+
[
|
91 |
+
103,
|
92 |
+
59,
|
93 |
+
112
|
94 |
+
],
|
95 |
+
[
|
96 |
+
123,
|
97 |
+
59,
|
98 |
+
115
|
99 |
+
],
|
100 |
+
[
|
101 |
+
127,
|
102 |
+
57,
|
103 |
+
113
|
104 |
+
],
|
105 |
+
[
|
106 |
+
103,
|
107 |
+
61,
|
108 |
+
110
|
109 |
+
],
|
110 |
+
[
|
111 |
+
108,
|
112 |
+
58,
|
113 |
+
107
|
114 |
+
],
|
115 |
+
[
|
116 |
+
110,
|
117 |
+
66,
|
118 |
+
114
|
119 |
+
],
|
120 |
+
[
|
121 |
+
109,
|
122 |
+
67,
|
123 |
+
113
|
124 |
+
],
|
125 |
+
[
|
126 |
+
120,
|
127 |
+
63,
|
128 |
+
104
|
129 |
+
],
|
130 |
+
[
|
131 |
+
121,
|
132 |
+
59,
|
133 |
+
103
|
134 |
+
],
|
135 |
+
[
|
136 |
+
120,
|
137 |
+
64,
|
138 |
+
111
|
139 |
+
],
|
140 |
+
[
|
141 |
+
118,
|
142 |
+
63,
|
143 |
+
112
|
144 |
+
],
|
145 |
+
[
|
146 |
+
107,
|
147 |
+
67,
|
148 |
+
111
|
149 |
+
],
|
150 |
+
[
|
151 |
+
118,
|
152 |
+
67,
|
153 |
+
110
|
154 |
+
],
|
155 |
+
[
|
156 |
+
116,
|
157 |
+
60,
|
158 |
+
102
|
159 |
+
],
|
160 |
+
[
|
161 |
+
115,
|
162 |
+
60,
|
163 |
+
103
|
164 |
+
],
|
165 |
+
[
|
166 |
+
110,
|
167 |
+
67,
|
168 |
+
121
|
169 |
+
],
|
170 |
+
[
|
171 |
+
112,
|
172 |
+
66,
|
173 |
+
121
|
174 |
+
],
|
175 |
+
[
|
176 |
+
121,
|
177 |
+
66,
|
178 |
+
115
|
179 |
+
],
|
180 |
+
[
|
181 |
+
127,
|
182 |
+
67,
|
183 |
+
114
|
184 |
+
],
|
185 |
+
[
|
186 |
+
105,
|
187 |
+
71,
|
188 |
+
119
|
189 |
+
],
|
190 |
+
[
|
191 |
+
110,
|
192 |
+
74,
|
193 |
+
114
|
194 |
+
],
|
195 |
+
[
|
196 |
+
125,
|
197 |
+
62,
|
198 |
+
112
|
199 |
+
],
|
200 |
+
[
|
201 |
+
130,
|
202 |
+
60,
|
203 |
+
108
|
204 |
+
],
|
205 |
+
[
|
206 |
+
111,
|
207 |
+
61,
|
208 |
+
111
|
209 |
+
],
|
210 |
+
[
|
211 |
+
114,
|
212 |
+
60,
|
213 |
+
112
|
214 |
+
],
|
215 |
+
[
|
216 |
+
102,
|
217 |
+
66,
|
218 |
+
129
|
219 |
+
],
|
220 |
+
[
|
221 |
+
110,
|
222 |
+
66,
|
223 |
+
118
|
224 |
+
],
|
225 |
+
[
|
226 |
+
100,
|
227 |
+
63,
|
228 |
+
111
|
229 |
+
],
|
230 |
+
[
|
231 |
+
101,
|
232 |
+
65,
|
233 |
+
111
|
234 |
+
],
|
235 |
+
[
|
236 |
+
111,
|
237 |
+
67,
|
238 |
+
116
|
239 |
+
],
|
240 |
+
[
|
241 |
+
113,
|
242 |
+
68,
|
243 |
+
115
|
244 |
+
],
|
245 |
+
[
|
246 |
+
111,
|
247 |
+
62,
|
248 |
+
118
|
249 |
+
],
|
250 |
+
[
|
251 |
+
113,
|
252 |
+
60,
|
253 |
+
111
|
254 |
+
],
|
255 |
+
[
|
256 |
+
115,
|
257 |
+
66,
|
258 |
+
109
|
259 |
+
],
|
260 |
+
[
|
261 |
+
116,
|
262 |
+
64,
|
263 |
+
109
|
264 |
+
],
|
265 |
+
[
|
266 |
+
102,
|
267 |
+
64,
|
268 |
+
114
|
269 |
+
],
|
270 |
+
[
|
271 |
+
101,
|
272 |
+
64,
|
273 |
+
111
|
274 |
+
],
|
275 |
+
[
|
276 |
+
117,
|
277 |
+
65,
|
278 |
+
115
|
279 |
+
],
|
280 |
+
[
|
281 |
+
116,
|
282 |
+
63,
|
283 |
+
112
|
284 |
+
],
|
285 |
+
[
|
286 |
+
98,
|
287 |
+
72,
|
288 |
+
116
|
289 |
+
],
|
290 |
+
[
|
291 |
+
96,
|
292 |
+
72,
|
293 |
+
117
|
294 |
+
],
|
295 |
+
[
|
296 |
+
97,
|
297 |
+
61,
|
298 |
+
103
|
299 |
+
],
|
300 |
+
[
|
301 |
+
94,
|
302 |
+
60,
|
303 |
+
108
|
304 |
+
]
|
305 |
+
],
|
306 |
+
"spacings": [
|
307 |
+
[
|
308 |
+
0.5,
|
309 |
+
0.9765625,
|
310 |
+
0.48828125
|
311 |
+
],
|
312 |
+
[
|
313 |
+
0.5,
|
314 |
+
0.9765625,
|
315 |
+
0.48828125
|
316 |
+
],
|
317 |
+
[
|
318 |
+
0.5,
|
319 |
+
0.9765625,
|
320 |
+
0.48828125
|
321 |
+
],
|
322 |
+
[
|
323 |
+
0.5,
|
324 |
+
0.9765625,
|
325 |
+
0.48828125
|
326 |
+
],
|
327 |
+
[
|
328 |
+
0.5,
|
329 |
+
0.9765625,
|
330 |
+
0.48828125
|
331 |
+
],
|
332 |
+
[
|
333 |
+
0.5,
|
334 |
+
0.9765625,
|
335 |
+
0.48828125
|
336 |
+
],
|
337 |
+
[
|
338 |
+
0.5,
|
339 |
+
0.9765625,
|
340 |
+
0.48828125
|
341 |
+
],
|
342 |
+
[
|
343 |
+
0.5,
|
344 |
+
0.9765625,
|
345 |
+
0.48828125
|
346 |
+
],
|
347 |
+
[
|
348 |
+
0.5,
|
349 |
+
0.9765625,
|
350 |
+
0.48828125
|
351 |
+
],
|
352 |
+
[
|
353 |
+
0.5,
|
354 |
+
0.9765625,
|
355 |
+
0.48828125
|
356 |
+
],
|
357 |
+
[
|
358 |
+
0.5,
|
359 |
+
0.9765625,
|
360 |
+
0.48828125
|
361 |
+
],
|
362 |
+
[
|
363 |
+
0.5,
|
364 |
+
0.9765625,
|
365 |
+
0.48828125
|
366 |
+
],
|
367 |
+
[
|
368 |
+
0.5,
|
369 |
+
0.9765625,
|
370 |
+
0.48828125
|
371 |
+
],
|
372 |
+
[
|
373 |
+
0.5,
|
374 |
+
0.9765625,
|
375 |
+
0.48828125
|
376 |
+
],
|
377 |
+
[
|
378 |
+
0.5,
|
379 |
+
0.9765625,
|
380 |
+
0.48828125
|
381 |
+
],
|
382 |
+
[
|
383 |
+
0.5,
|
384 |
+
0.9765625,
|
385 |
+
0.48828125
|
386 |
+
],
|
387 |
+
[
|
388 |
+
0.5,
|
389 |
+
0.9765625,
|
390 |
+
0.48828125
|
391 |
+
],
|
392 |
+
[
|
393 |
+
0.5,
|
394 |
+
0.9765625,
|
395 |
+
0.48828125
|
396 |
+
],
|
397 |
+
[
|
398 |
+
0.5,
|
399 |
+
0.9765625,
|
400 |
+
0.48828125
|
401 |
+
],
|
402 |
+
[
|
403 |
+
0.5,
|
404 |
+
0.9765625,
|
405 |
+
0.48828125
|
406 |
+
],
|
407 |
+
[
|
408 |
+
0.5,
|
409 |
+
0.9765629768371582,
|
410 |
+
0.4882814884185791
|
411 |
+
],
|
412 |
+
[
|
413 |
+
0.5,
|
414 |
+
0.9765629768371582,
|
415 |
+
0.4882814884185791
|
416 |
+
],
|
417 |
+
[
|
418 |
+
0.5,
|
419 |
+
0.9765625,
|
420 |
+
0.48828125
|
421 |
+
],
|
422 |
+
[
|
423 |
+
0.5,
|
424 |
+
0.9765625,
|
425 |
+
0.48828125
|
426 |
+
],
|
427 |
+
[
|
428 |
+
0.5,
|
429 |
+
0.9765625,
|
430 |
+
0.48828125
|
431 |
+
],
|
432 |
+
[
|
433 |
+
0.5,
|
434 |
+
0.9765625,
|
435 |
+
0.48828125
|
436 |
+
],
|
437 |
+
[
|
438 |
+
0.5,
|
439 |
+
0.9765625,
|
440 |
+
0.48828125
|
441 |
+
],
|
442 |
+
[
|
443 |
+
0.5,
|
444 |
+
0.9765625,
|
445 |
+
0.48828125
|
446 |
+
],
|
447 |
+
[
|
448 |
+
0.5,
|
449 |
+
0.9765625,
|
450 |
+
0.48828125
|
451 |
+
],
|
452 |
+
[
|
453 |
+
0.5,
|
454 |
+
0.9765625,
|
455 |
+
0.48828125
|
456 |
+
],
|
457 |
+
[
|
458 |
+
0.5,
|
459 |
+
0.9765625,
|
460 |
+
0.48828125
|
461 |
+
],
|
462 |
+
[
|
463 |
+
0.5,
|
464 |
+
0.9765625,
|
465 |
+
0.48828125
|
466 |
+
],
|
467 |
+
[
|
468 |
+
0.5,
|
469 |
+
0.9765625,
|
470 |
+
0.48828125
|
471 |
+
],
|
472 |
+
[
|
473 |
+
0.5,
|
474 |
+
0.9765625,
|
475 |
+
0.48828125
|
476 |
+
],
|
477 |
+
[
|
478 |
+
0.5,
|
479 |
+
0.9765625,
|
480 |
+
0.48828125
|
481 |
+
],
|
482 |
+
[
|
483 |
+
0.5,
|
484 |
+
0.9765625,
|
485 |
+
0.48828125
|
486 |
+
],
|
487 |
+
[
|
488 |
+
0.5,
|
489 |
+
0.9765625,
|
490 |
+
0.48828125
|
491 |
+
],
|
492 |
+
[
|
493 |
+
0.5,
|
494 |
+
0.9765625,
|
495 |
+
0.48828125
|
496 |
+
],
|
497 |
+
[
|
498 |
+
0.5,
|
499 |
+
0.9765625,
|
500 |
+
0.48828125
|
501 |
+
],
|
502 |
+
[
|
503 |
+
0.5,
|
504 |
+
0.9765625,
|
505 |
+
0.48828125
|
506 |
+
],
|
507 |
+
[
|
508 |
+
0.5,
|
509 |
+
0.9765625,
|
510 |
+
0.48828125
|
511 |
+
],
|
512 |
+
[
|
513 |
+
0.5,
|
514 |
+
0.9765625,
|
515 |
+
0.48828125
|
516 |
+
],
|
517 |
+
[
|
518 |
+
0.5,
|
519 |
+
0.9765625,
|
520 |
+
0.48828125
|
521 |
+
],
|
522 |
+
[
|
523 |
+
0.5,
|
524 |
+
0.9765625,
|
525 |
+
0.48828125
|
526 |
+
],
|
527 |
+
[
|
528 |
+
0.5,
|
529 |
+
0.9765625,
|
530 |
+
0.48828125
|
531 |
+
],
|
532 |
+
[
|
533 |
+
0.5,
|
534 |
+
0.9765625,
|
535 |
+
0.48828125
|
536 |
+
],
|
537 |
+
[
|
538 |
+
0.5,
|
539 |
+
0.9765625,
|
540 |
+
0.48828125
|
541 |
+
],
|
542 |
+
[
|
543 |
+
0.5,
|
544 |
+
0.9765625,
|
545 |
+
0.48828125
|
546 |
+
],
|
547 |
+
[
|
548 |
+
0.5,
|
549 |
+
0.9765625,
|
550 |
+
0.48828125
|
551 |
+
],
|
552 |
+
[
|
553 |
+
0.5,
|
554 |
+
0.9765625,
|
555 |
+
0.48828125
|
556 |
+
],
|
557 |
+
[
|
558 |
+
0.5,
|
559 |
+
0.9765625,
|
560 |
+
0.48828125
|
561 |
+
],
|
562 |
+
[
|
563 |
+
0.5,
|
564 |
+
0.9765625,
|
565 |
+
0.48828125
|
566 |
+
],
|
567 |
+
[
|
568 |
+
0.5,
|
569 |
+
0.9765625,
|
570 |
+
0.48828125
|
571 |
+
],
|
572 |
+
[
|
573 |
+
0.5,
|
574 |
+
0.9765625,
|
575 |
+
0.48828125
|
576 |
+
],
|
577 |
+
[
|
578 |
+
0.5,
|
579 |
+
0.9765625,
|
580 |
+
0.48828125
|
581 |
+
],
|
582 |
+
[
|
583 |
+
0.5,
|
584 |
+
0.9765625,
|
585 |
+
0.48828125
|
586 |
+
],
|
587 |
+
[
|
588 |
+
0.5,
|
589 |
+
0.9765625,
|
590 |
+
0.48828125
|
591 |
+
],
|
592 |
+
[
|
593 |
+
0.5,
|
594 |
+
0.9765625,
|
595 |
+
0.48828125
|
596 |
+
]
|
597 |
+
]
|
598 |
+
}
|
models/nnunet_t1_wm/Dataset303_3TT1WMSegASHSGT/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_0/checkpoint_final.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:69fc00601cc867f0894a4f85914576d3929314e579a4f2fff7038f59f3972df6
|
3 |
+
size 249164667
|
models/nnunet_t1_wm/Dataset303_3TT1WMSegASHSGT/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_0/debug.json
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_best_ema": "None",
|
3 |
+
"batch_size": "2",
|
4 |
+
"configuration_manager": "{'data_identifier': 'nnUNetPlans_3d_fullres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [64, 128, 128], 'median_image_size_in_voxels': [64.0, 113.0, 113.0], 'spacing': [0.9765625, 0.5, 0.48828125], 'normalization_schemes': ['ZScoreNormalization'], 'use_mask_for_norm': [False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'num_pool_per_axis': [4, 5, 5], 'pool_op_kernel_sizes': [[1, 1, 1], [1, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2]], 'conv_kernel_sizes': [[1, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'unet_max_num_features': 320, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': False}",
|
5 |
+
"configuration_name": "3d_fullres",
|
6 |
+
"cudnn_version": 8500,
|
7 |
+
"current_epoch": "0",
|
8 |
+
"dataloader_train": "<nnunetv2.training.data_augmentation.custom_transforms.limited_length_multithreaded_augmenter.LimitedLenWrapper object at 0x7fa3a74cab60>",
|
9 |
+
"dataloader_train.generator": "<nnunetv2.training.dataloading.data_loader_3d.nnUNetDataLoader3D object at 0x7fa3a74c9990>",
|
10 |
+
"dataloader_train.num_processes": "12",
|
11 |
+
