pyushkevich commited on
Commit
139a445
·
verified ·
1 Parent(s): 16a997a

Upload folder using huggingface_hub

Browse files
Files changed (44) hide show
  1. .DS_Store +0 -0
  2. .gitattributes +1 -0
  3. LICENSE +1 -0
  4. README.md +6 -10
  5. Version.txt +1 -0
  6. models/.DS_Store +0 -0
  7. models/nnunet_t1_wm/Dataset303_3TT1WMSegASHSGT/nnUNetTrainer__nnUNetPlans__3d_fullres/dataset.json +11 -0
  8. models/nnunet_t1_wm/Dataset303_3TT1WMSegASHSGT/nnUNetTrainer__nnUNetPlans__3d_fullres/dataset_fingerprint.json +598 -0
  9. models/nnunet_t1_wm/Dataset303_3TT1WMSegASHSGT/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_0/checkpoint_final.pth +3 -0
  10. models/nnunet_t1_wm/Dataset303_3TT1WMSegASHSGT/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_0/debug.json +52 -0
  11. models/nnunet_t1_wm/Dataset303_3TT1WMSegASHSGT/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_0/progress.png +3 -0
  12. models/nnunet_t1_wm/Dataset303_3TT1WMSegASHSGT/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_0/training_log_2023_8_2_21_58_27.txt +0 -0
  13. models/nnunet_t1_wm/Dataset303_3TT1WMSegASHSGT/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_1/checkpoint_final.pth +3 -0
  14. models/nnunet_t1_wm/Dataset303_3TT1WMSegASHSGT/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_1/debug.json +52 -0
  15. models/nnunet_t1_wm/Dataset303_3TT1WMSegASHSGT/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_1/progress.png +3 -0
  16. models/nnunet_t1_wm/Dataset303_3TT1WMSegASHSGT/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_1/training_log_2023_8_3_05_04_34.txt +0 -0
  17. models/nnunet_t1_wm/Dataset303_3TT1WMSegASHSGT/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_2/checkpoint_final.pth +3 -0
  18. models/nnunet_t1_wm/Dataset303_3TT1WMSegASHSGT/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_2/debug.json +52 -0
  19. models/nnunet_t1_wm/Dataset303_3TT1WMSegASHSGT/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_2/progress.png +3 -0
  20. models/nnunet_t1_wm/Dataset303_3TT1WMSegASHSGT/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_2/training_log_2023_8_3_11_44_51.txt +0 -0
  21. models/nnunet_t1_wm/Dataset303_3TT1WMSegASHSGT/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_3/checkpoint_final.pth +3 -0
  22. models/nnunet_t1_wm/Dataset303_3TT1WMSegASHSGT/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_3/debug.json +52 -0
  23. models/nnunet_t1_wm/Dataset303_3TT1WMSegASHSGT/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_3/progress.png +3 -0
  24. models/nnunet_t1_wm/Dataset303_3TT1WMSegASHSGT/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_3/training_log_2023_8_3_18_25_42.txt +0 -0
  25. models/nnunet_t1_wm/Dataset303_3TT1WMSegASHSGT/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_4/checkpoint_final.pth +3 -0
  26. models/nnunet_t1_wm/Dataset303_3TT1WMSegASHSGT/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_4/debug.json +52 -0
  27. models/nnunet_t1_wm/Dataset303_3TT1WMSegASHSGT/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_4/progress.png +3 -0
  28. models/nnunet_t1_wm/Dataset303_3TT1WMSegASHSGT/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_4/training_log_2023_8_4_01_06_51.txt +0 -0
  29. models/nnunet_t1_wm/Dataset303_3TT1WMSegASHSGT/nnUNetTrainer__nnUNetPlans__3d_fullres/plans.json +294 -0
  30. models/nnunet_t1_wm/config.json +7 -0
  31. models/upsample_ashs_pmc_t2/config.json +1 -0
  32. models/upsample_ashs_pmc_t2/model.dat +3 -0
  33. templates/.DS_Store +0 -0
  34. templates/ashs_pmc_alveus/template.json +19 -0
  35. templates/ashs_pmc_alveus/template_shoot_left.vtk +0 -0
  36. templates/ashs_pmc_alveus/template_shoot_right.vtk +0 -0
  37. templates/ashs_pmc_alveus/upsample.json +0 -0
  38. templates/ashs_pmc_t1/ashs_template_flip.mat +4 -0
  39. templates/ashs_pmc_t1/template.json +18 -0
  40. templates/ashs_pmc_t1/template_shoot_left.vtk +0 -0
  41. templates/ashs_pmc_t1/template_shoot_right.vtk +0 -0
  42. templates/exvivo_phg_94t/template.json +56 -0
  43. templates/exvivo_phg_94t/template_shoot_left.vtk +0 -0
  44. templates/exvivo_phg_94t/template_shoot_reduced_left.vtk +0 -0
.DS_Store ADDED
Binary file (6.15 kB). View file
 
.gitattributes CHANGED
@@ -57,3 +57,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
57
  # Video files - compressed
58
  *.mp4 filter=lfs diff=lfs merge=lfs -text
59
  *.webm filter=lfs diff=lfs merge=lfs -text
 
 
57
  # Video files - compressed
58
  *.mp4 filter=lfs diff=lfs merge=lfs -text
59
  *.webm filter=lfs diff=lfs merge=lfs -text
60
+ models/upsample_ashs_pmc_t2/model.dat filter=lfs diff=lfs merge=lfs -text
LICENSE ADDED
@@ -0,0 +1 @@
 
 
1
+ CRASHS Template and Model Package by Paul Yushkevich is marked with CC0 1.0 Universal. To view a copy of this license, visit https://creativecommons.org/publicdomain/zero/1.0/
README.md CHANGED
@@ -1,10 +1,6 @@
1
- ---
2
- license: cc0-1.0
3
- tags:
4
- - medical
5
- - hippocampus
6
- - ASHS
7
- - CRASHS
8
- - MRI
9
- pretty_name: CRASHS Template Package
10
- ---
 
1
+ CRASHS Template and Model Package
2
+ =================================
3
+
4
+ This folder contains the templates and deep learning models needed to run CRASHS (cortical reconstruction for automated segmentation of hippocampal subfields). Please see [CRASHS github page](https://github.com/pyushkevich/crashs) for details on using this dataset.
5
+
6
+ This package is compatible with CRASHS version 0.2.5 and later
 
 
 
 
Version.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ 2024-08-30
models/.DS_Store ADDED
Binary file (6.15 kB). View file
 
models/nnunet_t1_wm/Dataset303_3TT1WMSegASHSGT/nnUNetTrainer__nnUNetPlans__3d_fullres/dataset.json ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "channel_names": {
3
+ "0": "3TT1"
4
+ },
5
+ "labels": {
6
+ "background": 0,
7
+ "WM": 1
8
+ },
9
+ "numTraining": 58,
10
+ "file_ending": ".nii.gz"
11
+ }
models/nnunet_t1_wm/Dataset303_3TT1WMSegASHSGT/nnUNetTrainer__nnUNetPlans__3d_fullres/dataset_fingerprint.json ADDED
@@ -0,0 +1,598 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "foreground_intensity_properties_per_channel": {
3
+ "0": {
4
+ "max": 685.0,
5
+ "mean": 356.69915771484375,
6
+ "median": 396.0,
7
+ "min": 117.0,
8
+ "percentile_00_5": 149.0,
9
+ "percentile_99_5": 570.0,
10
+ "std": 120.57451629638672
11
+ }
12
+ },
13
+ "median_relative_size_after_cropping": 1.0,
14
+ "shapes_after_crop": [
15
+ [
16
+ 109,
17
+ 62,
18
+ 106
19
+ ],
20
+ [
21
+ 113,
22
+ 62,
23
+ 108
24
+ ],
25
+ [
26
+ 121,
27
+ 65,
28
+ 114
29
+ ],
30
+ [
31
+ 126,
32
+ 68,
33
+ 110
34
+ ],
35
+ [
36
+ 87,
37
+ 68,
38
+ 119
39
+ ],
40
+ [
41
+ 89,
42
+ 70,
43
+ 119
44
+ ],
45
+ [
46
+ 121,
47
+ 67,
48
+ 122
49
+ ],
50
+ [
51
+ 125,
52
+ 69,
53
+ 123
54
+ ],
55
+ [
56
+ 107,
57
+ 64,
58
+ 115
59
+ ],
60
+ [
61
+ 119,
62
+ 63,
63
+ 112
64
+ ],
65
+ [
66
+ 120,
67
+ 56,
68
+ 115
69
+ ],
70
+ [
71
+ 120,
72
+ 55,
73
+ 119
74
+ ],
75
+ [
76
+ 124,
77
+ 66,
78
+ 116
79
+ ],
80
+ [
81
+ 133,
82
+ 64,
83
+ 116
84
+ ],
85
+ [
86
+ 108,
87
+ 61,
88
+ 114
89
+ ],
90
+ [
91
+ 103,
92
+ 59,
93
+ 112
94
+ ],
95
+ [
96
+ 123,
97
+ 59,
98
+ 115
99
+ ],
100
+ [
101
+ 127,
102
+ 57,
103
+ 113
104
+ ],
105
+ [
106
+ 103,
107
+ 61,
108
+ 110
109
+ ],
110
+ [
111
+ 108,
112
+ 58,
113
+ 107
114
+ ],
115
+ [
116
+ 110,
117
+ 66,
118
+ 114
119
+ ],
120
+ [
121
+ 109,
122
+ 67,
123
+ 113
124
+ ],
125
+ [
126
+ 120,
127
+ 63,
128
+ 104
129
+ ],
130
+ [
131
+ 121,
132
+ 59,
133
+ 103
134
+ ],
135
+ [
136
+ 120,
137
+ 64,
138
+ 111
139
+ ],
140
+ [
141
+ 118,
142
+ 63,
143
+ 112
144
+ ],
145
+ [
146
+ 107,
147
+ 67,
148
+ 111
149
+ ],
150
+ [
151
+ 118,
152
+ 67,
153
+ 110
154
+ ],
155
+ [
156
+ 116,
157
+ 60,
158
+ 102
159
+ ],
160
+ [
161
+ 115,
162
+ 60,
163
+ 103
164
+ ],
165
+ [
166
+ 110,
167
+ 67,
168
+ 121
169
+ ],
170
+ [
171
+ 112,
172
+ 66,
173
+ 121
174
+ ],
175
+ [
176
+ 121,
177
+ 66,
178
+ 115
179
+ ],
180
+ [
181
+ 127,
182
+ 67,
183
+ 114
184
+ ],
185
+ [
186
+ 105,
187
+ 71,
188
+ 119
189
+ ],
190
+ [
191
+ 110,
192
+ 74,
193
+ 114
194
+ ],
195
+ [
196
+ 125,
197
+ 62,
198
+ 112
199
+ ],
200
+ [
201
+ 130,
202
+ 60,
203
+ 108
204
+ ],
205
+ [
206
+ 111,
207
+ 61,
208
+ 111
209
+ ],
210
+ [
211
+ 114,
212
+ 60,
213
+ 112
214
+ ],
215
+ [
216
+ 102,
217
+ 66,
218
+ 129
219
+ ],
220
+ [
221
+ 110,
222
+ 66,
223
+ 118
224
+ ],
225
+ [
226
+ 100,
227
+ 63,
228
+ 111
229
+ ],
230
+ [
231
+ 101,
232
+ 65,
233
+ 111
234
+ ],
235
+ [
236
+ 111,
237
+ 67,
238
+ 116
239
+ ],
240
+ [
241
+ 113,
242
+ 68,
243
+ 115
244
+ ],
245
+ [
246
+ 111,
247
+ 62,
248
+ 118
249
+ ],
250
+ [
251
+ 113,
252
+ 60,
253
+ 111
254
+ ],
255
+ [
256
+ 115,
257
+ 66,
258
+ 109
259
+ ],
260
+ [
261
+ 116,
262
+ 64,
263
+ 109
264
+ ],
265
+ [
266
+ 102,
267
+ 64,
268
+ 114
269
+ ],
270
+ [
271
+ 101,
272
+ 64,
273
+ 111
274
+ ],
275
+ [
276
+ 117,
277
+ 65,
278
+ 115
279
+ ],
280
+ [
281
+ 116,
282
+ 63,
283
+ 112
284
+ ],
285
+ [
286
+ 98,
287
+ 72,
288
+ 116
289
+ ],
290
+ [
291
+ 96,
292
+ 72,
293
+ 117
294
+ ],
295
+ [
296
+ 97,
297
+ 61,
298
+ 103
299
+ ],
300
+ [
301
+ 94,
302
+ 60,
303
+ 108
304
+ ]
305
+ ],
306
+ "spacings": [
307
+ [
308
+ 0.5,
309
+ 0.9765625,
310
+ 0.48828125
311
+ ],
312
+ [
313
+ 0.5,
314
+ 0.9765625,
315
+ 0.48828125
316
+ ],
317
+ [
318
+ 0.5,
319
+ 0.9765625,
320
+ 0.48828125
321
+ ],
322
+ [
323
+ 0.5,
324
+ 0.9765625,
325
+ 0.48828125
326
+ ],
327
+ [
328
+ 0.5,
329
+ 0.9765625,
330
+ 0.48828125
331
+ ],
332
+ [
333
+ 0.5,
334
+ 0.9765625,
335
+ 0.48828125
336
+ ],
337
+ [
338
+ 0.5,
339
+ 0.9765625,
340
+ 0.48828125
341
+ ],
342
+ [
343
+ 0.5,
344
+ 0.9765625,
345
+ 0.48828125
346
+ ],
347
+ [
348
+ 0.5,
349
+ 0.9765625,
350
+ 0.48828125
351
+ ],
352
+ [
353
+ 0.5,
354
+ 0.9765625,
355
+ 0.48828125
356
+ ],
357
+ [
358
+ 0.5,
359
+ 0.9765625,
360
+ 0.48828125
361
+ ],
362
+ [
363
+ 0.5,
364
+ 0.9765625,
365
+ 0.48828125
366
+ ],
367
+ [
368
+ 0.5,
369
+ 0.9765625,
370
+ 0.48828125
371
+ ],
372
+ [
373
+ 0.5,
374
+ 0.9765625,
375
+ 0.48828125
376
+ ],
377
+ [
378
+ 0.5,
379
+ 0.9765625,
380
+ 0.48828125
381
+ ],
382
+ [
383
+ 0.5,
384
+ 0.9765625,
385
+ 0.48828125
386
+ ],
387
+ [
388
+ 0.5,
389
+ 0.9765625,
390
+ 0.48828125
391
+ ],
392
+ [
393
+ 0.5,
394
+ 0.9765625,
395
+ 0.48828125
396
+ ],
397
+ [
398
+ 0.5,
399
+ 0.9765625,
400
+ 0.48828125
401
+ ],
402
+ [
403
+ 0.5,
404
+ 0.9765625,
405
+ 0.48828125
406
+ ],
407
+ [
408
+ 0.5,
409
+ 0.9765629768371582,
410
+ 0.4882814884185791
411
+ ],
412
+ [
413
+ 0.5,
414
+ 0.9765629768371582,
415
+ 0.4882814884185791
416
+ ],
417
+ [
418
+ 0.5,
419
+ 0.9765625,
420
+ 0.48828125
421
+ ],
422
+ [
423
+ 0.5,
424
+ 0.9765625,
425
+ 0.48828125
426
+ ],
427
+ [
428
+ 0.5,
429
+ 0.9765625,
430
+ 0.48828125
431
+ ],
432
+ [
433
+ 0.5,
434
+ 0.9765625,
435
+ 0.48828125
436
+ ],
437
+ [
438
+ 0.5,
439
+ 0.9765625,
440
+ 0.48828125
441
+ ],
442
+ [
443
+ 0.5,
444
+ 0.9765625,
445
+ 0.48828125
446
+ ],
447
+ [
448
+ 0.5,
449
+ 0.9765625,
450
+ 0.48828125
451
+ ],
452
+ [
453
+ 0.5,
454
+ 0.9765625,
455
+ 0.48828125
456
+ ],
457
+ [
458
+ 0.5,
459
+ 0.9765625,
460
+ 0.48828125
461
+ ],
462
+ [
463
+ 0.5,
464
+ 0.9765625,
465
+ 0.48828125
466
+ ],
467
+ [
468
+ 0.5,
469
+ 0.9765625,
470
+ 0.48828125
471
+ ],
472
+ [
473
+ 0.5,
474
+ 0.9765625,
475
+ 0.48828125
476
+ ],
477
+ [
478
+ 0.5,
479
+ 0.9765625,
480
+ 0.48828125
481
+ ],
482
+ [
483
+ 0.5,
484
+ 0.9765625,
485
+ 0.48828125
486
+ ],
487
+ [
488
+ 0.5,
489
+ 0.9765625,
490
+ 0.48828125
491
+ ],
492
+ [
493
+ 0.5,
494
+ 0.9765625,
495
+ 0.48828125
496
+ ],
497
+ [
498
+ 0.5,
499
+ 0.9765625,
500
+ 0.48828125
501
+ ],
502
+ [
503
+ 0.5,
504
+ 0.9765625,
505
+ 0.48828125
506
+ ],
507
+ [
508
+ 0.5,
509
+ 0.9765625,
510
+ 0.48828125
511
+ ],
512
+ [
513
+ 0.5,
514
+ 0.9765625,
515
+ 0.48828125
516
+ ],
517
+ [
518
+ 0.5,
519