"dataloader_train.transform": "Compose ( [SpatialTransform( independent_scale_for_each_axis = False, p_rot_per_sample = 0.2, p_scale_per_sample = 0.2, p_el_per_sample = 0, data_key = 'data', label_key = 'seg', patch_size = [64, 128, 128], patch_center_dist_from_border = None, do_elastic_deform = False, alpha = (0, 0), sigma = (0, 0), do_rotation = True, angle_x = (-0.5235987755982988, 0.5235987755982988), angle_y = (-0.5235987755982988, 0.5235987755982988), angle_z = (-0.5235987755982988, 0.5235987755982988), do_scale = True, scale = (0.7, 1.4), border_mode_data = 'constant', border_cval_data = 0, order_data = 3, border_mode_seg = 'constant', border_cval_seg = -1, order_seg = 1, random_crop = False, p_rot_per_axis = 1, p_independent_scale_per_axis = 1 ), GaussianNoiseTransform( p_per_sample = 0.1, data_key = 'data', noise_variance = (0, 0.1), p_per_channel = 1, per_channel = False ), GaussianBlurTransform( p_per_sample = 0.2, different_sigma_per_channel = True, p_per_channel = 0.5, data_key = 'data', blur_sigma = (0.5, 1.0), different_sigma_per_axis = False, p_isotropic = 0 ), BrightnessMultiplicativeTransform( p_per_sample = 0.15, data_key = 'data', multiplier_range = (0.75, 1.25), per_channel = True ), ContrastAugmentationTransform( p_per_sample = 0.15, data_key = 'data', contrast_range = (0.75, 1.25), preserve_range = True, per_channel = True, p_per_channel = 1 ), SimulateLowResolutionTransform( order_upsample = 3, order_downsample = 0, channels = None, per_channel = True, p_per_channel = 0.5, p_per_sample = 0.25, data_key = 'data', zoom_range = (0.5, 1), ignore_axes = None ), GammaTransform( p_per_sample = 0.1, retain_stats = True, per_channel = True, data_key = 'data', gamma_range = (0.7, 1.5), invert_image = True ), GammaTransform( p_per_sample = 0.3, retain_stats = True, per_channel = True, data_key = 'data', gamma_range = (0.7, 1.5), invert_image = False ), MirrorTransform( p_per_sample = 1, data_key = 'data', label_key = 'seg', axes = (0, 1, 2) ), RemoveLabelTransform( output_key = 'seg', input_key = 'seg', replace_with = 0, remove_label = -1 ), RenameTransform( delete_old = True, out_key = 'target', in_key = 'seg' ), DownsampleSegForDSTransform2( axes = None, output_key = 'target', input_key = 'target', order = 0, ds_scales = [[1.0, 1.0, 1.0], [1.0, 0.5, 0.5], [0.5, 0.25, 0.25], [0.25, 0.125, 0.125], [0.125, 0.0625, 0.0625]] ), NumpyToTensor( keys = ['data', 'target'], cast_to = 'float' )] )",
|
12 |
+
"dataloader_val": "<nnunetv2.training.data_augmentation.custom_transforms.limited_length_multithreaded_augmenter.LimitedLenWrapper object at 0x7fa3a74c98d0>",
|
13 |
+
"dataloader_val.generator": "<nnunetv2.training.dataloading.data_loader_3d.nnUNetDataLoader3D object at 0x7fa3a74c9a20>",
|
14 |
+
"dataloader_val.num_processes": "6",
|
15 |
+
"dataloader_val.transform": "Compose ( [RemoveLabelTransform( output_key = 'seg', input_key = 'seg', replace_with = 0, remove_label = -1 ), RenameTransform( delete_old = True, out_key = 'target', in_key = 'seg' ), DownsampleSegForDSTransform2( axes = None, output_key = 'target', input_key = 'target', order = 0, ds_scales = [[1.0, 1.0, 1.0], [1.0, 0.5, 0.5], [0.5, 0.25, 0.25], [0.25, 0.125, 0.125], [0.125, 0.0625, 0.0625]] ), NumpyToTensor( keys = ['data', 'target'], cast_to = 'float' )] )",
|
16 |
+
"dataset_json": "{'channel_names': {'0': '3TT1'}, 'labels': {'background': 0, 'WM': 1}, 'numTraining': 58, 'file_ending': '.nii.gz'}",
|
17 |
+
"device": "cuda:0",
|
18 |
+
"disable_checkpointing": "False",
|
19 |
+
"fold": "0",
|
20 |
+
"folder_with_segs_from_previous_stage": "None",
|
21 |
+
"gpu_name": "Quadro RTX 5000",
|
22 |
+
"grad_scaler": "<torch.cuda.amp.grad_scaler.GradScaler object at 0x7fa3a745b370>",
|
23 |
+
"hostname": "lambda-picsl",
|
24 |
+
"inference_allowed_mirroring_axes": "(0, 1, 2)",
|
25 |
+
"initial_lr": "0.01",
|
26 |
+
"is_cascaded": "False",
|
27 |
+
"is_ddp": "False",
|
28 |
+
"label_manager": "<nnunetv2.utilities.label_handling.label_handling.LabelManager object at 0x7fa3a745ab30>",
|
29 |
+
"local_rank": "0",
|
30 |
+
"log_file": "/data/liyue7/Data/M1_nnUNet/nnUNet_trained_models/Dataset303_3TT1WMSegASHSGT/nnUNetTrainer400Epoch__nnUNetPlans__3d_fullres/fold_0/training_log_2023_8_2_21_58_27.txt",
|
31 |
+
"logger": "<nnunetv2.training.logging.nnunet_logger.nnUNetLogger object at 0x7fa3a745b430>",
|
32 |
+
"loss": "DeepSupervisionWrapper(\n (loss): DC_and_CE_loss(\n (ce): RobustCrossEntropyLoss()\n (dc): MemoryEfficientSoftDiceLoss()\n )\n)",
|
33 |
+
"lr_scheduler": "<nnunetv2.training.lr_scheduler.polylr.PolyLRScheduler object at 0x7fa3a74c83d0>",
|
34 |
+
"my_init_kwargs": "{'plans': {'dataset_name': 'Dataset303_3TT1WMSegASHSGT', 'plans_name': 'nnUNetPlans', 'original_median_spacing_after_transp': [0.9765625, 0.5, 0.48828125], 'original_median_shape_after_transp': [64, 113, 113], 'image_reader_writer': 'SimpleITKIO', 'transpose_forward': [1, 0, 2], 'transpose_backward': [1, 0, 2], 'configurations': {'2d': {'data_identifier': 'nnUNetPlans_2d', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 145, 'patch_size': [128, 128], 'median_image_size_in_voxels': [113.0, 113.0], 'spacing': [0.5, 0.48828125], 'normalization_schemes': ['ZScoreNormalization'], 'use_mask_for_norm': [False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'num_pool_per_axis': [5, 5], 'pool_op_kernel_sizes': [[1, 1], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2]], 'conv_kernel_sizes': [[3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3]], 'unet_max_num_features': 512, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': True}, '3d_fullres': {'data_identifier': 'nnUNetPlans_3d_fullres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [64, 128, 128], 'median_image_size_in_voxels': [64.0, 113.0, 113.0], 'spacing': [0.9765625, 0.5, 0.48828125], 'normalization_schemes': ['ZScoreNormalization'], 'use_mask_for_norm': [False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'num_pool_per_axis': [4, 5, 5], 'pool_op_kernel_sizes': [[1, 1, 1], [1, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2]], 'conv_kernel_sizes': [[1, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'unet_max_num_features': 320, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': False}}, 'experiment_planner_used': 'ExperimentPlanner', 'label_manager': 'LabelManager', 'foreground_intensity_properties_per_channel': {'0': {'max': 685.0, 'mean': 356.69915771484375, 'median': 396.0, 'min': 117.0, 'percentile_00_5': 149.0, 'percentile_99_5': 570.0, 'std': 120.57451629638672}}}, 'configuration': '3d_fullres', 'fold': 0, 'dataset_json': {'channel_names': {'0': '3TT1'}, 'labels': {'background': 0, 'WM': 1}, 'numTraining': 58, 'file_ending': '.nii.gz'}, 'unpack_dataset': True, 'device': device(type='cuda')}",
|
35 |
+
"network": "PlainConvUNet",
|
36 |
+
"num_epochs": "400",
|
37 |
+
"num_input_channels": "1",
|
38 |
+
"num_iterations_per_epoch": "250",
|
39 |
+
"num_val_iterations_per_epoch": "50",
|
40 |
+
"optimizer": "SGD (\nParameter Group 0\n dampening: 0\n differentiable: False\n foreach: None\n initial_lr: 0.01\n lr: 0.01\n maximize: False\n momentum: 0.99\n nesterov: True\n weight_decay: 3e-05\n)",
|
41 |
+
"output_folder": "/data/liyue7/Data/M1_nnUNet/nnUNet_trained_models/Dataset303_3TT1WMSegASHSGT/nnUNetTrainer400Epoch__nnUNetPlans__3d_fullres/fold_0",
|
42 |
+
"output_folder_base": "/data/liyue7/Data/M1_nnUNet/nnUNet_trained_models/Dataset303_3TT1WMSegASHSGT/nnUNetTrainer400Epoch__nnUNetPlans__3d_fullres",
|
43 |
+
"oversample_foreground_percent": "0.33",
|
44 |
+
"plans_manager": "{'dataset_name': 'Dataset303_3TT1WMSegASHSGT', 'plans_name': 'nnUNetPlans', 'original_median_spacing_after_transp': [0.9765625, 0.5, 0.48828125], 'original_median_shape_after_transp': [64, 113, 113], 'image_reader_writer': 'SimpleITKIO', 'transpose_forward': [1, 0, 2], 'transpose_backward': [1, 0, 2], 'configurations': {'2d': {'data_identifier': 'nnUNetPlans_2d', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 145, 'patch_size': [128, 128], 'median_image_size_in_voxels': [113.0, 113.0], 'spacing': [0.5, 0.48828125], 'normalization_schemes': ['ZScoreNormalization'], 'use_mask_for_norm': [False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'num_pool_per_axis': [5, 5], 'pool_op_kernel_sizes': [[1, 1], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2]], 'conv_kernel_sizes': [[3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3]], 'unet_max_num_features': 512, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': True}, '3d_fullres': {'data_identifier': 'nnUNetPlans_3d_fullres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [64, 128, 128], 'median_image_size_in_voxels': [64.0, 113.0, 113.0], 'spacing': [0.9765625, 0.5, 0.48828125], 'normalization_schemes': ['ZScoreNormalization'], 'use_mask_for_norm': [False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'num_pool_per_axis': [4, 5, 5], 'pool_op_kernel_sizes': [[1, 1, 1], [1, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2]], 'conv_kernel_sizes': [[1, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'unet_max_num_features': 320, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': False}}, 'experiment_planner_used': 'ExperimentPlanner', 'label_manager': 'LabelManager', 'foreground_intensity_properties_per_channel': {'0': {'max': 685.0, 'mean': 356.69915771484375, 'median': 396.0, 'min': 117.0, 'percentile_00_5': 149.0, 'percentile_99_5': 570.0, 'std': 120.57451629638672}}}",
|
45 |
+
"preprocessed_dataset_folder": "/data/liyue7/Data/M1_nnUNet/nnUNet_preprocessed/Dataset303_3TT1WMSegASHSGT/nnUNetPlans_3d_fullres",
|
46 |
+
"preprocessed_dataset_folder_base": "/data/liyue7/Data/M1_nnUNet/nnUNet_preprocessed/Dataset303_3TT1WMSegASHSGT",
|
47 |
+
"save_every": "50",
|
48 |
+
"torch_version": "1.13.0+cu117",
|
49 |
+
"unpack_dataset": "True",
|
50 |
+
"was_initialized": "True",
|
51 |
+
"weight_decay": "3e-05"
|
52 |
+
}
|
models/nnunet_t1_wm/Dataset303_3TT1WMSegASHSGT/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_0/progress.png
ADDED
![]() |
Git LFS Details
|
models/nnunet_t1_wm/Dataset303_3TT1WMSegASHSGT/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_0/training_log_2023_8_2_21_58_27.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
models/nnunet_t1_wm/Dataset303_3TT1WMSegASHSGT/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_1/checkpoint_final.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8f5eb4d247880e822beae9129a574048325b327839cc89f1c40a2435dbf54158
|
3 |
+
size 249164155
|
models/nnunet_t1_wm/Dataset303_3TT1WMSegASHSGT/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_1/debug.json
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_best_ema": "None",
|
3 |
+
"batch_size": "2",
|
4 |
+
"configuration_manager": "{'data_identifier': 'nnUNetPlans_3d_fullres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [64, 128, 128], 'median_image_size_in_voxels': [64.0, 113.0, 113.0], 'spacing': [0.9765625, 0.5, 0.48828125], 'normalization_schemes': ['ZScoreNormalization'], 'use_mask_for_norm': [False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'num_pool_per_axis': [4, 5, 5], 'pool_op_kernel_sizes': [[1, 1, 1], [1, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2]], 'conv_kernel_sizes': [[1, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'unet_max_num_features': 320, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': False}",
|
5 |
+
"configuration_name": "3d_fullres",
|
6 |
+
"cudnn_version": 8500,
|
7 |
+
"current_epoch": "0",
|
8 |
+
"dataloader_train": "<nnunetv2.training.data_augmentation.custom_transforms.limited_length_multithreaded_augmenter.LimitedLenWrapper object at 0x7f8456116b60>",
|
9 |
+
"dataloader_train.generator": "<nnunetv2.training.dataloading.data_loader_3d.nnUNetDataLoader3D object at 0x7f8456115c30>",
|
10 |
+
"dataloader_train.num_processes": "12",
|
11 |
+
"dataloader_train.transform": "Compose ( [SpatialTransform( independent_scale_for_each_axis = False, p_rot_per_sample = 0.2, p_scale_per_sample = 0.2, p_el_per_sample = 0, data_key = 'data', label_key = 'seg', patch_size = [64, 128, 128], patch_center_dist_from_border = None, do_elastic_deform = False, alpha = (0, 0), sigma = (0, 0), do_rotation = True, angle_x = (-0.5235987755982988, 0.5235987755982988), angle_y = (-0.5235987755982988, 0.5235987755982988), angle_z = (-0.5235987755982988, 0.5235987755982988), do_scale = True, scale = (0.7, 1.4), border_mode_data = 'constant', border_cval_data = 0, order_data = 3, border_mode_seg = 'constant', border_cval_seg = -1, order_seg = 1, random_crop = False, p_rot_per_axis = 1, p_independent_scale_per_axis = 1 ), GaussianNoiseTransform( p_per_sample = 0.1, data_key = 'data', noise_variance = (0, 0.1), p_per_channel = 1, per_channel = False ), GaussianBlurTransform( p_per_sample = 0.2, different_sigma_per_channel = True, p_per_channel = 0.5, data_key = 'data', blur_sigma = (0.5, 1.0), different_sigma_per_axis = False, p_isotropic = 0 ), BrightnessMultiplicativeTransform( p_per_sample = 0.15, data_key = 'data', multiplier_range = (0.75, 1.25), per_channel = True ), ContrastAugmentationTransform( p_per_sample = 0.15, data_key = 'data', contrast_range = (0.75, 1.25), preserve_range = True, per_channel = True, p_per_channel = 1 ), SimulateLowResolutionTransform( order_upsample = 3, order_downsample = 0, channels = None, per_channel = True, p_per_channel = 0.5, p_per_sample = 0.25, data_key = 'data', zoom_range = (0.5, 1), ignore_axes = None ), GammaTransform( p_per_sample = 0.1, retain_stats = True, per_channel = True, data_key = 'data', gamma_range = (0.7, 1.5), invert_image = True ), GammaTransform( p_per_sample = 0.3, retain_stats = True, per_channel = True, data_key = 'data', gamma_range = (0.7, 1.5), invert_image = False ), MirrorTransform( p_per_sample = 1, data_key = 'data', label_key = 'seg', axes = (0, 1, 2) ), RemoveLabelTransform( output_key = 'seg', input_key = 'seg', replace_with = 0, remove_label = -1 ), RenameTransform( delete_old = True, out_key = 'target', in_key = 'seg' ), DownsampleSegForDSTransform2( axes = None, output_key = 'target', input_key = 'target', order = 0, ds_scales = [[1.0, 1.0, 1.0], [1.0, 0.5, 0.5], [0.5, 0.25, 0.25], [0.25, 0.125, 0.125], [0.125, 0.0625, 0.0625]] ), NumpyToTensor( keys = ['data', 'target'], cast_to = 'float' )] )",
|
12 |
+
"dataloader_val": "<nnunetv2.training.data_augmentation.custom_transforms.limited_length_multithreaded_augmenter.LimitedLenWrapper object at 0x7f8456115b70>",
|
13 |
+
"dataloader_val.generator": "<nnunetv2.training.dataloading.data_loader_3d.nnUNetDataLoader3D object at 0x7f8456115cc0>",
|
14 |
+
"dataloader_val.num_processes": "6",
|
15 |
+
"dataloader_val.transform": "Compose ( [RemoveLabelTransform( output_key = 'seg', input_key = 'seg', replace_with = 0, remove_label = -1 ), RenameTransform( delete_old = True, out_key = 'target', in_key = 'seg' ), DownsampleSegForDSTransform2( axes = None, output_key = 'target', input_key = 'target', order = 0, ds_scales = [[1.0, 1.0, 1.0], [1.0, 0.5, 0.5], [0.5, 0.25, 0.25], [0.25, 0.125, 0.125], [0.125, 0.0625, 0.0625]] ), NumpyToTensor( keys = ['data', 'target'], cast_to = 'float' )] )",
|
16 |
+
"dataset_json": "{'channel_names': {'0': '3TT1'}, 'labels': {'background': 0, 'WM': 1}, 'numTraining': 58, 'file_ending': '.nii.gz'}",
|
17 |
+
"device": "cuda:0",
|
18 |
+
"disable_checkpointing": "False",
|
19 |
+
"fold": "1",
|
20 |
+
"folder_with_segs_from_previous_stage": "None",
|
21 |
+
"gpu_name": "Quadro RTX 5000",
|
22 |
+
"grad_scaler": "<torch.cuda.amp.grad_scaler.GradScaler object at 0x7f84560b3430>",
|
23 |
+
"hostname": "lambda-picsl",
|
24 |
+
"inference_allowed_mirroring_axes": "(0, 1, 2)",
|
25 |
+
"initial_lr": "0.01",
|
26 |
+
"is_cascaded": "False",
|
27 |
+
"is_ddp": "False",
|
28 |
+
"label_manager": "<nnunetv2.utilities.label_handling.label_handling.LabelManager object at 0x7f84560b2dd0>",
|
29 |
+
"local_rank": "0",
|
30 |
+
"log_file": "/data/liyue7/Data/M1_nnUNet/nnUNet_trained_models/Dataset303_3TT1WMSegASHSGT/nnUNetTrainer400Epoch__nnUNetPlans__3d_fullres/fold_1/training_log_2023_8_3_05_04_34.txt",
|
31 |
+
"logger": "<nnunetv2.training.logging.nnunet_logger.nnUNetLogger object at 0x7f84560b36d0>",
|
32 |
+
"loss": "DeepSupervisionWrapper(\n (loss): DC_and_CE_loss(\n (ce): RobustCrossEntropyLoss()\n (dc): MemoryEfficientSoftDiceLoss()\n )\n)",
|
33 |
+
"lr_scheduler": "<nnunetv2.training.lr_scheduler.polylr.PolyLRScheduler object at 0x7f84561145e0>",
|
34 |
+
"my_init_kwargs": "{'plans': {'dataset_name': 'Dataset303_3TT1WMSegASHSGT', 'plans_name': 'nnUNetPlans', 'original_median_spacing_after_transp': [0.9765625, 0.5, 0.48828125], 'original_median_shape_after_transp': [64, 113, 113], 'image_reader_writer': 'SimpleITKIO', 'transpose_forward': [1, 0, 2], 'transpose_backward': [1, 0, 2], 'configurations': {'2d': {'data_identifier': 'nnUNetPlans_2d', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 145, 'patch_size': [128, 128], 'median_image_size_in_voxels': [113.0, 113.0], 'spacing': [0.5, 0.48828125], 'normalization_schemes': ['ZScoreNormalization'], 'use_mask_for_norm': [False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'num_pool_per_axis': [5, 5], 'pool_op_kernel_sizes': [[1, 1], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2]], 'conv_kernel_sizes': [[3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3]], 'unet_max_num_features': 512, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': True}, '3d_fullres': {'data_identifier': 'nnUNetPlans_3d_fullres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [64, 128, 128], 'median_image_size_in_voxels': [64.0, 113.0, 113.0], 'spacing': [0.9765625, 0.5, 0.48828125], 'normalization_schemes': ['ZScoreNormalization'], 'use_mask_for_norm': [False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'num_pool_per_axis': [4, 5, 5], 'pool_op_kernel_sizes': [[1, 1, 1], [1, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2]], 'conv_kernel_sizes': [[1, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'unet_max_num_features': 320, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': False}}, 'experiment_planner_used': 'ExperimentPlanner', 'label_manager': 'LabelManager', 'foreground_intensity_properties_per_channel': {'0': {'max': 685.0, 'mean': 356.69915771484375, 'median': 396.0, 'min': 117.0, 'percentile_00_5': 149.0, 'percentile_99_5': 570.0, 'std': 120.57451629638672}}}, 'configuration': '3d_fullres', 'fold': 1, 'dataset_json': {'channel_names': {'0': '3TT1'}, 'labels': {'background': 0, 'WM': 1}, 'numTraining': 58, 'file_ending': '.nii.gz'}, 'unpack_dataset': True, 'device': device(type='cuda')}",
|
35 |
+
"network": "PlainConvUNet",
|
36 |
+
"num_epochs": "400",
|
37 |
+
"num_input_channels": "1",
|
38 |
+
"num_iterations_per_epoch": "250",
|
39 |
+
"num_val_iterations_per_epoch": "50",
|
40 |
+
"optimizer": "SGD (\nParameter Group 0\n dampening: 0\n differentiable: False\n foreach: None\n initial_lr: 0.01\n lr: 0.01\n maximize: False\n momentum: 0.99\n nesterov: True\n weight_decay: 3e-05\n)",
|
41 |
+
"output_folder": "/data/liyue7/Data/M1_nnUNet/nnUNet_trained_models/Dataset303_3TT1WMSegASHSGT/nnUNetTrainer400Epoch__nnUNetPlans__3d_fullres/fold_1",
|
42 |
+
"output_folder_base": "/data/liyue7/Data/M1_nnUNet/nnUNet_trained_models/Dataset303_3TT1WMSegASHSGT/nnUNetTrainer400Epoch__nnUNetPlans__3d_fullres",
|
43 |
+
"oversample_foreground_percent": "0.33",
|
44 |
+