+ 0.9765625,
520
+ 0.48828125
521
+ ],
522
+ [
523
+ 0.5,
524
+ 0.9765625,
525
+ 0.48828125
526
+ ],
527
+ [
528
+ 0.5,
529
+ 0.9765625,
530
+ 0.48828125
531
+ ],
532
+ [
533
+ 0.5,
534
+ 0.9765625,
535
+ 0.48828125
536
+ ],
537
+ [
538
+ 0.5,
539
+ 0.9765625,
540
+ 0.48828125
541
+ ],
542
+ [
543
+ 0.5,
544
+ 0.9765625,
545
+ 0.48828125
546
+ ],
547
+ [
548
+ 0.5,
549
+ 0.9765625,
550
+ 0.48828125
551
+ ],
552
+ [
553
+ 0.5,
554
+ 0.9765625,
555
+ 0.48828125
556
+ ],
557
+ [
558
+ 0.5,
559
+ 0.9765625,
560
+ 0.48828125
561
+ ],
562
+ [
563
+ 0.5,
564
+ 0.9765625,
565
+ 0.48828125
566
+ ],
567
+ [
568
+ 0.5,
569
+ 0.9765625,
570
+ 0.48828125
571
+ ],
572
+ [
573
+ 0.5,
574
+ 0.9765625,
575
+ 0.48828125
576
+ ],
577
+ [
578
+ 0.5,
579
+ 0.9765625,
580
+ 0.48828125
581
+ ],
582
+ [
583
+ 0.5,
584
+ 0.9765625,
585
+ 0.48828125
586
+ ],
587
+ [
588
+ 0.5,
589
+ 0.9765625,
590
+ 0.48828125
591
+ ],
592
+ [
593
+ 0.5,
594
+ 0.9765625,
595
+ 0.48828125
596
+ ]
597
+ ]
598
+ }
models/nnunet_t1_wm/Dataset303_3TT1WMSegASHSGT/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_0/checkpoint_final.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:69fc00601cc867f0894a4f85914576d3929314e579a4f2fff7038f59f3972df6
3
+ size 249164667
models/nnunet_t1_wm/Dataset303_3TT1WMSegASHSGT/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_0/debug.json ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_best_ema": "None",
3
+ "batch_size": "2",
4
+ "configuration_manager": "{'data_identifier': 'nnUNetPlans_3d_fullres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [64, 128, 128], 'median_image_size_in_voxels': [64.0, 113.0, 113.0], 'spacing': [0.9765625, 0.5, 0.48828125], 'normalization_schemes': ['ZScoreNormalization'], 'use_mask_for_norm': [False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'num_pool_per_axis': [4, 5, 5], 'pool_op_kernel_sizes': [[1, 1, 1], [1, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2]], 'conv_kernel_sizes': [[1, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'unet_max_num_features': 320, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': False}",
5
+ "configuration_name": "3d_fullres",
6
+ "cudnn_version": 8500,
7
+ "current_epoch": "0",
8
+ "dataloader_train": "<nnunetv2.training.data_augmentation.custom_transforms.limited_length_multithreaded_augmenter.LimitedLenWrapper object at 0x7fa3a74cab60>",
9
+ "dataloader_train.generator": "<nnunetv2.training.dataloading.data_loader_3d.nnUNetDataLoader3D object at 0x7fa3a74c9990>",
10
+ "dataloader_train.num_processes": "12",
11
+ "dataloader_train.transform": "Compose ( [SpatialTransform( independent_scale_for_each_axis = False, p_rot_per_sample = 0.2, p_scale_per_sample = 0.2, p_el_per_sample = 0, data_key = 'data', label_key = 'seg', patch_size = [64, 128, 128], patch_center_dist_from_border = None, do_elastic_deform = False, alpha = (0, 0), sigma = (0, 0), do_rotation = True, angle_x = (-0.5235987755982988, 0.5235987755982988), angle_y = (-0.5235987755982988, 0.5235987755982988), angle_z = (-0.5235987755982988, 0.5235987755982988), do_scale = True, scale = (0.7, 1.4), border_mode_data = 'constant', border_cval_data = 0, order_data = 3, border_mode_seg = 'constant', border_cval_seg = -1, order_seg = 1, random_crop = False, p_rot_per_axis = 1, p_independent_scale_per_axis = 1 ), GaussianNoiseTransform( p_per_sample = 0.1, data_key = 'data', noise_variance = (0, 0.1), p_per_channel = 1, per_channel = False ), GaussianBlurTransform( p_per_sample = 0.2, different_sigma_per_channel = True, p_per_channel = 0.5, data_key = 'data', blur_sigma = (0.5, 1.0), different_sigma_per_axis = False, p_isotropic = 0 ), BrightnessMultiplicativeTransform( p_per_sample = 0.15, data_key = 'data', multiplier_range = (0.75, 1.25), per_channel = True ), ContrastAugmentationTransform( p_per_sample = 0.15, data_key = 'data', contrast_range = (0.75, 1.25), preserve_range = True, per_channel = True, p_per_channel = 1 ), SimulateLowResolutionTransform( order_upsample = 3, order_downsample = 0, channels = None, per_channel = True, p_per_channel = 0.5, p_per_sample = 0.25, data_key = 'data', zoom_range = (0.5, 1), ignore_axes = None ), GammaTransform( p_per_sample = 0.1, retain_stats = True, per_channel = True, data_key = 'data', gamma_range = (0.7, 1.5), invert_image = True ), GammaTransform( p_per_sample = 0.3, retain_stats = True, per_channel = True, data_key = 'data', gamma_range = (0.7, 1.5), invert_image = False ), MirrorTransform( p_per_sample = 1, data_key = 'data', label_key = 'seg', axes = (0, 1, 2) ), RemoveLabelTransform( output_key = 'seg', input_key = 'seg', replace_with = 0, remove_label = -1 ), RenameTransform( delete_old = True, out_key = 'target', in_key = 'seg' ), DownsampleSegForDSTransform2( axes = None, output_key = 'target', input_key = 'target', order = 0, ds_scales = [[1.0, 1.0, 1.0], [1.0, 0.5, 0.5], [0.5, 0.25, 0.25], [0.25, 0.125, 0.125], [0.125, 0.0625, 0.0625]] ), NumpyToTensor( keys = ['data', 'target'], cast_to = 'float' )] )",
12
+ "dataloader_val": "<nnunetv2.training.data_augmentation.custom_transforms.limited_length_multithreaded_augmenter.LimitedLenWrapper object at 0x7fa3a74c98d0>",
13
+ "dataloader_val.generator": "<nnunetv2.training.dataloading.data_loader_3d.nnUNetDataLoader3D object at 0x7fa3a74c9a20>",
14
+ "dataloader_val.num_processes": "6",
15
+ "dataloader_val.transform": "Compose ( [RemoveLabelTransform( output_key = 'seg', input_key = 'seg', replace_with = 0, remove_label = -1 ), RenameTransform( delete_old = True, out_key = 'target', in_key = 'seg' ), DownsampleSegForDSTransform2( axes = None, output_key = 'target', input_key = 'target', order = 0, ds_scales = [[1.0, 1.0, 1.0], [1.0, 0.5, 0.5], [0.5, 0.25, 0.25], [0.25, 0.125, 0.125], [0.125, 0.0625, 0.0625]] ), NumpyToTensor( keys = ['data', 'target'], cast_to = 'float' )] )",
16
+ "dataset_json": "{'channel_names': {'0': '3TT1'}, 'labels': {'background': 0, 'WM': 1}, 'numTraining': 58, 'file_ending': '.nii.gz'}",
17
+ "device": "cuda:0",
18
+ "disable_checkpointing": "False",
19
+ "fold": "0",
20
+ "folder_with_segs_from_previous_stage": "None",
21
+ "gpu_name": "Quadro RTX 5000",
22
+ "grad_scaler": "<torch.cuda.amp.grad_scaler.GradScaler object at 0x7fa3a745b370>",