"plans_manager": "{'dataset_name': 'Dataset303_3TT1WMSegASHSGT', 'plans_name': 'nnUNetPlans', 'original_median_spacing_after_transp': [0.9765625, 0.5, 0.48828125], 'original_median_shape_after_transp': [64, 113, 113], 'image_reader_writer': 'SimpleITKIO', 'transpose_forward': [1, 0, 2], 'transpose_backward': [1, 0, 2], 'configurations': {'2d': {'data_identifier': 'nnUNetPlans_2d', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 145, 'patch_size': [128, 128], 'median_image_size_in_voxels': [113.0, 113.0], 'spacing': [0.5, 0.48828125], 'normalization_schemes': ['ZScoreNormalization'], 'use_mask_for_norm': [False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'num_pool_per_axis': [5, 5], 'pool_op_kernel_sizes': [[1, 1], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2]], 'conv_kernel_sizes': [[3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3]], 'unet_max_num_features': 512, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': True}, '3d_fullres': {'data_identifier': 'nnUNetPlans_3d_fullres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [64, 128, 128], 'median_image_size_in_voxels': [64.0, 113.0, 113.0], 'spacing': [0.9765625, 0.5, 0.48828125], 'normalization_schemes': ['ZScoreNormalization'], 'use_mask_for_norm': [False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'num_pool_per_axis': [4, 5, 5], 'pool_op_kernel_sizes': [[1, 1, 1], [1, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2]], 'conv_kernel_sizes': [[1, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'unet_max_num_features': 320, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': False}}, 'experiment_planner_used': 'ExperimentPlanner', 'label_manager': 'LabelManager', 'foreground_intensity_properties_per_channel': {'0': {'max': 685.0, 'mean': 356.69915771484375, 'median': 396.0, 'min': 117.0, 'percentile_00_5': 149.0, 'percentile_99_5': 570.0, 'std': 120.57451629638672}}}",
|
45 |
+
"preprocessed_dataset_folder": "/data/liyue7/Data/M1_nnUNet/nnUNet_preprocessed/Dataset303_3TT1WMSegASHSGT/nnUNetPlans_3d_fullres",
|
46 |
+
"preprocessed_dataset_folder_base": "/data/liyue7/Data/M1_nnUNet/nnUNet_preprocessed/Dataset303_3TT1WMSegASHSGT",
|
47 |
+
"save_every": "50",
|
48 |
+
"torch_version": "1.13.0+cu117",
|
49 |
+
"unpack_dataset": "True",
|
50 |
+
"was_initialized": "True",
|
51 |
+
"weight_decay": "3e-05"
|
52 |
+
}
|
models/nnunet_t1_wm/Dataset303_3TT1WMSegASHSGT/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_1/progress.png
ADDED
![]() |
Git LFS Details
|
models/nnunet_t1_wm/Dataset303_3TT1WMSegASHSGT/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_1/training_log_2023_8_3_05_04_34.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
models/nnunet_t1_wm/Dataset303_3TT1WMSegASHSGT/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_2/checkpoint_final.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:50209af1f673304e2916f8a22958a2333e4cb58833999c54b29a0d53a1a92699
|
3 |
+
size 249164219
|
models/nnunet_t1_wm/Dataset303_3TT1WMSegASHSGT/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_2/debug.json
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_best_ema": "None",
|
3 |
+
"batch_size": "2",
|
4 |
+
"configuration_manager": "{'data_identifier': 'nnUNetPlans_3d_fullres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [64, 128, 128], 'median_image_size_in_voxels': [64.0, 113.0, 113.0], 'spacing': [0.9765625, 0.5, 0.48828125], 'normalization_schemes': ['ZScoreNormalization'], 'use_mask_for_norm': [False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'num_pool_per_axis': [4, 5, 5], 'pool_op_kernel_sizes': [[1, 1, 1], [1, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2]], 'conv_kernel_sizes': [[1, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'unet_max_num_features': 320, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': False}",
|
5 |
+
"configuration_name": "3d_fullres",
|
6 |
+
"cudnn_version": 8500,
|
7 |
+
"current_epoch": "0",
|
8 |
+
"dataloader_train": "<nnunetv2.training.data_augmentation.custom_transforms.limited_length_multithreaded_augmenter.LimitedLenWrapper object at 0x7f63222bec50>",
|
9 |
+
"dataloader_train.generator": "<nnunetv2.training.dataloading.data_loader_3d.nnUNetDataLoader3D object at 0x7f63222bdd20>",
|
10 |
+
"dataloader_train.num_processes": "12",
|
11 |
+
"dataloader_train.transform": "Compose ( [SpatialTransform( independent_scale_for_each_axis = False, p_rot_per_sample = 0.2, p_scale_per_sample = 0.2, p_el_per_sample = 0, data_key = 'data', label_key = 'seg', patch_size = [64, 128, 128], patch_center_dist_from_border = None, do_elastic_deform = False, alpha = (0, 0), sigma = (0, 0), do_rotation = True, angle_x = (-0.5235987755982988, 0.5235987755982988), angle_y = (-0.5235987755982988, 0.5235987755982988), angle_z = (-0.5235987755982988, 0.5235987755982988), do_scale = True, scale = (0.7, 1.4), border_mode_data = 'constant', border_cval_data = 0, order_data = 3, border_mode_seg = 'constant', border_cval_seg = -1, order_seg = 1, random_crop = False, p_rot_per_axis = 1, p_independent_scale_per_axis = 1 ), GaussianNoiseTransform( p_per_sample = 0.1, data_key = 'data', noise_variance = (0, 0.1), p_per_channel = 1, per_channel = False ), GaussianBlurTransform( p_per_sample = 0.2, different_sigma_per_channel = True, p_per_channel = 0.5, data_key = 'data', blur_sigma = (0.5, 1.0), different_sigma_per_axis = False, p_isotropic = 0 ), BrightnessMultiplicativeTransform( p_per_sample = 0.15, data_key = 'data', multiplier_range = (0.75, 1.25), per_channel = True ), ContrastAugmentationTransform( p_per_sample = 0.15, data_key = 'data', contrast_range = (0.75, 1.25), preserve_range = True, per_channel = True, p_per_channel = 1 ), SimulateLowResolutionTransform( order_upsample = 3, order_downsample = 0, channels = None, per_channel = True, p_per_channel = 0.5, p_per_sample = 0.25, data_key = 'data', zoom_range = (0.5, 1), ignore_axes = None ), GammaTransform( p_per_sample = 0.1, retain_stats = True, per_channel = True, data_key = 'data', gamma_range = (0.7, 1.5), invert_image = True ), GammaTransform( p_per_sample = 0.3, retain_stats = True, per_channel = True, data_key = 'data', gamma_range = (0.7, 1.5), invert_image = False ), MirrorTransform( p_per_sample = 1, data_key = 'data', label_key = 'seg', axes = (0, 1, 2) ), RemoveLabelTransform( output_key = 'seg', input_key = 'seg', replace_with = 0, remove_label = -1 ), RenameTransform( delete_old = True, out_key = 'target', in_key = 'seg' ), DownsampleSegForDSTransform2( axes = None, output_key = 'target', input_key = 'target', order = 0, ds_scales = [[1.0, 1.0, 1.0], [1.0, 0.5, 0.5], [0.5, 0.25, 0.25], [0.25, 0.125, 0.125], [0.125, 0.0625, 0.0625]] ), NumpyToTensor( keys = ['data', 'target'], cast_to = 'float' )] )",
|
12 |
+
"dataloader_val": "<nnunetv2.training.data_augmentation.custom_transforms.limited_length_multithreaded_augmenter.LimitedLenWrapper object at 0x7f63222bda80>",
|
13 |
+
"dataloader_val.generator": "<nnunetv2.training.dataloading.data_loader_3d.nnUNetDataLoader3D object at 0x7f63222bddb0>",
|
14 |
+
"dataloader_val.num_processes": "6",
|
15 |
+
"dataloader_val.transform": "Compose ( [RemoveLabelTransform( output_key = 'seg', input_key = 'seg', replace_with = 0, remove_label = -1 ), RenameTransform( delete_old = True, out_key = 'target', in_key = 'seg' ), DownsampleSegForDSTransform2( axes = None, output_key = 'target', input_key = 'target', order = 0, ds_scales = [[1.0, 1.0, 1.0], [1.0, 0.5, 0.5], [0.5, 0.25, 0.25], [0.25, 0.125, 0.125], [0.125, 0.0625, 0.0625]] ), NumpyToTensor( keys = ['data', 'target'], cast_to = 'float' )] )",
|
16 |
+
"dataset_json": "{'channel_names': {'0': '3TT1'}, 'labels': {'background': 0, 'WM': 1}, 'numTraining': 58, 'file_ending': '.nii.gz'}",
|
17 |
+
"device": "cuda:0",
|
18 |
+
"disable_checkpointing": "False",
|
19 |
+
"fold": "2",
|
20 |
+
"folder_with_segs_from_previous_stage": "None",
|
21 |
+
"gpu_name": "Quadro RTX 5000",
|
22 |
+
"grad_scaler": "<torch.cuda.amp.grad_scaler.GradScaler object at 0x7f632225f520>",
|
23 |
+
"hostname": "lambda-picsl",
|
24 |
+
"inference_allowed_mirroring_axes": "(0, 1, 2)",
|
25 |
+
"initial_lr": "0.01",
|
26 |
+
"is_cascaded": "False",
|
27 |
+
"is_ddp": "False",
|
28 |
+
"label_manager": "<nnunetv2.utilities.label_handling.label_handling.LabelManager object at 0x7f632225eec0>",
|
29 |
+
"local_rank": "0",
|
30 |
+
"log_file": "/data/liyue7/Data/M1_nnUNet/nnUNet_trained_models/Dataset303_3TT1WMSegASHSGT/nnUNetTrainer400Epoch__nnUNetPlans__3d_fullres/fold_2/training_log_2023_8_3_11_44_51.txt",
|
31 |
+
"logger": "<nnunetv2.training.logging.nnunet_logger.nnUNetLogger object at 0x7f632225f7c0>",
|
32 |
+
"loss": "DeepSupervisionWrapper(\n (loss): DC_and_CE_loss(\n (ce): RobustCrossEntropyLoss()\n (dc): MemoryEfficientSoftDiceLoss()\n )\n)",
|
33 |
+
"lr_scheduler": "<nnunetv2.training.lr_scheduler.polylr.PolyLRScheduler object at 0x7f63222bc6d0>",
|
34 |
+
"my_init_kwargs": "{'plans': {'dataset_name': 'Dataset303_3TT1WMSegASHSGT', 'plans_name': 'nnUNetPlans', 'original_median_spacing_after_transp': [0.9765625, 0.5, 0.48828125], 'original_median_shape_after_transp': [64, 113, 113], 'image_reader_writer': 'SimpleITKIO', 'transpose_forward': [1, 0, 2], 'transpose_backward': [1, 0, 2], 'configurations': {'2d': {'data_identifier': 'nnUNetPlans_2d', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 145, 'patch_size': [128, 128], 'median_image_size_in_voxels': [113.0, 113.0], 'spacing': [0.5, 0.48828125], 'normalization_schemes': ['ZScoreNormalization'], 'use_mask_for_norm': [False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'num_pool_per_axis': [5, 5], 'pool_op_kernel_sizes': [[1, 1], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2]], 'conv_kernel_sizes': [[3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3]], 'unet_max_num_features': 512, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': True}, '3d_fullres': {'data_identifier': 'nnUNetPlans_3d_fullres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [64, 128, 128], 'median_image_size_in_voxels': [64.0, 113.0, 113.0], 'spacing': [0.9765625, 0.5, 0.48828125], 'normalization_schemes': ['ZScoreNormalization'], 'use_mask_for_norm': [False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'num_pool_per_axis': [4, 5, 5], 'pool_op_kernel_sizes': [[1, 1, 1], [1, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2]], 'conv_kernel_sizes': [[1, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'unet_max_num_features': 320, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': False}}, 'experiment_planner_used': 'ExperimentPlanner', 'label_manager': 'LabelManager', 'foreground_intensity_properties_per_channel': {'0': {'max': 685.0, 'mean': 356.69915771484375, 'median': 396.0, 'min': 117.0, 'percentile_00_5': 149.0, 'percentile_99_5': 570.0, 'std': 120.57451629638672}}}, 'configuration': '3d_fullres', 'fold': 2, 'dataset_json': {'channel_names': {'0': '3TT1'}, 'labels': {'background': 0, 'WM': 1}, 'numTraining': 58, 'file_ending': '.nii.gz'}, 'unpack_dataset': True, 'device': device(type='cuda')}",
|
35 |
+
"network": "PlainConvUNet",
|
36 |
+
"num_epochs": "400",
|
37 |
+
"num_input_channels": "1",
|
38 |
+
"num_iterations_per_epoch": "250",
|
39 |
+
"num_val_iterations_per_epoch": "50",
|
40 |
+
"optimizer": "SGD (\nParameter Group 0\n dampening: 0\n differentiable: False\n foreach: None\n initial_lr: 0.01\n lr: 0.01\n maximize: False\n momentum: 0.99\n nesterov: True\n weight_decay: 3e-05\n)",
|
41 |
+
"output_folder": "/data/liyue7/Data/M1_nnUNet/nnUNet_trained_models/Dataset303_3TT1WMSegASHSGT/nnUNetTrainer400Epoch__nnUNetPlans__3d_fullres/fold_2",
|
42 |
+
"output_folder_base": "/data/liyue7/Data/M1_nnUNet/nnUNet_trained_models/Dataset303_3TT1WMSegASHSGT/nnUNetTrainer400Epoch__nnUNetPlans__3d_fullres",
|
43 |
+
"oversample_foreground_percent": "0.33",
|
44 |
+
"plans_manager": "{'dataset_name': 'Dataset303_3TT1WMSegASHSGT', 'plans_name': 'nnUNetPlans', 'original_median_spacing_after_transp': [0.9765625, 0.5, 0.48828125], 'original_median_shape_after_transp': [64, 113, 113], 'image_reader_writer': 'SimpleITKIO', 'transpose_forward': [1, 0, 2], 'transpose_backward': [1, 0, 2], 'configurations': {'2d': {'data_identifier': 'nnUNetPlans_2d', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 145, 'patch_size': [128, 128], 'median_image_size_in_voxels': [113.0, 113.0], 'spacing': [0.5, 0.48828125], 'normalization_schemes': ['ZScoreNormalization'], 'use_mask_for_norm': [False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'num_pool_per_axis': [5, 5], 'pool_op_kernel_sizes': [[1, 1], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2]], 'conv_kernel_sizes': [[3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3]], 'unet_max_num_features': 512, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': True}, '3d_fullres': {'data_identifier': 'nnUNetPlans_3d_fullres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [64, 128, 128], 'median_image_size_in_voxels': [64.0, 113.0, 113.0], 'spacing': [0.9765625, 0.5, 0.48828125], 'normalization_schemes': ['ZScoreNormalization'], 'use_mask_for_norm': [False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'num_pool_per_axis': [4, 5, 5], 'pool_op_kernel_sizes': [[1, 1, 1], [1, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2]], 'conv_kernel_sizes': [[1, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'unet_max_num_features': 320, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': False}}, 'experiment_planner_used': 'ExperimentPlanner', 'label_manager': 'LabelManager', 'foreground_intensity_properties_per_channel': {'0': {'max': 685.0, 'mean': 356.69915771484375, 'median': 396.0, 'min': 117.0, 'percentile_00_5': 149.0, 'percentile_99_5': 570.0, 'std': 120.57451629638672}}}",
|
45 |
+
"preprocessed_dataset_folder": "/data/liyue7/Data/M1_nnUNet/nnUNet_preprocessed/Dataset303_3TT1WMSegASHSGT/nnUNetPlans_3d_fullres",
|
46 |
+
"preprocessed_dataset_folder_base": "/data/liyue7/Data/M1_nnUNet/nnUNet_preprocessed/Dataset303_3TT1WMSegASHSGT",
|
47 |
+
"save_every": "50",
|
48 |
+
"torch_version": "1.13.0+cu117",
|
49 |
+
"unpack_dataset": "True",
|
50 |
+
"was_initialized": "True",
|
51 |
+
"weight_decay": "3e-05"
|
52 |
+
}
|
models/nnunet_t1_wm/Dataset303_3TT1WMSegASHSGT/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_2/progress.png
ADDED
![]() |
Git LFS Details
|
models/nnunet_t1_wm/Dataset303_3TT1WMSegASHSGT/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_2/training_log_2023_8_3_11_44_51.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
models/nnunet_t1_wm/Dataset303_3TT1WMSegASHSGT/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_3/checkpoint_final.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:06dcd09e2e8cbee0610531b19be0e74f36077c9a1441e6c7ded54d4e15054ee9
|
3 |
+
size 249164155
|
models/nnunet_t1_wm/Dataset303_3TT1WMSegASHSGT/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_3/debug.json
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_best_ema": "None",
|
3 |
+
"batch_size": "2",
|
4 |
+
"configuration_manager": "{'data_identifier': 'nnUNetPlans_3d_fullres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [64, 128, 128], 'median_image_size_in_voxels': [64.0, 113.0, 113.0], 'spacing': [0.9765625, 0.5, 0.48828125], 'normalization_schemes': ['ZScoreNormalization'], 'use_mask_for_norm': [False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'num_pool_per_axis': [4, 5, 5], 'pool_op_kernel_sizes': [[1, 1, 1], [1, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2]], 'conv_kernel_sizes': [[1, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'unet_max_num_features': 320, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': False}",
|
5 |
+
"configuration_name": "3d_fullres",
|
6 |
+
"cudnn_version": 8500,
|
7 |
+
"current_epoch": "0",
|
8 |
+
"dataloader_train": "<nnunetv2.training.data_augmentation.custom_transforms.limited_length_multithreaded_augmenter.LimitedLenWrapper object at 0x7fd917552980>",
|
9 |
+
"dataloader_train.generator": "<nnunetv2.training.dataloading.data_loader_3d.nnUNetDataLoader3D object at 0x7fd917551d80>",
|
10 |
+
"dataloader_train.num_processes": "12",
|
11 |
+
"dataloader_train.transform": "Compose ( [SpatialTransform( independent_scale_for_each_axis = False, p_rot_per_sample = 0.2, p_scale_per_sample = 0.2, p_el_per_sample = 0, data_key = 'data', label_key = 'seg', patch_size = [64, 128, 128], patch_center_dist_from_border = None, do_elastic_deform = False, alpha = (0, 0), sigma = (0, 0), do_rotation = True, angle_x = (-0.5235987755982988, 0.5235987755982988), angle_y = (-0.5235987755982988, 0.5235987755982988), angle_z = (-0.5235987755982988, 0.5235987755982988), do_scale = True, scale = (0.7, 1.4), border_mode_data = 'constant', border_cval_data = 0, order_data = 3, border_mode_seg = 'constant', border_cval_seg = -1, order_seg = 1, random_crop = False, p_rot_per_axis = 1, p_independent_scale_per_axis = 1 ), GaussianNoiseTransform( p_per_sample = 0.1, data_key = 'data', noise_variance = (0, 0.1), p_per_channel = 1, per_channel = False ), GaussianBlurTransform( p_per_sample = 0.2, different_sigma_per_channel = True, p_per_channel = 0.5, data_key = 'data', blur_sigma = (0.5, 1.0), different_sigma_per_axis = False, p_isotropic = 0 ), BrightnessMultiplicativeTransform( p_per_sample = 0.15, data_key = 'data', multiplier_range = (0.75, 1.25), per_channel = True ), ContrastAugmentationTransform( p_per_sample = 0.15, data_key = 'data', contrast_range = (0.75, 1.25), preserve_range = True, per_channel = True, p_per_channel = 1 ), SimulateLowResolutionTransform( order_upsample = 3, order_downsample = 0, channels = None, per_channel = True, p_per_channel = 0.5, p_per_sample = 0.25, data_key = 'data', zoom_range = (0.5, 1), ignore_axes = None ), GammaTransform( p_per_sample = 0.1, retain_stats = True, per_channel = True, data_key = 'data', gamma_range = (0.7, 1.5), invert_image = True ), GammaTransform( p_per_sample = 0.3, retain_stats = True, per_channel = True, data_key = 'data', gamma_range = (0.7, 1.5), invert_image = False ), MirrorTransform( p_per_sample = 1, data_key = 'data', label_key = 'seg', axes = (0, 1, 2) ), RemoveLabelTransform( output_key = 'seg', input_key = 'seg', replace_with = 0, remove_label = -1 ), RenameTransform( delete_old = True, out_key = 'target', in_key = 'seg' ), DownsampleSegForDSTransform2( axes = None, output_key = 'target', input_key = 'target', order = 0, ds_scales = [[1.0, 1.0, 1.0], [1.0, 0.5, 0.5], [0.5, 0.25, 0.25], [0.25, 0.125, 0.125], [0.125, 0.0625, 0.0625]] ), NumpyToTensor( keys = ['data', 'target'], cast_to = 'float' )] )",
|
12 |
+
"dataloader_val": "<nnunetv2.training.data_augmentation.custom_transforms.limited_length_multithreaded_augmenter.LimitedLenWrapper object at 0x7fd917551cc0>",
|
13 |
+
"dataloader_val.generator": "<nnunetv2.training.dataloading.data_loader_3d.nnUNetDataLoader3D object at 0x7fd917551e10>",
|
14 |
+
"dataloader_val.num_processes": "6",
|
15 |
+
"dataloader_val.transform": "Compose ( [RemoveLabelTransform( output_key = 'seg', input_key = 'seg', replace_with = 0, remove_label = -1 ), RenameTransform( delete_old = True, out_key = 'target', in_key = 'seg' ), DownsampleSegForDSTransform2( axes = None, output_key = 'target', input_key = 'target', order = 0, ds_scales = [[1.0, 1.0, 1.0], [1.0, 0.5, 0.5], [0.5, 0.25, 0.25], [0.25, 0.125, 0.125], [0.125, 0.0625, 0.0625]] ), NumpyToTensor( keys = ['data', 'target'], cast_to = 'float' )] )",
|
16 |
+
"dataset_json": "{'channel_names': {'0': '3TT1'}, 'labels': {'background': 0, 'WM': 1}, 'numTraining': 58, 'file_ending': '.nii.gz'}",
|
17 |
+
"device": "cuda:0",
|
18 |
+
"disable_checkpointing": "False",
|
19 |
+
"fold": "3",
|
20 |
+
"folder_with_segs_from_previous_stage": "None",
|
21 |
+