23
+ "hostname": "lambda-picsl",
24
+ "inference_allowed_mirroring_axes": "(0, 1, 2)",
25
+ "initial_lr": "0.01",
26
+ "is_cascaded": "False",
27
+ "is_ddp": "False",
28
+ "label_manager": "<nnunetv2.utilities.label_handling.label_handling.LabelManager object at 0x7fa3a745ab30>",
29
+ "local_rank": "0",
30
+ "log_file": "/data/liyue7/Data/M1_nnUNet/nnUNet_trained_models/Dataset303_3TT1WMSegASHSGT/nnUNetTrainer400Epoch__nnUNetPlans__3d_fullres/fold_0/training_log_2023_8_2_21_58_27.txt",
31
+ "logger": "<nnunetv2.training.logging.nnunet_logger.nnUNetLogger object at 0x7fa3a745b430>",
32
+ "loss": "DeepSupervisionWrapper(\n (loss): DC_and_CE_loss(\n (ce): RobustCrossEntropyLoss()\n (dc): MemoryEfficientSoftDiceLoss()\n )\n)",
33
+ "lr_scheduler": "<nnunetv2.training.lr_scheduler.polylr.PolyLRScheduler object at 0x7fa3a74c83d0>",
34
+ "my_init_kwargs": "{'plans': {'dataset_name': 'Dataset303_3TT1WMSegASHSGT', 'plans_name': 'nnUNetPlans', 'original_median_spacing_after_transp': [0.9765625, 0.5, 0.48828125], 'original_median_shape_after_transp': [64, 113, 113], 'image_reader_writer': 'SimpleITKIO', 'transpose_forward': [1, 0, 2], 'transpose_backward': [1, 0, 2], 'configurations': {'2d': {'data_identifier': 'nnUNetPlans_2d', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 145, 'patch_size': [128, 128], 'median_image_size_in_voxels': [113.0, 113.0], 'spacing': [0.5, 0.48828125], 'normalization_schemes': ['ZScoreNormalization'], 'use_mask_for_norm': [False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'num_pool_per_axis': [5, 5], 'pool_op_kernel_sizes': [[1, 1], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2]], 'conv_kernel_sizes': [[3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3]], 'unet_max_num_features': 512, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': True}, '3d_fullres': {'data_identifier': 'nnUNetPlans_3d_fullres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [64, 128, 128], 'median_image_size_in_voxels': [64.0, 113.0, 113.0], 'spacing': [0.9765625, 0.5, 0.48828125], 'normalization_schemes': ['ZScoreNormalization'], 'use_mask_for_norm': [False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'num_pool_per_axis': [4, 5, 5], 'pool_op_kernel_sizes': [[1, 1, 1], [1, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2]], 'conv_kernel_sizes': [[1, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'unet_max_num_features': 320, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': False}}, 'experiment_planner_used': 'ExperimentPlanner', 'label_manager': 'LabelManager', 'foreground_intensity_properties_per_channel': {'0': {'max': 685.0, 'mean': 356.69915771484375, 'median': 396.0, 'min': 117.0, 'percentile_00_5': 149.0, 'percentile_99_5': 570.0, 'std': 120.57451629638672}}}, 'configuration': '3d_fullres', 'fold': 0, 'dataset_json': {'channel_names': {'0': '3TT1'}, 'labels': {'background': 0, 'WM': 1}, 'numTraining': 58, 'file_ending': '.nii.gz'}, 'unpack_dataset': True, 'device': device(type='cuda')}",
35
+ "network": "PlainConvUNet",
36
+ "num_epochs": "400",
37
+ "num_input_channels": "1",
38
+ "num_iterations_per_epoch": "250",
39
+ "num_val_iterations_per_epoch": "50",
40
+ "optimizer": "SGD (\nParameter Group 0\n dampening: 0\n differentiable: False\n foreach: None\n initial_lr: 0.01\n lr: 0.01\n maximize: False\n momentum: 0.99\n nesterov: True\n weight_decay: 3e-05\n)",
41
+ "output_folder": "/data/liyue7/Data/M1_nnUNet/nnUNet_trained_models/Dataset303_3TT1WMSegASHSGT/nnUNetTrainer400Epoch__nnUNetPlans__3d_fullres/fold_0",
42
+ "output_folder_base": "/data/liyue7/Data/M1_nnUNet/nnUNet_trained_models/Dataset303_3TT1WMSegASHSGT/nnUNetTrainer400Epoch__nnUNetPlans__3d_fullres",
43
+ "oversample_foreground_percent": "0.33",
44
+ "plans_manager": "{'dataset_name': 'Dataset303_3TT1WMSegASHSGT', 'plans_name': 'nnUNetPlans', 'original_median_spacing_after_transp': [0.9765625, 0.5, 0.48828125], 'original_median_shape_after_transp': [64, 113, 113], 'image_reader_writer': 'SimpleITKIO', 'transpose_forward': [1, 0, 2], 'transpose_backward': [1, 0, 2], 'configurations': {'2d': {'data_identifier': 'nnUNetPlans_2d', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 145, 'patch_size': [128, 128], 'median_image_size_in_voxels': [113.0, 113.0], 'spacing': [0.5, 0.48828125], 'normalization_schemes': ['ZScoreNormalization'], 'use_mask_for_norm': [False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'num_pool_per_axis': [5, 5], 'pool_op_kernel_sizes': [[1, 1], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2]], 'conv_kernel_sizes': [[3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3]], 'unet_max_num_features': 512, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': True}, '3d_fullres': {'data_identifier': 'nnUNetPlans_3d_fullres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [64, 128, 128], 'median_image_size_in_voxels': [64.0, 113.0, 113.0], 'spacing': [0.9765625, 0.5, 0.48828125], 'normalization_schemes': ['ZScoreNormalization'], 'use_mask_for_norm': [False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'num_pool_per_axis': [4, 5, 5], 'pool_op_kernel_sizes': [[1, 1, 1], [1, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2]], 'conv_kernel_sizes': [[1, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'unet_max_num_features': 320, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': False}}, 'experiment_planner_used': 'ExperimentPlanner', 'label_manager': 'LabelManager', 'foreground_intensity_properties_per_channel': {'0': {'max': 685.0, 'mean': 356.69915771484375, 'median': 396.0, 'min': 117.0, 'percentile_00_5': 149.0, 'percentile_99_5': 570.0, 'std': 120.57451629638672}}}",
45
+ "preprocessed_dataset_folder": "/data/liyue7/Data/M1_nnUNet/nnUNet_preprocessed/Dataset303_3TT1WMSegASHSGT/nnUNetPlans_3d_fullres",
46
+ "preprocessed_dataset_folder_base": "/data/liyue7/Data/M1_nnUNet/nnUNet_preprocessed/Dataset303_3TT1WMSegASHSGT",
47
+ "save_every": "50",
48
+ "torch_version": "1.13.0+cu117",
49
+ "unpack_dataset": "True",
50
+ "was_initialized": "True",
51
+ "weight_decay": "3e-05"
52
+ }
models/nnunet_t1_wm/Dataset303_3TT1WMSegASHSGT/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_0/progress.png ADDED