"gpu_name": "Quadro RTX 5000",
|
22 |
+
"grad_scaler": "<torch.cuda.amp.grad_scaler.GradScaler object at 0x7fd9174f3580>",
|
23 |
+
"hostname": "lambda-picsl",
|
24 |
+
"inference_allowed_mirroring_axes": "(0, 1, 2)",
|
25 |
+
"initial_lr": "0.01",
|
26 |
+
"is_cascaded": "False",
|
27 |
+
"is_ddp": "False",
|
28 |
+
"label_manager": "<nnunetv2.utilities.label_handling.label_handling.LabelManager object at 0x7fd9174f2f20>",
|
29 |
+
"local_rank": "0",
|
30 |
+
"log_file": "/data/liyue7/Data/M1_nnUNet/nnUNet_trained_models/Dataset303_3TT1WMSegASHSGT/nnUNetTrainer400Epoch__nnUNetPlans__3d_fullres/fold_3/training_log_2023_8_3_18_25_42.txt",
|
31 |
+
"logger": "<nnunetv2.training.logging.nnunet_logger.nnUNetLogger object at 0x7fd9174f3820>",
|
32 |
+
"loss": "DeepSupervisionWrapper(\n (loss): DC_and_CE_loss(\n (ce): RobustCrossEntropyLoss()\n (dc): MemoryEfficientSoftDiceLoss()\n )\n)",
|
33 |
+
"lr_scheduler": "<nnunetv2.training.lr_scheduler.polylr.PolyLRScheduler object at 0x7fd917550730>",
|
34 |
+
"my_init_kwargs": "{'plans': {'dataset_name': 'Dataset303_3TT1WMSegASHSGT', 'plans_name': 'nnUNetPlans', 'original_median_spacing_after_transp': [0.9765625, 0.5, 0.48828125], 'original_median_shape_after_transp': [64, 113, 113], 'image_reader_writer': 'SimpleITKIO', 'transpose_forward': [1, 0, 2], 'transpose_backward': [1, 0, 2], 'configurations': {'2d': {'data_identifier': 'nnUNetPlans_2d', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 145, 'patch_size': [128, 128], 'median_image_size_in_voxels': [113.0, 113.0], 'spacing': [0.5, 0.48828125], 'normalization_schemes': ['ZScoreNormalization'], 'use_mask_for_norm': [False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'num_pool_per_axis': [5, 5], 'pool_op_kernel_sizes': [[1, 1], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2]], 'conv_kernel_sizes': [[3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3]], 'unet_max_num_features': 512, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': True}, '3d_fullres': {'data_identifier': 'nnUNetPlans_3d_fullres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [64, 128, 128], 'median_image_size_in_voxels': [64.0, 113.0, 113.0], 'spacing': [0.9765625, 0.5, 0.48828125], 'normalization_schemes': ['ZScoreNormalization'], 'use_mask_for_norm': [False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'num_pool_per_axis': [4, 5, 5], 'pool_op_kernel_sizes': [[1, 1, 1], [1, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2]], 'conv_kernel_sizes': [[1, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'unet_max_num_features': 320, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': False}}, 'experiment_planner_used': 'ExperimentPlanner', 'label_manager': 'LabelManager', 'foreground_intensity_properties_per_channel': {'0': {'max': 685.0, 'mean': 356.69915771484375, 'median': 396.0, 'min': 117.0, 'percentile_00_5': 149.0, 'percentile_99_5': 570.0, 'std': 120.57451629638672}}}, 'configuration': '3d_fullres', 'fold': 3, 'dataset_json': {'channel_names': {'0': '3TT1'}, 'labels': {'background': 0, 'WM': 1}, 'numTraining': 58, 'file_ending': '.nii.gz'}, 'unpack_dataset': True, 'device': device(type='cuda')}",
|
35 |
+
"network": "PlainConvUNet",
|
36 |
+
"num_epochs": "400",
|
37 |
+
"num_input_channels": "1",
|
38 |
+
"num_iterations_per_epoch": "250",
|
39 |
+
"num_val_iterations_per_epoch": "50",
|
40 |
+
"optimizer": "SGD (\nParameter Group 0\n dampening: 0\n differentiable: False\n foreach: None\n initial_lr: 0.01\n lr: 0.01\n maximize: False\n momentum: 0.99\n nesterov: True\n weight_decay: 3e-05\n)",
|
41 |
+
"output_folder": "/data/liyue7/Data/M1_nnUNet/nnUNet_trained_models/Dataset303_3TT1WMSegASHSGT/nnUNetTrainer400Epoch__nnUNetPlans__3d_fullres/fold_3",
|
42 |
+
"output_folder_base": "/data/liyue7/Data/M1_nnUNet/nnUNet_trained_models/Dataset303_3TT1WMSegASHSGT/nnUNetTrainer400Epoch__nnUNetPlans__3d_fullres",
|
43 |
+
"oversample_foreground_percent": "0.33",
|
44 |
+
"plans_manager": "{'dataset_name': 'Dataset303_3TT1WMSegASHSGT', 'plans_name': 'nnUNetPlans', 'original_median_spacing_after_transp': [0.9765625, 0.5, 0.48828125], 'original_median_shape_after_transp': [64, 113, 113], 'image_reader_writer': 'SimpleITKIO', 'transpose_forward': [1, 0, 2], 'transpose_backward': [1, 0, 2], 'configurations': {'2d': {'data_identifier': 'nnUNetPlans_2d', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 145, 'patch_size': [128, 128], 'median_image_size_in_voxels': [113.0, 113.0], 'spacing': [0.5, 0.48828125], 'normalization_schemes': ['ZScoreNormalization'], 'use_mask_for_norm': [False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'num_pool_per_axis': [5, 5], 'pool_op_kernel_sizes': [[1, 1], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2]], 'conv_kernel_sizes': [[3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3]], 'unet_max_num_features': 512, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': True}, '3d_fullres': {'data_identifier': 'nnUNetPlans_3d_fullres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [64, 128, 128], 'median_image_size_in_voxels': [64.0, 113.0, 113.0], 'spacing': [0.9765625, 0.5, 0.48828125], 'normalization_schemes': ['ZScoreNormalization'], 'use_mask_for_norm': [False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'num_pool_per_axis': [4, 5, 5], 'pool_op_kernel_sizes': [[1, 1, 1], [1, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2]], 'conv_kernel_sizes': [[1, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'unet_max_num_features': 320, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': False}}, 'experiment_planner_used': 'ExperimentPlanner', 'label_manager': 'LabelManager', 'foreground_intensity_properties_per_channel': {'0': {'max': 685.0, 'mean': 356.69915771484375, 'median': 396.0, 'min': 117.0, 'percentile_00_5': 149.0, 'percentile_99_5': 570.0, 'std': 120.57451629638672}}}",
|
45 |
+
"preprocessed_dataset_folder": "/data/liyue7/Data/M1_nnUNet/nnUNet_preprocessed/Dataset303_3TT1WMSegASHSGT/nnUNetPlans_3d_fullres",
|
46 |
+
"preprocessed_dataset_folder_base": "/data/liyue7/Data/M1_nnUNet/nnUNet_preprocessed/Dataset303_3TT1WMSegASHSGT",
|
47 |
+
"save_every": "50",
|
48 |
+
"torch_version": "1.13.0+cu117",
|
49 |
+
"unpack_dataset": "True",
|
50 |
+
"was_initialized": "True",
|
51 |
+
"weight_decay": "3e-05"
|
52 |
+
}
|
models/nnunet_t1_wm/Dataset303_3TT1WMSegASHSGT/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_3/progress.png
ADDED
![]() |
Git LFS Details
|
models/nnunet_t1_wm/Dataset303_3TT1WMSegASHSGT/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_3/training_log_2023_8_3_18_25_42.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
models/nnunet_t1_wm/Dataset303_3TT1WMSegASHSGT/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_4/checkpoint_final.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:01de990094cebdc1fb4832691734b55d08e18a374901944f8d95443de8d58fec
|
3 |
+
size 249164923
|
models/nnunet_t1_wm/Dataset303_3TT1WMSegASHSGT/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_4/debug.json
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_best_ema": "None",
|
3 |
+
"batch_size": "2",
|
4 |
+
"configuration_manager": "{'data_identifier': 'nnUNetPlans_3d_fullres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [64, 128, 128], 'median_image_size_in_voxels': [64.0, 113.0, 113.0], 'spacing': [0.9765625, 0.5, 0.48828125], 'normalization_schemes': ['ZScoreNormalization'], 'use_mask_for_norm': [False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'num_pool_per_axis': [4, 5, 5], 'pool_op_kernel_sizes': [[1, 1, 1], [1, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2]], 'conv_kernel_sizes': [[1, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'unet_max_num_features': 320, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': False}",
|
5 |
+
"configuration_name": "3d_fullres",
|
6 |
+
"cudnn_version": 8500,
|
7 |
+
"current_epoch": "0",
|
8 |
+
"dataloader_train": "<nnunetv2.training.data_augmentation.custom_transforms.limited_length_multithreaded_augmenter.LimitedLenWrapper object at 0x7fe9773c2b60>",
|
9 |
+
"dataloader_train.generator": "<nnunetv2.training.dataloading.data_loader_3d.nnUNetDataLoader3D object at 0x7fe9773c1cf0>",
|
10 |
+
"dataloader_train.num_processes": "12",
|
11 |
+
"dataloader_train.transform": "Compose ( [SpatialTransform( independent_scale_for_each_axis = False, p_rot_per_sample = 0.2, p_scale_per_sample = 0.2, p_el_per_sample = 0, data_key = 'data', label_key = 'seg', patch_size = [64, 128, 128], patch_center_dist_from_border = None, do_elastic_deform = False, alpha = (0, 0), sigma = (0, 0), do_rotation = True, angle_x = (-0.5235987755982988, 0.5235987755982988), angle_y = (-0.5235987755982988, 0.5235987755982988), angle_z = (-0.5235987755982988, 0.5235987755982988), do_scale = True, scale = (0.7, 1.4), border_mode_data = 'constant', border_cval_data = 0, order_data = 3, border_mode_seg = 'constant', border_cval_seg = -1, order_seg = 1, random_crop = False, p_rot_per_axis = 1, p_independent_scale_per_axis = 1 ), GaussianNoiseTransform( p_per_sample = 0.1, data_key = 'data', noise_variance = (0, 0.1), p_per_channel = 1, per_channel = False ), GaussianBlurTransform( p_per_sample = 0.2, different_sigma_per_channel = True, p_per_channel = 0.5, data_key = 'data', blur_sigma = (0.5, 1.0), different_sigma_per_axis = False, p_isotropic = 0 ), BrightnessMultiplicativeTransform( p_per_sample = 0.15, data_key = 'data', multiplier_range = (0.75, 1.25), per_channel = True ), ContrastAugmentationTransform( p_per_sample = 0.15, data_key = 'data', contrast_range = (0.75, 1.25), preserve_range = True, per_channel = True, p_per_channel = 1 ), SimulateLowResolutionTransform( order_upsample = 3, order_downsample = 0, channels = None, per_channel = True, p_per_channel = 0.5, p_per_sample = 0.25, data_key = 'data', zoom_range = (0.5, 1), ignore_axes = None ), GammaTransform( p_per_sample = 0.1, retain_stats = True, per_channel = True, data_key = 'data', gamma_range = (0.7, 1.5), invert_image = True ), GammaTransform( p_per_sample = 0.3, retain_stats = True, per_channel = True, data_key = 'data', gamma_range = (0.7, 1.5), invert_image = False ), MirrorTransform( p_per_sample = 1, data_key = 'data', label_key = 'seg', axes = (0, 1, 2) ), RemoveLabelTransform( output_key = 'seg', input_key = 'seg', replace_with = 0, remove_label = -1 ), RenameTransform( delete_old = True, out_key = 'target', in_key = 'seg' ), DownsampleSegForDSTransform2( axes = None, output_key = 'target', input_key = 'target', order = 0, ds_scales = [[1.0, 1.0, 1.0], [1.0, 0.5, 0.5], [0.5, 0.25, 0.25], [0.25, 0.125, 0.125], [0.125, 0.0625, 0.0625]] ), NumpyToTensor( keys = ['data', 'target'], cast_to = 'float' )] )",
|
12 |
+
"dataloader_val": "<nnunetv2.training.data_augmentation.custom_transforms.limited_length_multithreaded_augmenter.LimitedLenWrapper object at 0x7fe9773c1a50>",
|
13 |
+
"dataloader_val.generator": "<nnunetv2.training.dataloading.data_loader_3d.nnUNetDataLoader3D object at 0x7fe9773c1d80>",
|
14 |
+
"dataloader_val.num_processes": "6",
|
15 |
+
"dataloader_val.transform": "Compose ( [RemoveLabelTransform( output_key = 'seg', input_key = 'seg', replace_with = 0, remove_label = -1 ), RenameTransform( delete_old = True, out_key = 'target', in_key = 'seg' ), DownsampleSegForDSTransform2( axes = None, output_key = 'target', input_key = 'target', order = 0, ds_scales = [[1.0, 1.0, 1.0], [1.0, 0.5, 0.5], [0.5, 0.25, 0.25], [0.25, 0.125, 0.125], [0.125, 0.0625, 0.0625]] ), NumpyToTensor( keys = ['data', 'target'], cast_to = 'float' )] )",
|
16 |
+
"dataset_json": "{'channel_names': {'0': '3TT1'}, 'labels': {'background': 0, 'WM': 1}, 'numTraining': 58, 'file_ending': '.nii.gz'}",
|
17 |
+
"device": "cuda:0",
|
18 |
+
"disable_checkpointing": "False",
|
19 |
+
"fold": "4",
|
20 |
+
"folder_with_segs_from_previous_stage": "None",
|
21 |
+
"gpu_name": "Quadro RTX 5000",
|
22 |
+
"grad_scaler": "<torch.cuda.amp.grad_scaler.GradScaler object at 0x7fe97735f4f0>",
|
23 |
+
"hostname": "lambda-picsl",
|
24 |
+
"inference_allowed_mirroring_axes": "(0, 1, 2)",
|
25 |
+
"initial_lr": "0.01",
|
26 |
+
"is_cascaded": "False",
|
27 |
+
"is_ddp": "False",
|
28 |
+
"label_manager": "<nnunetv2.utilities.label_handling.label_handling.LabelManager object at 0x7fe97735ee90>",
|
29 |
+
"local_rank": "0",
|
30 |
+
"log_file": "/data/liyue7/Data/M1_nnUNet/nnUNet_trained_models/Dataset303_3TT1WMSegASHSGT/nnUNetTrainer400Epoch__nnUNetPlans__3d_fullres/fold_4/training_log_2023_8_4_01_06_51.txt",
|
31 |
+
"logger": "<nnunetv2.training.logging.nnunet_logger.nnUNetLogger object at 0x7fe97735f790>",
|
32 |
+
"loss": "DeepSupervisionWrapper(\n (loss): DC_and_CE_loss(\n (ce): RobustCrossEntropyLoss()\n (dc): MemoryEfficientSoftDiceLoss()\n )\n)",
|
33 |
+
"lr_scheduler": "<nnunetv2.training.lr_scheduler.polylr.PolyLRScheduler object at 0x7fe9773c06a0>",
|
34 |
+
"my_init_kwargs": "{'plans': {'dataset_name': 'Dataset303_3TT1WMSegASHSGT', 'plans_name': 'nnUNetPlans', 'original_median_spacing_after_transp': [0.9765625, 0.5, 0.48828125], 'original_median_shape_after_transp': [64, 113, 113], 'image_reader_writer': 'SimpleITKIO', 'transpose_forward': [1, 0, 2], 'transpose_backward': [1, 0, 2], 'configurations': {'2d': {'data_identifier': 'nnUNetPlans_2d', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 145, 'patch_size': [128, 128], 'median_image_size_in_voxels': [113.0, 113.0], 'spacing': [0.5, 0.48828125], 'normalization_schemes': ['ZScoreNormalization'], 'use_mask_for_norm': [False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'num_pool_per_axis': [5, 5], 'pool_op_kernel_sizes': [[1, 1], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2]], 'conv_kernel_sizes': [[3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3]], 'unet_max_num_features': 512, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': True}, '3d_fullres': {'data_identifier': 'nnUNetPlans_3d_fullres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [64, 128, 128], 'median_image_size_in_voxels': [64.0, 113.0, 113.0], 'spacing': [0.9765625, 0.5, 0.48828125], 'normalization_schemes': ['ZScoreNormalization'], 'use_mask_for_norm': [False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'num_pool_per_axis': [4, 5, 5], 'pool_op_kernel_sizes': [[1, 1, 1], [1, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2]], 'conv_kernel_sizes': [[1, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'unet_max_num_features': 320, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': False}}, 'experiment_planner_used': 'ExperimentPlanner', 'label_manager': 'LabelManager', 'foreground_intensity_properties_per_channel': {'0': {'max': 685.0, 'mean': 356.69915771484375, 'median': 396.0, 'min': 117.0, 'percentile_00_5': 149.0, 'percentile_99_5': 570.0, 'std': 120.57451629638672}}}, 'configuration': '3d_fullres', 'fold': 4, 'dataset_json': {'channel_names': {'0': '3TT1'}, 'labels': {'background': 0, 'WM': 1}, 'numTraining': 58, 'file_ending': '.nii.gz'}, 'unpack_dataset': True, 'device': device(type='cuda')}",
|
35 |
+
"network": "PlainConvUNet",
|
36 |
+
"num_epochs": "400",
|
37 |
+
"num_input_channels": "1",
|
38 |
+
"num_iterations_per_epoch": "250",
|
39 |
+
"num_val_iterations_per_epoch": "50",
|
40 |
+
"optimizer": "SGD (\nParameter Group 0\n dampening: 0\n differentiable: False\n foreach: None\n initial_lr: 0.01\n lr: 0.01\n maximize: False\n momentum: 0.99\n nesterov: True\n weight_decay: 3e-05\n)",
|
41 |
+
"output_folder": "/data/liyue7/Data/M1_nnUNet/nnUNet_trained_models/Dataset303_3TT1WMSegASHSGT/nnUNetTrainer400Epoch__nnUNetPlans__3d_fullres/fold_4",
|
42 |
+
"output_folder_base": "/data/liyue7/Data/M1_nnUNet/nnUNet_trained_models/Dataset303_3TT1WMSegASHSGT/nnUNetTrainer400Epoch__nnUNetPlans__3d_fullres",
|
43 |
+
"oversample_foreground_percent": "0.33",
|
44 |
+
"plans_manager": "{'dataset_name': 'Dataset303_3TT1WMSegASHSGT', 'plans_name': 'nnUNetPlans', 'original_median_spacing_after_transp': [0.9765625, 0.5, 0.48828125], 'original_median_shape_after_transp': [64, 113, 113], 'image_reader_writer': 'SimpleITKIO', 'transpose_forward': [1, 0, 2], 'transpose_backward': [1, 0, 2], 'configurations': {'2d': {'data_identifier': 'nnUNetPlans_2d', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 145, 'patch_size': [128, 128], 'median_image_size_in_voxels': [113.0, 113.0], 'spacing': [0.5, 0.48828125], 'normalization_schemes': ['ZScoreNormalization'], 'use_mask_for_norm': [False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'num_pool_per_axis': [5, 5], 'pool_op_kernel_sizes': [[1, 1], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2]], 'conv_kernel_sizes': [[3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3]], 'unet_max_num_features': 512, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': True}, '3d_fullres': {'data_identifier': 'nnUNetPlans_3d_fullres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [64, 128, 128], 'median_image_size_in_voxels': [64.0, 113.0, 113.0], 'spacing': [0.9765625, 0.5, 0.48828125], 'normalization_schemes': ['ZScoreNormalization'], 'use_mask_for_norm': [False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'num_pool_per_axis': [4, 5, 5], 'pool_op_kernel_sizes': [[1, 1, 1], [1, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2]], 'conv_kernel_sizes': [[1, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'unet_max_num_features': 320, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': False}}, 'experiment_planner_used': 'ExperimentPlanner', 'label_manager': 'LabelManager', 'foreground_intensity_properties_per_channel': {'0': {'max': 685.0, 'mean': 356.69915771484375, 'median': 396.0, 'min': 117.0, 'percentile_00_5': 149.0, 'percentile_99_5': 570.0, 'std': 120.57451629638672}}}",
|
45 |
+
"preprocessed_dataset_folder": "/data/liyue7/Data/M1_nnUNet/nnUNet_preprocessed/Dataset303_3TT1WMSegASHSGT/nnUNetPlans_3d_fullres",
|
46 |
+
"preprocessed_dataset_folder_base": "/data/liyue7/Data/M1_nnUNet/nnUNet_preprocessed/Dataset303_3TT1WMSegASHSGT",
|
47 |
+
"save_every": "50",
|
48 |
+
"torch_version": "1.13.0+cu117",
|
49 |
+
"unpack_dataset": "True",
|
50 |
+
"was_initialized": "True",
|
51 |
+
"weight_decay": "3e-05"
|
52 |
+
}
|
models/nnunet_t1_wm/Dataset303_3TT1WMSegASHSGT/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_4/progress.png
ADDED
![]() |
Git LFS Details
|
models/nnunet_t1_wm/Dataset303_3TT1WMSegASHSGT/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_4/training_log_2023_8_4_01_06_51.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
models/nnunet_t1_wm/Dataset303_3TT1WMSegASHSGT/nnUNetTrainer__nnUNetPlans__3d_fullres/plans.json
ADDED
@@ -0,0 +1,294 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"dataset_name": "Dataset303_3TT1WMSegASHSGT",
|
3 |
+
"plans_name": "nnUNetPlans",
|
4 |
+
"original_median_spacing_after_transp": [
|
5 |
+
0.9765625,
|
6 |
+
0.5,
|
7 |
+
0.48828125
|
8 |
+
],
|
9 |
+
"original_median_shape_after_transp": [
|
10 |
+
64,
|
11 |
+
113,
|
12 |
+
113
|
13 |
+
],
|
14 |
+
"image_reader_writer": "SimpleITKIO",
|
15 |
+
"transpose_forward": [
|
16 |
+
1,
|
17 |
+
0,
|
18 |
+
2
|
19 |
+
],
|
20 |
+
"transpose_backward": [
|
21 |
+
1,
|
22 |
+
0,
|
23 |
+
2
|
24 |
+
],
|
25 |
+
"configurations": {
|
26 |
+
"2d": {
|
27 |
+
"data_identifier": "nnUNetPlans_2d",
|
28 |
+
"preprocessor_name": "DefaultPreprocessor",
|
29 |
+
"batch_size": 145,
|
30 |
+
"patch_size": [
|
31 |
+
128,
|
32 |
+
128
|
33 |
+
],
|
34 |