Git LFS Details

  • SHA256: dd9831a9f4af5b09463318486ae081aa4c06894ac89073a3021424c501185043
  • Pointer size: 131 Bytes
  • Size of remote file: 481 kB
models/nnunet_t1_wm/Dataset303_3TT1WMSegASHSGT/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_0/training_log_2023_8_2_21_58_27.txt ADDED
The diff for this file is too large to render. See raw diff
 
models/nnunet_t1_wm/Dataset303_3TT1WMSegASHSGT/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_1/checkpoint_final.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8f5eb4d247880e822beae9129a574048325b327839cc89f1c40a2435dbf54158
3
+ size 249164155
models/nnunet_t1_wm/Dataset303_3TT1WMSegASHSGT/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_1/debug.json ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_best_ema": "None",
3
+ "batch_size": "2",
4
+ "configuration_manager": "{'data_identifier': 'nnUNetPlans_3d_fullres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [64, 128, 128], 'median_image_size_in_voxels': [64.0, 113.0, 113.0], 'spacing': [0.9765625, 0.5, 0.48828125], 'normalization_schemes': ['ZScoreNormalization'], 'use_mask_for_norm': [False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'num_pool_per_axis': [4, 5, 5], 'pool_op_kernel_sizes': [[1, 1, 1], [1, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2]], 'conv_kernel_sizes': [[1, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'unet_max_num_features': 320, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': False}",
5
+ "configuration_name": "3d_fullres",
6
+ "cudnn_version": 8500,
7
+ "current_epoch": "0",
8
+ "dataloader_train": "<nnunetv2.training.data_augmentation.custom_transforms.limited_length_multithreaded_augmenter.LimitedLenWrapper object at 0x7f8456116b60>",
9
+ "dataloader_train.generator": "<nnunetv2.training.dataloading.data_loader_3d.nnUNetDataLoader3D object at 0x7f8456115c30>",
10
+ "dataloader_train.num_processes": "12",
11
+ "dataloader_train.transform": "Compose ( [SpatialTransform( independent_scale_for_each_axis = False, p_rot_per_sample = 0.2, p_scale_per_sample = 0.2, p_el_per_sample = 0, data_key = 'data', label_key = 'seg', patch_size = [64, 128, 128], patch_center_dist_from_border = None, do_elastic_deform = False, alpha = (0, 0), sigma = (0, 0), do_rotation = True, angle_x = (-0.5235987755982988, 0.5235987755982988), angle_y = (-0.5235987755982988, 0.5235987755982988), angle_z = (-0.5235987755982988, 0.5235987755982988), do_scale = True, scale = (0.7, 1.4), border_mode_data = 'constant', border_cval_data = 0, order_data = 3, border_mode_seg = 'constant', border_cval_seg = -1, order_seg = 1, random_crop = False, p_rot_per_axis = 1, p_independent_scale_per_axis = 1 ), GaussianNoiseTransform( p_per_sample = 0.1, data_key = 'data', noise_variance = (0, 0.1), p_per_channel = 1, per_channel = False ), GaussianBlurTransform( p_per_sample = 0.2, different_sigma_per_channel = True, p_per_channel = 0.5, data_key = 'data', blur_sigma = (0.5, 1.0), different_sigma_per_axis = False, p_isotropic = 0 ), BrightnessMultiplicativeTransform( p_per_sample = 0.15, data_key = 'data', multiplier_range = (0.75, 1.25), per_channel = True ), ContrastAugmentationTransform( p_per_sample = 0.15, data_key = 'data', contrast_range = (0.75, 1.25), preserve_range = True, per_channel = True, p_per_channel = 1 ), SimulateLowResolutionTransform( order_upsample = 3, order_downsample = 0, channels = None, per_channel = True, p_per_channel = 0.5, p_per_sample = 0.25, data_key = 'data', zoom_range = (0.5, 1), ignore_axes = None ), GammaTransform( p_per_sample = 0.1, retain_stats = True, per_channel = True, data_key = 'data', gamma_range = (0.7, 1.5), invert_image = True ), GammaTransform( p_per_sample = 0.3, retain_stats = True, per_channel = True, data_key = 'data', gamma_range = (0.7, 1.5), invert_image = False ), MirrorTransform( p_per_sample = 1, data_key = 'data', label_key = 'seg', axes = (0, 1, 2) ), RemoveLabelTransform( output_key = 'seg', input_key = 'seg', replace_with = 0, remove_label = -1 ), RenameTransform( delete_old = True, out_key = 'target', in_key = 'seg' ), DownsampleSegForDSTransform2( axes = None, output_key = 'target', input_key = 'target', order = 0, ds_scales = [[1.0, 1.0, 1.0], [1.0, 0.5, 0.5], [0.5, 0.25, 0.25], [0.25, 0.125, 0.125], [0.125, 0.0625, 0.0625]] ), NumpyToTensor( keys = ['data', 'target'], cast_to = 'float' )] )",
12
+ "dataloader_val": "<nnunetv2.training.data_augmentation.custom_transforms.limited_length_multithreaded_augmenter.LimitedLenWrapper object at 0x7f8456115b70>",
13
+ "dataloader_val.generator": "<nnunetv2.training.dataloading.data_loader_3d.nnUNetDataLoader3D object at 0x7f8456115cc0>",
14
+ "dataloader_val.num_processes": "6",
15
+ "dataloader_val.transform": "Compose ( [RemoveLabelTransform( output_key = 'seg', input_key = 'seg', replace_with = 0, remove_label = -1 ), RenameTransform( delete_old = True, out_key = 'target', in_key = 'seg' ), DownsampleSegForDSTransform2( axes = None, output_key = 'target', input_key = 'target', order = 0, ds_scales = [[1.0, 1.0, 1.0], [1.0, 0.5, 0.5], [0.5, 0.25, 0.25], [0.25, 0.125, 0.125], [0.125, 0.0625, 0.0625]] ), NumpyToTensor( keys = ['data', 'target'], cast_to = 'float' )] )",
16
+ "dataset_json": "{'channel_names': {'0': '3TT1'}, 'labels': {'background': 0, 'WM': 1}, 'numTraining': 58, 'file_ending': '.nii.gz'}",
17
+ "device": "cuda:0",
18
+ "disable_checkpointing": "False",
19
+ "fold": "1",
20
+ "folder_with_segs_from_previous_stage": "None",
21
+ "gpu_name": "Quadro RTX 5000",
22
+ "grad_scaler": "<torch.cuda.amp.grad_scaler.GradScaler object at 0x7f84560b3430>",
23
+ "hostname": "lambda-picsl",
24
+ "inference_allowed_mirroring_axes": "(0, 1, 2)",
25
+ "initial_lr": "0.01",
26
+ "is_cascaded": "False",
27
+ "is_ddp": "False",
28
+ "label_manager": "<nnunetv2.utilities.label_handling.label_handling.LabelManager object at 0x7f84560b2dd0>",
29
+ "local_rank": "0",
30
+ "log_file": "/data/liyue7/Data/M1_nnUNet/nnUNet_trained_models/Dataset303_3TT1WMSegASHSGT/nnUNetTrainer400Epoch__nnUNetPlans__3d_fullres/fold_1/training_log_2023_8_3_05_04_34.txt",
31
+ "logger": "<nnunetv2.training.logging.nnunet_logger.nnUNetLogger object at 0x7f84560b36d0>",
32
+ "loss": "DeepSupervisionWrapper(\n (loss): DC_and_CE_loss(\n (ce): RobustCrossEntropyLoss()\n (dc): MemoryEfficientSoftDiceLoss()\n )\n)",
33
+ "lr_scheduler": "<nnunetv2.training.lr_scheduler.polylr.PolyLRScheduler object at 0x7f84561145e0>",
34
+ "my_init_kwargs": "{'plans': {'dataset_name': 'Dataset303_3TT1WMSegASHSGT', 'plans_name': 'nnUNetPlans', 'original_median_spacing_after_transp': [0.9765625, 0.5, 0.48828125], 'original_median_shape_after_transp': [64, 113, 113], 'image_reader_writer': 'SimpleITKIO', 'transpose_forward': [1, 0, 2], 'transpose_backward': [1, 0, 2], 'configurations': {'2d': {'data_identifier': 'nnUNetPlans_2d', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 145, 'patch_size': [128, 128], 'median_image_size_in_voxels': [113.0, 113.0], 'spacing': [0.5, 0.48828125], 'normalization_schemes': ['ZScoreNormalization'], 'use_mask_for_norm': [False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'num_pool_per_axis': [5, 5], 'pool_op_kernel_sizes': [[1, 1], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2]], 'conv_kernel_sizes': [[3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3]], 'unet_max_num_features': 512, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': True}, '3d_fullres': {'data_identifier': 'nnUNetPlans_3d_fullres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [64, 128, 128], 'median_image_size_in_voxels': [64.0, 113.0, 113.0], 'spacing': [0.9765625, 0.5, 0.48828125], 'normalization_schemes': ['ZScoreNormalization'], 'use_mask_for_norm': [False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'num_pool_per_axis': [4, 5, 5], 'pool_op_kernel_sizes': [[1, 1, 1], [1, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2]], 'conv_kernel_sizes': [[1, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'unet_max_num_features': 320, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': False}}, 'experiment_planner_used': 'ExperimentPlanner', 'label_manager': 'LabelManager', 'foreground_intensity_properties_per_channel': {'0': {'max': 685.0, 'mean': 356.69915771484375, 'median': 396.0, 'min': 117.0, 'percentile_00_5': 149.0, 'percentile_99_5': 570.0, 'std': 120.57451629638672}}}, 'configuration': '3d_fullres', 'fold': 1, 'dataset_json': {'channel_names': {'0': '3TT1'}, 'labels': {'background': 0, 'WM': 1}, 'numTraining': 58, 'file_ending': '.nii.gz'}, 'unpack_dataset': True, 'device': device(type='cuda')}",
35
+ "network": "PlainConvUNet",
36
+ "num_epochs": "400",
37
+ "num_input_channels": "1",
38
+ "num_iterations_per_epoch": "250",
39
+ "num_val_iterations_per_epoch": "50",
40
+ "optimizer": "SGD (\nParameter Group 0\n dampening: 0\n differentiable: False\n foreach: None\n initial_lr: 0.01\n lr: 0.01\n maximize: False\n momentum: 0.99\n nesterov: True\n weight_decay: 3e-05\n)",
41
+ "output_folder": "/data/liyue7/Data/M1_nnUNet/nnUNet_trained_models/Dataset303_3TT1WMSegASHSGT/nnUNetTrainer400Epoch__nnUNetPlans__3d_fullres/fold_1",
42
+ "output_folder_base": "/data/liyue7/Data/M1_nnUNet/nnUNet_trained_models/Dataset303_3TT1WMSegASHSGT/nnUNetTrainer400Epoch__nnUNetPlans__3d_fullres",
43
+ "oversample_foreground_percent": "0.33",
44
+ "plans_manager": "{'dataset_name': 'Dataset303_3TT1WMSegASHSGT', 'plans_name': 'nnUNetPlans', 'original_median_spacing_after_transp': [0.9765625, 0.5, 0.48828125], 'original_median_shape_after_transp': [64, 113, 113], 'image_reader_writer': 'SimpleITKIO', 'transpose_forward': [1, 0, 2], 'transpose_backward': [1, 0, 2], 'configurations': {'2d': {'data_identifier': 'nnUNetPlans_2d', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 145, 'patch_size': [128, 128], 'median_image_size_in_voxels': [113.0, 113.0], 'spacing': [0.5, 0.48828125], 'normalization_schemes': ['ZScoreNormalization'], 'use_mask_for_norm': [False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'num_pool_per_axis': [5, 5], 'pool_op_kernel_sizes': [[1, 1], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2]], 'conv_kernel_sizes': [[3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3]], 'unet_max_num_features': 512, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': True}, '3d_fullres': {'data_identifier': 'nnUNetPlans_3d_fullres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [64, 128, 128], 'median_image_size_in_voxels': [64.0, 113.0, 113.0], 'spacing': [0.9765625, 0.5, 0.48828125], 'normalization_schemes': ['ZScoreNormalization'], 'use_mask_for_norm': [False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'num_pool_per_axis': [4, 5, 5], 'pool_op_kernel_sizes': [[1, 1, 1], [1, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2]], 'conv_kernel_sizes': [[1, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'unet_max_num_features': 320, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': False}}, 'experiment_planner_used': 'ExperimentPlanner', 'label_manager': 'LabelManager', 'foreground_intensity_properties_per_channel': {'0': {'max': 685.0, 'mean': 356.69915771484375, 'median': 396.0, 'min': 117.0, 'percentile_00_5': 149.0, 'percentile_99_5': 570.0, 'std': 120.57451629638672}}}",
45
+ "preprocessed_dataset_folder": "/data/liyue7/Data/M1_nnUNet/nnUNet_preprocessed/Dataset303_3TT1WMSegASHSGT/nnUNetPlans_3d_fullres",
46
+ "preprocessed_dataset_folder_base": "/data/liyue7/Data/M1_nnUNet/nnUNet_preprocessed/Dataset303_3TT1WMSegASHSGT",
47
+ "save_every": "50",
48
+ "torch_version": "1.13.0+cu117",
49
+ "unpack_dataset": "True",
50
+ "was_initialized": "True",
51
+ "weight_decay": "3e-05"
52
+ }
models/nnunet_t1_wm/Dataset303_3TT1WMSegASHSGT/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_1/progress.png ADDED

Git LFS Details

  • SHA256: f6f31889490c8426259f2448231ed6588c87a4100e3920df5a94b4e1b58e2959
  • Pointer size: 131 Bytes
  • Size of remote file: 536 kB
models/nnunet_t1_wm/Dataset303_3TT1WMSegASHSGT/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_1/training_log_2023_8_3_05_04_34.txt ADDED
The diff for this file is too large to render. See raw diff
 