+
"median_image_size_in_voxels": [
|
35 |
+
113.0,
|
36 |
+
113.0
|
37 |
+
],
|
38 |
+
"spacing": [
|
39 |
+
0.5,
|
40 |
+
0.48828125
|
41 |
+
],
|
42 |
+
"normalization_schemes": [
|
43 |
+
"ZScoreNormalization"
|
44 |
+
],
|
45 |
+
"use_mask_for_norm": [
|
46 |
+
false
|
47 |
+
],
|
48 |
+
"UNet_class_name": "PlainConvUNet",
|
49 |
+
"UNet_base_num_features": 32,
|
50 |
+
"n_conv_per_stage_encoder": [
|
51 |
+
2,
|
52 |
+
2,
|
53 |
+
2,
|
54 |
+
2,
|
55 |
+
2,
|
56 |
+
2
|
57 |
+
],
|
58 |
+
"n_conv_per_stage_decoder": [
|
59 |
+
2,
|
60 |
+
2,
|
61 |
+
2,
|
62 |
+
2,
|
63 |
+
2
|
64 |
+
],
|
65 |
+
"num_pool_per_axis": [
|
66 |
+
5,
|
67 |
+
5
|
68 |
+
],
|
69 |
+
"pool_op_kernel_sizes": [
|
70 |
+
[
|
71 |
+
1,
|
72 |
+
1
|
73 |
+
],
|
74 |
+
[
|
75 |
+
2,
|
76 |
+
2
|
77 |
+
],
|
78 |
+
[
|
79 |
+
2,
|
80 |
+
2
|
81 |
+
],
|
82 |
+
[
|
83 |
+
2,
|
84 |
+
2
|
85 |
+
],
|
86 |
+
[
|
87 |
+
2,
|
88 |
+
2
|
89 |
+
],
|
90 |
+
[
|
91 |
+
2,
|
92 |
+
2
|
93 |
+
]
|
94 |
+
],
|
95 |
+
"conv_kernel_sizes": [
|
96 |
+
[
|
97 |
+
3,
|
98 |
+
3
|
99 |
+
],
|
100 |
+
[
|
101 |
+
3,
|
102 |
+
3
|
103 |
+
],
|
104 |
+
[
|
105 |
+
3,
|
106 |
+
3
|
107 |
+
],
|
108 |
+
[
|
109 |
+
3,
|
110 |
+
3
|
111 |
+
],
|
112 |
+
[
|
113 |
+
3,
|
114 |
+
3
|
115 |
+
],
|
116 |
+
[
|
117 |
+
3,
|
118 |
+
3
|
119 |
+
]
|
120 |
+
],
|
121 |
+
"unet_max_num_features": 512,
|
122 |
+
"resampling_fn_data": "resample_data_or_seg_to_shape",
|
123 |
+
"resampling_fn_seg": "resample_data_or_seg_to_shape",
|
124 |
+
"resampling_fn_data_kwargs": {
|
125 |
+
"is_seg": false,
|
126 |
+
"order": 3,
|
127 |
+
"order_z": 0,
|
128 |
+
"force_separate_z": null
|
129 |
+
},
|
130 |
+
"resampling_fn_seg_kwargs": {
|
131 |
+
"is_seg": true,
|
132 |
+
"order": 1,
|
133 |
+
"order_z": 0,
|
134 |
+
"force_separate_z": null
|
135 |
+
},
|
136 |
+
"resampling_fn_probabilities": "resample_data_or_seg_to_shape",
|
137 |
+
"resampling_fn_probabilities_kwargs": {
|
138 |
+
"is_seg": false,
|
139 |
+
"order": 1,
|
140 |
+
"order_z": 0,
|
141 |
+
"force_separate_z": null
|
142 |
+
},
|
143 |
+
"batch_dice": true
|
144 |
+
},
|
145 |
+
"3d_fullres": {
|
146 |
+
"data_identifier": "nnUNetPlans_3d_fullres",
|
147 |
+
"preprocessor_name": "DefaultPreprocessor",
|
148 |
+
"batch_size": 2,
|
149 |
+
"patch_size": [
|
150 |
+
64,
|
151 |
+
128,
|
152 |
+
128
|
153 |
+
],
|
154 |
+
"median_image_size_in_voxels": [
|
155 |
+
64.0,
|
156 |
+
113.0,
|
157 |
+
113.0
|
158 |
+
],
|
159 |
+
"spacing": [
|
160 |
+
0.9765625,
|
161 |
+
0.5,
|
162 |
+
0.48828125
|
163 |
+
],
|
164 |
+
"normalization_schemes": [
|
165 |
+
"ZScoreNormalization"
|
166 |
+
],
|
167 |
+
"use_mask_for_norm": [
|
168 |
+
false
|
169 |
+
],
|
170 |
+
"UNet_class_name": "PlainConvUNet",
|
171 |
+
"UNet_base_num_features": 32,
|
172 |
+
"n_conv_per_stage_encoder": [
|
173 |
+
2,
|
174 |
+
2,
|
175 |
+
2,
|
176 |
+
2,
|
177 |
+
2,
|
178 |
+
2
|
179 |
+
],
|
180 |
+
"n_conv_per_stage_decoder": [
|
181 |
+
2,
|
182 |
+
2,
|
183 |
+
2,
|
184 |
+
2,
|
185 |
+
2
|
186 |
+
],
|
187 |
+
"num_pool_per_axis": [
|
188 |
+
4,
|
189 |
+
5,
|
190 |
+
5
|
191 |
+
],
|
192 |
+
"pool_op_kernel_sizes": [
|
193 |
+
[
|
194 |
+
1,
|
195 |
+
1,
|
196 |
+
1
|
197 |
+
],
|
198 |
+
[
|
199 |
+
1,
|
200 |
+
2,
|
201 |
+
2
|
202 |
+
],
|
203 |
+
[
|
204 |
+
2,
|
205 |
+
2,
|
206 |
+
2
|
207 |
+
],
|
208 |
+
[
|
209 |
+
2,
|
210 |
+
2,
|
211 |
+
2
|
212 |
+
],
|
213 |
+
[
|
214 |
+
2,
|
215 |
+
2,
|
216 |
+
2
|
217 |
+
],
|
218 |
+
[
|
219 |
+
2,
|
220 |
+
2,
|
221 |
+
2
|
222 |
+
]
|
223 |
+
],
|
224 |
+
"conv_kernel_sizes": [
|
225 |
+
[
|
226 |
+
1,
|
227 |
+
3,
|
228 |
+
3
|
229 |
+
],
|
230 |
+
[
|
231 |
+
3,
|
232 |
+
3,
|
233 |
+
3
|
234 |
+
],
|
235 |
+
[
|
236 |
+
3,
|
237 |
+
3,
|
238 |
+
3
|
239 |
+
],
|
240 |
+
[
|
241 |
+
3,
|
242 |
+
3,
|
243 |
+
3
|
244 |
+
],
|
245 |
+
[
|
246 |
+
3,
|
247 |
+
3,
|
248 |
+
3
|
249 |
+
],
|
250 |
+
[
|
251 |
+
3,
|
252 |
+
3,
|
253 |
+
3
|
254 |
+
]
|
255 |
+
],
|
256 |
+
"unet_max_num_features": 320,
|
257 |
+
"resampling_fn_data": "resample_data_or_seg_to_shape",
|
258 |
+
"resampling_fn_seg": "resample_data_or_seg_to_shape",
|
259 |
+
"resampling_fn_data_kwargs": {
|
260 |
+
"is_seg": false,
|
261 |
+
"order": 3,
|
262 |
+
"order_z": 0,
|
263 |
+
"force_separate_z": null
|
264 |
+
},
|
265 |
+
"resampling_fn_seg_kwargs": {
|
266 |
+
"is_seg": true,
|
267 |
+
"order": 1,
|
268 |
+
"order_z": 0,
|
269 |
+
"force_separate_z": null
|
270 |
+
},
|
271 |
+
"resampling_fn_probabilities": "resample_data_or_seg_to_shape",
|
272 |
+
"resampling_fn_probabilities_kwargs": {
|
273 |
+
"is_seg": false,
|
274 |
+
"order": 1,
|
275 |
+
"order_z": 0,
|
276 |
+
"force_separate_z": null
|
277 |
+
},
|
278 |
+
"batch_dice": false
|
279 |
+
}
|
280 |
+
},
|
281 |
+
"experiment_planner_used": "ExperimentPlanner",
|
282 |
+
"label_manager": "LabelManager",
|
283 |
+
"foreground_intensity_properties_per_channel": {
|
284 |
+
"0": {
|
285 |
+
"max": 685.0,
|
286 |
+
"mean": 356.69915771484375,
|
287 |
+
"median": 396.0,
|
288 |
+
"min": 117.0,
|
289 |
+
"percentile_00_5": 149.0,
|
290 |
+
"percentile_99_5": 570.0,
|
291 |
+
"std": 120.57451629638672
|
292 |
+
}
|
293 |
+
}
|
294 |
+
}
|
models/nnunet_t1_wm/config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"model": "Dataset303_3TT1WMSegASHSGT/nnUNetTrainer__nnUNetPlans__3d_fullres",
|
3 |
+
"trainer": "nnUNetTrainer400Epoch",
|
4 |
+
"target_orientation": "ASL",
|
5 |
+
"target_spacing": [1.0, 0.5, 0.5]
|
6 |
+
}
|
7 |
+
|
models/upsample_ashs_pmc_t2/config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"config": {"patch_size": [5, 32, 32], "upsample_factor": [5, 1, 1]}, "id_train": ["100551R", "104937L", "106049L", "106312R", "113909R", "116748R", "117243R", "117667R", "118374L", "118430R", "119349L", "119359R", "119933L", "120126L", "120267L", "120937L", "121250L"], "epochs": 2000, "batch_size": 64}
|
models/upsample_ashs_pmc_t2/model.dat
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6e93f327a87805ef9abff4358e07dc6b156153df93bb929b5c97d73d00cfb709
|
3 |
+
size 40489817
|
templates/.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
templates/ashs_pmc_alveus/template.json
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"ashs_label_type": {
|
3 |
+
"wm": [15],
|
4 |
+
"gm": [1, 2, 4, 8, 10, 11, 12, 13],
|
5 |
+
"bg": [0, 3, 7, 14]
|
6 |
+
},
|
7 |
+
"labels_for_surface_matching": [15, 1, 2, 4, 8, 10, 11, 12, 13],
|
8 |
+
"preprocessing": {
|
9 |
+
"mode": "t2_alveus",
|
10 |
+
"t2_alveus_param": {
|
11 |
+
"dg_labels": [3],
|
12 |
+
"cortex_labels": [11, 12, 13],
|
13 |
+
"suberc_labels": [8, 10],
|
14 |
+
"ca_labels": [1, 2, 4],
|
15 |
+
"upsample_model": "upsample_ashs_pmc_t2"
|
16 |
+
},
|
17 |
+
"nnunet_wm": "nnunet_t1_wm"
|
18 |
+
}
|
19 |
+
}
|
templates/ashs_pmc_alveus/template_shoot_left.vtk
ADDED
The diff for this file is too large to render.
See raw diff
|
|
templates/ashs_pmc_alveus/template_shoot_right.vtk
ADDED
The diff for this file is too large to render.
See raw diff
|
|
templates/ashs_pmc_alveus/upsample.json
ADDED
File without changes
|
templates/ashs_pmc_t1/ashs_template_flip.mat
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
-0.992704 0.120567 0.00126359 -5.55375
|
2 |
+
0.120571 0.9927 0.00299536 0.381202
|
3 |
+
0.000893229 -0.00312585 0.999995 0.121834
|
4 |
+
0 0 0 1
|
templates/ashs_pmc_t1/template.json
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"ashs_label_type": {
|
3 |
+
"wm": [20],
|
4 |
+
"gm": [1, 2, 10, 11, 12, 13],
|
5 |
+
"bg": [0, 4, 6, 7, 9, 14, 16, 17, 18, 19]
|
6 |
+
},
|
7 |
+
"labels_for_surface_matching": [ 20, 1, 2, 10, 11, 12, 13 ],
|
8 |
+
"preprocessing": {
|
9 |
+
"mode": "t1_add_wm",
|
10 |
+
"t1_add_wm_param": {
|
11 |
+
"cortex_labels": [11, 12],
|
12 |
+
"suberc_labels": [10],
|
13 |
+
"hipp_labels": [1]
|
14 |
+
},
|
15 |
+
"nnunet_wm": "nnunet_t1_wm"
|
16 |
+
}
|
17 |
+
}
|
18 |
+
|
templates/ashs_pmc_t1/template_shoot_left.vtk
ADDED
The diff for this file is too large to render.
See raw diff
|
|
templates/ashs_pmc_t1/template_shoot_right.vtk
ADDED
The diff for this file is too large to render.
See raw diff
|
|
templates/exvivo_phg_94t/template.json
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"sides": {
|
3 |
+
"left": {
|
4 |
+
"mesh": "template_shoot_left.vtk",
|
5 |
+
"mesh_reduced": "template_shoot_reduced_left.vtk"
|
6 |
+
},
|
7 |
+
"right": {
|
8 |
+
"mesh": "template_shoot_right.vtk",
|
9 |
+
"mesh_reduced": "template_shoot_reduced_right.vtk"
|
10 |
+
}
|
11 |
+
},
|
12 |
+
"registration": {
|
13 |
+
"varifold_sigma": 2.0,
|
14 |
+
"lddmm_sigma": 2.0,
|
15 |
+
"lddmm_gamma": 0.05,
|
16 |
+
"lddmm_nt": 10,
|
17 |
+
"jacobian_penalty": 10.0,
|
18 |
+
"lddmm_maxiter": 250,
|
19 |
+
"affine_maxiter": 50
|
20 |
+
},
|
21 |
+
"cruise": {
|
22 |
+
"inflate_maxiter": 2000,
|
23 |
+
"inflate_reduction": 4000,
|
24 |
+
"laminar_n_layers": 10,
|
25 |
+
"laminar_method": "distance-preserving"
|
26 |
+
},
|
27 |
+
"template_build": {
|
28 |
+
"schedule": [
|
29 |
+
10,
|
30 |
+
10,
|
31 |
+
20,
|
32 |
+
200
|
33 |
+
],
|
34 |
+
"remeshing_edge_length_pct": 2.0,
|
35 |
+
"root_sigma_factor": 2.4,
|
36 |
+
"remeshing_feature_angle": 180.0
|
37 |
+
},
|
38 |
+
"ashs_label_type": {
|
39 |
+
"wm": [
|
40 |
+
10
|
41 |
+
],
|
42 |
+
"gm": [
|
43 |
+
1,
|
44 |
+
3
|
45 |
+
],
|
46 |
+
"bg": [
|
47 |
+
0,
|
48 |
+
5
|
49 |
+
]
|
50 |
+
},
|
51 |
+
"labels_for_surface_matching": [
|
52 |
+
10,
|
53 |
+
1,
|
54 |
+
3
|
55 |
+
]
|
56 |
+
}
|
templates/exvivo_phg_94t/template_shoot_left.vtk
ADDED
The diff for this file is too large to render.
See raw diff
|
|
templates/exvivo_phg_94t/template_shoot_reduced_left.vtk
ADDED
The diff for this file is too large to render.
See raw diff
|
|