models/nnunet_t1_wm/Dataset303_3TT1WMSegASHSGT/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_2/checkpoint_final.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:50209af1f673304e2916f8a22958a2333e4cb58833999c54b29a0d53a1a92699
3
+ size 249164219
models/nnunet_t1_wm/Dataset303_3TT1WMSegASHSGT/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_2/debug.json ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_best_ema": "None",
3
+ "batch_size": "2",
4
+ "configuration_manager": "{'data_identifier': 'nnUNetPlans_3d_fullres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [64, 128, 128], 'median_image_size_in_voxels': [64.0, 113.0, 113.0], 'spacing': [0.9765625, 0.5, 0.48828125], 'normalization_schemes': ['ZScoreNormalization'], 'use_mask_for_norm': [False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'num_pool_per_axis': [4, 5, 5], 'pool_op_kernel_sizes': [[1, 1, 1], [1, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2]], 'conv_kernel_sizes': [[1, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'unet_max_num_features': 320, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': False}",
5
+ "configuration_name": "3d_fullres",
6
+ "cudnn_version": 8500,
7
+ "current_epoch": "0",
8
+ "dataloader_train": "<nnunetv2.training.data_augmentation.custom_transforms.limited_length_multithreaded_augmenter.LimitedLenWrapper object at 0x7f63222bec50>",
9
+ "dataloader_train.generator": "<nnunetv2.training.dataloading.data_loader_3d.nnUNetDataLoader3D object at 0x7f63222bdd20>",
10
+ "dataloader_train.num_processes": "12",
11
+ "dataloader_train.transform": "Compose ( [SpatialTransform( independent_scale_for_each_axis = False, p_rot_per_sample = 0.2, p_scale_per_sample = 0.2, p_el_per_sample = 0, data_key = 'data', label_key = 'seg', patch_size = [64, 128, 128], patch_center_dist_from_border = None, do_elastic_deform = False, alpha = (0, 0), sigma = (0, 0), do_rotation = True, angle_x = (-0.5235987755982988, 0.5235987755982988), angle_y = (-0.5235987755982988, 0.5235987755982988), angle_z = (-0.5235987755982988, 0.5235987755982988), do_scale = True, scale = (0.7, 1.4), border_mode_data = 'constant', border_cval_data = 0, order_data = 3, border_mode_seg = 'constant', border_cval_seg = -1, order_seg = 1, random_crop = False, p_rot_per_axis = 1, p_independent_scale_per_axis = 1 ), GaussianNoiseTransform( p_per_sample = 0.1, data_key = 'data', noise_variance = (0, 0.1), p_per_channel = 1, per_channel = False ), GaussianBlurTransform( p_per_sample = 0.2, different_sigma_per_channel = True, p_per_channel = 0.5, data_key = 'data', blur_sigma = (0.5, 1.0), different_sigma_per_axis = False, p_isotropic = 0 ), BrightnessMultiplicativeTransform( p_per_sample = 0.15, data_key = 'data', multiplier_range = (0.75, 1.25), per_channel = True ), ContrastAugmentationTransform( p_per_sample = 0.15, data_key = 'data', contrast_range = (0.75, 1.25), preserve_range = True, per_channel = True, p_per_channel = 1 ), SimulateLowResolutionTransform( order_upsample = 3, order_downsample = 0, channels = None, per_channel = True, p_per_channel = 0.5, p_per_sample = 0.25, data_key = 'data', zoom_range = (0.5, 1), ignore_axes = None ), GammaTransform( p_per_sample = 0.1, retain_stats = True, per_channel = True, data_key = 'data', gamma_range = (0.7, 1.5), invert_image = True ), GammaTransform( p_per_sample = 0.3, retain_stats = True, per_channel = True, data_key = 'data', gamma_range = (0.7, 1.5), invert_image = False ), MirrorTransform( p_per_sample = 1, data_key = 'data', label_key = 'seg', axes = (0, 1, 2) ), RemoveLabelTransform( output_key = 'seg', input_key = 'seg', replace_with = 0, remove_label = -1 ), RenameTransform( delete_old = True, out_key = 'target', in_key = 'seg' ), DownsampleSegForDSTransform2( axes = None, output_key = 'target', input_key = 'target', order = 0, ds_scales = [[1.0, 1.0, 1.0], [1.0, 0.5, 0.5], [0.5, 0.25, 0.25], [0.25, 0.125, 0.125], [0.125, 0.0625, 0.0625]] ), NumpyToTensor( keys = ['data', 'target'], cast_to = 'float' )] )",
12
+ "dataloader_val": "<nnunetv2.training.data_augmentation.custom_transforms.limited_length_multithreaded_augmenter.LimitedLenWrapper object at 0x7f63222bda80>",
13
+ "dataloader_val.generator": "<nnunetv2.training.dataloading.data_loader_3d.nnUNetDataLoader3D object at 0x7f63222bddb0>",
14
+ "dataloader_val.num_processes": "6",
15
+ "dataloader_val.transform": "Compose ( [RemoveLabelTransform( output_key = 'seg', input_key = 'seg', replace_with = 0, remove_label = -1 ), RenameTransform( delete_old = True, out_key = 'target', in_key = 'seg' ), DownsampleSegForDSTransform2( axes = None, output_key = 'target', input_key = 'target', order = 0, ds_scales = [[1.0, 1.0, 1.0], [1.0, 0.5, 0.5], [0.5, 0.25, 0.25], [0.25, 0.125, 0.125], [0.125, 0.0625, 0.0625]] ), NumpyToTensor( keys = ['data', 'target'], cast_to = 'float' )] )",
16
+ "dataset_json": "{'channel_names': {'0': '3TT1'}, 'labels': {'background': 0, 'WM': 1}, 'numTraining': 58, 'file_ending': '.nii.gz'}",
17
+ "device": "cuda:0",
18
+ "disable_checkpointing": "False",
19
+ "fold": "2",
20
+ "folder_with_segs_from_previous_stage": "None",
21
+ "gpu_name": "Quadro RTX 5000",
22
+ "grad_scaler": "<torch.cuda.amp.grad_scaler.GradScaler object at 0x7f632225f520>",
23
+ "hostname": "lambda-picsl",
24
+ "inference_allowed_mirroring_axes": "(0, 1, 2)",
25
+ "initial_lr": "0.01",
26
+ "is_cascaded": "False",
27
+ "is_ddp": "False",
28
+ "label_manager": "<nnunetv2.utilities.label_handling.label_handling.LabelManager object at 0x7f632225eec0>",
29
+ "local_rank": "0",
30
+ "log_file": "/data/liyue7/Data/M1_nnUNet/nnUNet_trained_models/Dataset303_3TT1WMSegASHSGT/nnUNetTrainer400Epoch__nnUNetPlans__3d_fullres/fold_2/training_log_2023_8_3_11_44_51.txt",
31
+ "logger": "<nnunetv2.training.logging.nnunet_logger.nnUNetLogger object at 0x7f632225f7c0>",
32
+ "loss": "DeepSupervisionWrapper(\n (loss): DC_and_CE_loss(\n (ce): RobustCrossEntropyLoss()\n (dc): MemoryEfficientSoftDiceLoss()\n )\n)",
33
+ "lr_scheduler": "<nnunetv2.training.lr_scheduler.polylr.PolyLRScheduler object at 0x7f63222bc6d0>",
34
+ "my_init_kwargs": "{'plans': {'dataset_name': 'Dataset303_3TT1WMSegASHSGT', 'plans_name': 'nnUNetPlans', 'original_median_spacing_after_transp': [0.9765625, 0.5, 0.48828125], 'original_median_shape_after_transp': [64, 113, 113], 'image_reader_writer': 'SimpleITKIO', 'transpose_forward': [1, 0, 2], 'transpose_backward': [1, 0, 2], 'configurations': {'2d': {'data_identifier': 'nnUNetPlans_2d', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 145, 'patch_size': [128, 128], 'median_image_size_in_voxels': [113.0, 113.0], 'spacing': [0.5, 0.48828125], 'normalization_schemes': ['ZScoreNormalization'], 'use_mask_for_norm': [False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'num_pool_per_axis': [5, 5], 'pool_op_kernel_sizes': [[1, 1], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2]], 'conv_kernel_sizes': [[3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3]], 'unet_max_num_features': 512, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': True}, '3d_fullres': {'data_identifier': 'nnUNetPlans_3d_fullres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [64, 128, 128], 'median_image_size_in_voxels': [64.0, 113.0, 113.0], 'spacing': [0.9765625, 0.5, 0.48828125], 'normalization_schemes': ['ZScoreNormalization'], 'use_mask_for_norm': [False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'num_pool_per_axis': [4, 5, 5], 'pool_op_kernel_sizes': [[1, 1, 1], [1, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2]], 'conv_kernel_sizes': [[1, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'unet_max_num_features': 320, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': False}}, 'experiment_planner_used': 'ExperimentPlanner', 'label_manager': 'LabelManager', 'foreground_intensity_properties_per_channel': {'0': {'max': 685.0, 'mean': 356.69915771484375, 'median': 396.0, 'min': 117.0, 'percentile_00_5': 149.0, 'percentile_99_5': 570.0, 'std': 120.57451629638672}}}, 'configuration': '3d_fullres', 'fold': 2, 'dataset_json': {'channel_names': {'0': '3TT1'}, 'labels': {'background': 0, 'WM': 1}, 'numTraining': 58, 'file_ending': '.nii.gz'}, 'unpack_dataset': True, 'device': device(type='cuda')}",
35
+ "network": "PlainConvUNet",
36
+ "num_epochs": "400",
37
+ "num_input_channels": "1",
38
+ "num_iterations_per_epoch": "250",
39
+ "num_val_iterations_per_epoch": "50",
40
+ "optimizer": "SGD (\nParameter Group 0\n dampening: 0\n differentiable: False\n foreach: None\n initial_lr: 0.01\n lr: 0.01\n maximize: False\n momentum: 0.99\n nesterov: True\n weight_decay: 3e-05\n)",
41
+ "output_folder": "/data/liyue7/Data/M1_nnUNet/nnUNet_trained_models/Dataset303_3TT1WMSegASHSGT/nnUNetTrainer400Epoch__nnUNetPlans__3d_fullres/fold_2",
42
+ "output_folder_base": "/data/liyue7/Data/M1_nnUNet/nnUNet_trained_models/Dataset303_3TT1WMSegASHSGT/nnUNetTrainer400Epoch__nnUNetPlans__3d_fullres",
43
+ "oversample_foreground_percent": "0.33",
44
+ "plans_manager": "{'dataset_name': 'Dataset303_3TT1WMSegASHSGT', 'plans_name': 'nnUNetPlans', 'original_median_spacing_after_transp': [0.9765625, 0.5, 0.48828125], 'original_median_shape_after_transp': [64, 113, 113], 'image_reader_writer': 'SimpleITKIO', 'transpose_forward': [1, 0, 2], 'transpose_backward': [1, 0, 2], 'configurations': {'2d': {'data_identifier': 'nnUNetPlans_2d', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 145, 'patch_size': [128, 128], 'median_image_size_in_voxels': [113.0, 113.0], 'spacing': [0.5, 0.48828125], 'normalization_schemes': ['ZScoreNormalization'], 'use_mask_for_norm': [False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'num_pool_per_axis': [5, 5], 'pool_op_kernel_sizes': [[1, 1], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2]], 'conv_kernel_sizes': [[3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3]], 'unet_max_num_features': 512, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': True}, '3d_fullres': {'data_identifier': 'nnUNetPlans_3d_fullres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [64, 128, 128], 'median_image_size_in_voxels': [64.0, 113.0, 113.0], 'spacing': [0.9765625, 0.5, 0.48828125], 'normalization_schemes': ['ZScoreNormalization'], 'use_mask_for_norm': [False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'num_pool_per_axis': [4, 5, 5], 'pool_op_kernel_sizes': [[1, 1, 1], [1, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2]], 'conv_kernel_sizes': [[1, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'unet_max_num_features': 320, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': False}}, 'experiment_planner_used': 'ExperimentPlanner', 'label_manager': 'LabelManager', 'foreground_intensity_properties_per_channel': {'0': {'max': 685.0, 'mean': 356.69915771484375, 'median': 396.0, 'min': 117.0, 'percentile_00_5': 149.0, 'percentile_99_5': 570.0, 'std': 120.57451629638672}}}",
45
+ "preprocessed_dataset_folder": "/data/liyue7/Data/M1_nnUNet/nnUNet_preprocessed/Dataset303_3TT1WMSegASHSGT/nnUNetPlans_3d_fullres",
46
+ "preprocessed_dataset_folder_base": "/data/liyue7/Data/M1_nnUNet/nnUNet_preprocessed/Dataset303_3TT1WMSegASHSGT",
47
+ "save_every": "50",
48
+ "torch_version": "1.13.0+cu117",
49
+ "unpack_dataset": "True",
50
+ "was_initialized": "True",
51
+ "weight_decay": "3e-05"
52
+ }
models/nnunet_t1_wm/Dataset303_3TT1WMSegASHSGT/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_2/progress.png ADDED

Git LFS Details

  • SHA256: ce7e83351c8afba5d6f11e5aecd13e98d8a9fbaeb91648e7c2c7eec8d4f941a0
  • Pointer size: 131 Bytes
  • Size of remote file: 515 kB
models/nnunet_t1_wm/Dataset303_3TT1WMSegASHSGT/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_2/training_log_2023_8_3_11_44_51.txt ADDED
The diff for this file is too large to render. See raw diff
 
models/nnunet_t1_wm/Dataset303_3TT1WMSegASHSGT/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_3/checkpoint_final.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:06dcd09e2e8cbee0610531b19be0e74f36077c9a1441e6c7ded54d4e15054ee9
3
+ size 249164155
models/nnunet_t1_wm/Dataset303_3TT1WMSegASHSGT/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_3/debug.json ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_best_ema": "None",
3
+ "batch_size": "2",
4
+ "configuration_manager": "{'data_identifier': 'nnUNetPlans_3d_fullres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [64, 128, 128], 'median_image_size_in_voxels': [64.0, 113.0, 113.0], 'spacing': [0.9765625, 0.5, 0.48828125], 'normalization_schemes': ['ZScoreNormalization'], 'use_mask_for_norm': [False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'num_pool_per_axis': [4, 5, 5], 'pool_op_kernel_sizes': [[1, 1, 1], [1, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2]], 'conv_kernel_sizes': [[1, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'unet_max_num_features': 320, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': False}",
5
+ "configuration_name": "3d_fullres",
6
+ "cudnn_version": 8500,
7
+ "current_epoch": "0",
8
+ "dataloader_train": "<nnunetv2.training.data_augmentation.custom_transforms.limited_length_multithreaded_augmenter.LimitedLenWrapper object at 0x7fd917552980>",
9
+ "dataloader_train.generator": "<nnunetv2.training.dataloading.data_loader_3d.nnUNetDataLoader3D object at 0x7fd917551d80>",
10
+ "dataloader_train.num_processes": "12",
11
+ "dataloader_train.transform": "Compose ( [SpatialTransform( independent_scale_for_each_axis = False, p_rot_per_sample = 0.2, p_scale_per_sample = 0.2, p_el_per_sample = 0, data_key = 'data', label_key = 'seg', patch_size = [64, 128, 128], patch_center_dist_from_border = None, do_elastic_deform = False, alpha = (0, 0), sigma = (0, 0), do_rotation = True, angle_x = (-0.5235987755982988, 0.5235987755982988), angle_y = (-0.5235987755982988, 0.5235987755982988), angle_z = (-0.5235987755982988, 0.5235987755982988), do_scale = True, scale = (0.7, 1.4), border_mode_data = 'constant', border_cval_data = 0, order_data = 3, border_mode_seg = 'constant', border_cval_seg = -1, order_seg = 1, random_crop = False, p_rot_per_axis = 1, p_independent_scale_per_axis = 1 ), GaussianNoiseTransform( p_per_sample = 0.1, data_key = 'data', noise_variance = (0, 0.1), p_per_channel = 1, per_channel = False ), GaussianBlurTransform( p_per_sample = 0.2, different_sigma_per_channel = True, p_per_channel = 0.5, data_key = 'data', blur_sigma = (0.5, 1.0), different_sigma_per_axis = False, p_isotropic = 0 ), BrightnessMultiplicativeTransform( p_per_sample = 0.15, data_key = 'data', multiplier_range = (0.75, 1.25), per_channel = True ), ContrastAugmentationTransform( p_per_sample = 0.15, data_key = 'data', contrast_range = (0.75, 1.25), preserve_range = True, per_channel = True, p_per_channel = 1 ), SimulateLowResolutionTransform( order_upsample = 3, order_downsample = 0, channels = None, per_channel = True, p_per_channel = 0.5, p_per_sample = 0.25, data_key = 'data', zoom_range = (0.5, 1), ignore_axes = None ), GammaTransform( p_per_sample = 0.1, retain_stats = True, per_channel = True, data_key = 'data', gamma_range = (0.7, 1.5), invert_image = True ), GammaTransform( p_per_sample = 0.3, retain_stats = True, per_channel = True, data_key = 'data', gamma_range = (0.7, 1.5), invert_image = False ), MirrorTransform( p_per_sample = 1, data_key = 'data', label_key = 'seg', axes = (0, 1, 2) ), RemoveLabelTransform( output_key = 'seg', input_key = 'seg', replace_with = 0, remove_label = -1 ), RenameTransform( delete_old = True, out_key = 'target', in_key = 'seg' ), DownsampleSegForDSTransform2( axes = None, output_key = 'target', input_key = 'target', order = 0, ds_scales = [[1.0, 1.0, 1.0], [1.0, 0.5, 0.5], [0.5, 0.25, 0.25], [0.25, 0.125, 0.125], [0.125, 0.0625, 0.0625]] ), NumpyToTensor( keys = ['data', 'target'], cast_to = 'float' )] )",
12
+ "dataloader_val": "<nnunetv2.training.data_augmentation.custom_transforms.limited_length_multithreaded_augmenter.LimitedLenWrapper object at 0x7fd917551cc0>",
13
+ "dataloader_val.generator": "<nnunetv2.training.dataloading.data_loader_3d.nnUNetDataLoader3D object at 0x7fd917551e10>",
14
+ "dataloader_val.num_processes": "6",
15
+ "dataloader_val.transform": "Compose ( [RemoveLabelTransform( output_key = 'seg', input_key = 'seg', replace_with = 0, remove_label = -1 ), RenameTransform( delete_old = True, out_key = 'target', in_key = 'seg' ), DownsampleSegForDSTransform2( axes = None, output_key = 'target', input_key = 'target', order = 0, ds_scales = [[1.0, 1.0, 1.0], [1.0, 0.5, 0.5], [0.5, 0.25, 0.25], [0.25, 0.125, 0.125], [0.125, 0.0625, 0.0625]] ), NumpyToTensor( keys = ['data', 'target'], cast_to = 'float' )] )",
16
+ "dataset_json": "{'channel_names': {'0': '3TT1'}, 'labels': {'background': 0, 'WM': 1}, 'numTraining': 58, 'file_ending': '.nii.gz'}",
17
+ "device": "cuda:0",
18
+ "disable_checkpointing": "False",
19
+ "fold": "3",
20
+ "folder_with_segs_from_previous_stage": "None",
21
+ "gpu_name": "Quadro RTX 5000",
22
+ "grad_scaler": "<torch.cuda.amp.grad_scaler.GradScaler object at 0x7fd9174f3580>",
23
+ "hostname": "lambda-picsl",
24
+ "inference_allowed_mirroring_axes": "(0, 1, 2)",
25
+ "initial_lr": "0.01",
26
+ "is_cascaded": "False",
27
+ "is_ddp": "False",
28
+ "label_manager": "<nnunetv2.utilities.label_handling.label_handling.LabelManager object at 0x7fd9174f2f20>",
29
+ "local_rank": "0",
30
+ "log_file": "/data/liyue7/Data/M1_nnUNet/nnUNet_trained_models/Dataset303_3TT1WMSegASHSGT/nnUNetTrainer400Epoch__nnUNetPlans__3d_fullres/fold_3/training_log_2023_8_3_18_25_42.txt",
31
+ "logger": "<nnunetv2.training.logging.nnunet_logger.nnUNetLogger object at 0x7fd9174f3820>",
32
+ "loss": "DeepSupervisionWrapper(\n (loss): DC_and_CE_loss(\n (ce): RobustCrossEntropyLoss()\n (dc): MemoryEfficientSoftDiceLoss()\n )\n)",
33
+ "lr_scheduler": "<nnunetv2.training.lr_scheduler.polylr.PolyLRScheduler object at 0x7fd917550730>",
34
+ "my_init_kwargs": "{'plans': {'dataset_name': 'Dataset303_3TT1WMSegASHSGT', 'plans_name': 'nnUNetPlans', 'original_median_spacing_after_transp': [0.9765625, 0.5, 0.48828125], 'original_median_shape_after_transp': [64, 113, 113], 'image_reader_writer': 'SimpleITKIO', 'transpose_forward': [1, 0, 2], 'transpose_backward': [1, 0, 2], 'configurations': {'2d': {'data_identifier': 'nnUNetPlans_2d', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 145, 'patch_size': [128, 128], 'median_image_size_in_voxels': [113.0, 113.0], 'spacing': [0.5, 0.48828125], 'normalization_schemes': ['ZScoreNormalization'], 'use_mask_for_norm': [False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'num_pool_per_axis': [5, 5], 'pool_op_kernel_sizes': [[1, 1], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2]], 'conv_kernel_sizes': [[3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3]], 'unet_max_num_features': 512, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': True}, '3d_fullres': {'data_identifier': 'nnUNetPlans_3d_fullres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [64, 128, 128], 'median_image_size_in_voxels': [64.0, 113.0, 113.0], 'spacing': [0.9765625, 0.5, 0.48828125], 'normalization_schemes': ['ZScoreNormalization'], 'use_mask_for_norm': [False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'num_pool_per_axis': [4, 5, 5], 'pool_op_kernel_sizes': [[1, 1, 1], [1, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2]], 'conv_kernel_sizes': [[1, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'unet_max_num_features': 320, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': False}}, 'experiment_planner_used': 'ExperimentPlanner', 'label_manager': 'LabelManager', 'foreground_intensity_properties_per_channel': {'0': {'max': 685.0, 'mean': 356.69915771484375, 'median': 396.0, 'min': 117.0, 'percentile_00_5': 149.0, 'percentile_99_5': 570.0, 'std': 120.57451629638672}}}, 'configuration': '3d_fullres', 'fold': 3, 'dataset_json': {'channel_names': {'0': '3TT1'}, 'labels': {'background': 0, 'WM': 1}, 'numTraining': 58, 'file_ending': '.nii.gz'}, 'unpack_dataset': True, 'device': device(type='cuda')}",
35
+ "network": "PlainConvUNet",
36
+ "num_epochs": "400",
37
+ "num_input_channels": "1",
38
+ "num_iterations_per_epoch": "250",
39
+ "num_val_iterations_per_epoch": "50",
40
+ "optimizer": "SGD (\nParameter Group 0\n dampening: 0\n differentiable: False\n foreach: None\n initial_lr: 0.01\n lr: 0.01\n maximize: False\n momentum: 0.99\n nesterov: True\n weight_decay: 3e-05\n)",
41
+ "output_folder": "/data/liyue7/Data/M1_nnUNet/nnUNet_trained_models/Dataset303_3TT1WMSegASHSGT/nnUNetTrainer400Epoch__nnUNetPlans__3d_fullres/fold_3",
42
+ "output_folder_base": "/data/liyue7/Data/M1_nnUNet/nnUNet_trained_models/Dataset303_3TT1WMSegASHSGT/nnUNetTrainer400Epoch__nnUNetPlans__3d_fullres",
43
+ "oversample_foreground_percent": "0.33",
44
+ "plans_manager": "{'dataset_name': 'Dataset303_3TT1WMSegASHSGT', 'plans_name': 'nnUNetPlans', 'original_median_spacing_after_transp': [0.9765625, 0.5, 0.48828125], 'original_median_shape_after_transp': [64, 113, 113], 'image_reader_writer': 'SimpleITKIO', 'transpose_forward': [1, 0, 2], 'transpose_backward': [1, 0, 2], 'configurations': {'2d': {'data_identifier': 'nnUNetPlans_2d', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 145, 'patch_size': [128, 128], 'median_image_size_in_voxels': [113.0, 113.0], 'spacing': [0.5, 0.48828125], 'normalization_schemes': ['ZScoreNormalization'], 'use_mask_for_norm': [False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'num_pool_per_axis': [5, 5], 'pool_op_kernel_sizes': [[1, 1], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2]], 'conv_kernel_sizes': [[3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3]], 'unet_max_num_features': 512, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': True}, '3d_fullres': {'data_identifier': 'nnUNetPlans_3d_fullres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [64, 128, 128], 'median_image_size_in_voxels': [64.0, 113.0, 113.0], 'spacing': [0.9765625, 0.5, 0.48828125], 'normalization_schemes': ['ZScoreNormalization'], 'use_mask_for_norm': [False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'num_pool_per_axis': [4, 5, 5], 'pool_op_kernel_sizes': [[1, 1, 1], [1, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2]], 'conv_kernel_sizes': [[1, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'unet_max_num_features': 320, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': False}}, 'experiment_planner_used': 'ExperimentPlanner', 'label_manager': 'LabelManager', 'foreground_intensity_properties_per_channel': {'0': {'max': 685.0, 'mean': 356.69915771484375, 'median': 396.0, 'min': 117.0, 'percentile_00_5': 149.0, 'percentile_99_5': 570.0, 'std': 120.57451629638672}}}",
45
+ "preprocessed_dataset_folder": "/data/liyue7/Data/M1_nnUNet/nnUNet_preprocessed/Dataset303_3TT1WMSegASHSGT/nnUNetPlans_3d_fullres",
46
+ "preprocessed_dataset_folder_base": "/data/liyue7/Data/M1_nnUNet/nnUNet_preprocessed/Dataset303_3TT1WMSegASHSGT",
47
+ "save_every": "50",
48
+ "torch_version": "1.13.0+cu117",
49
+ "unpack_dataset": "True",
50
+ "was_initialized": "True",
51
+ "weight_decay": "3e-05"
52
+ }
models/nnunet_t1_wm/Dataset303_3TT1WMSegASHSGT/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_3/progress.png ADDED

Git LFS Details

  • SHA256: 0b10802ebe1762abda2a0ada3b51c07ad3b3e506e51ac9704af171ec8868c394
  • Pointer size: 131 Bytes
  • Size of remote file: 534 kB
models/nnunet_t1_wm/Dataset303_3TT1WMSegASHSGT/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_3/training_log_2023_8_3_18_25_42.txt ADDED
The diff for this file is too large to render. See raw diff
 
models/nnunet_t1_wm/Dataset303_3TT1WMSegASHSGT/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_4/checkpoint_final.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:01de990094cebdc1fb4832691734b55d08e18a374901944f8d95443de8d58fec
3
+ size 249164923
models/nnunet_t1_wm/Dataset303_3TT1WMSegASHSGT/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_4/debug.json ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_best_ema": "None",
3
+ "batch_size": "2",
4
+ "configuration_manager": "{'data_identifier': 'nnUNetPlans_3d_fullres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [64, 128, 128], 'median_image_size_in_voxels': [64.0, 113.0, 113.0], 'spacing': [0.9765625, 0.5, 0.48828125], 'normalization_schemes': ['ZScoreNormalization'], 'use_mask_for_norm': [False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'num_pool_per_axis': [4, 5, 5], 'pool_op_kernel_sizes': [[1, 1, 1], [1, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2]], 'conv_kernel_sizes': [[1, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'unet_max_num_features': 320, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': False}",
5
+ "configuration_name": "3d_fullres",
6
+ "cudnn_version": 8500,
7
+ "current_epoch": "0",
8
+ "dataloader_train": "<nnunetv2.training.data_augmentation.custom_transforms.limited_length_multithreaded_augmenter.LimitedLenWrapper object at 0x7fe9773c2b60>",
9
+ "dataloader_train.generator": "<nnunetv2.training.dataloading.data_loader_3d.nnUNetDataLoader3D object at 0x7fe9773c1cf0>",
10
+ "dataloader_train.num_processes": "12",
11
+ "dataloader_train.transform": "Compose ( [SpatialTransform( independent_scale_for_each_axis = False, p_rot_per_sample = 0.2, p_scale_per_sample = 0.2, p_el_per_sample = 0, data_key = 'data', label_key = 'seg', patch_size = [64, 128, 128], patch_center_dist_from_border = None, do_elastic_deform = False, alpha = (0, 0), sigma = (0, 0), do_rotation = True, angle_x = (-0.5235987755982988, 0.5235987755982988), angle_y = (-0.5235987755982988, 0.5235987755982988), angle_z = (-0.5235987755982988, 0.5235987755982988), do_scale = True, scale = (0.7, 1.4), border_mode_data = 'constant', border_cval_data = 0, order_data = 3, border_mode_seg = 'constant', border_cval_seg = -1, order_seg = 1, random_crop = False, p_rot_per_axis = 1, p_independent_scale_per_axis = 1 ), GaussianNoiseTransform( p_per_sample = 0.1, data_key = 'data', noise_variance = (0, 0.1), p_per_channel = 1, per_channel = False ), GaussianBlurTransform( p_per_sample = 0.2, different_sigma_per_channel = True, p_per_channel = 0.5, data_key = 'data', blur_sigma = (0.5, 1.0), different_sigma_per_axis = False, p_isotropic = 0 ), BrightnessMultiplicativeTransform( p_per_sample = 0.15, data_key = 'data', multiplier_range = (0.75, 1.25), per_channel = True ), ContrastAugmentationTransform( p_per_sample = 0.15, data_key = 'data', contrast_range = (0.75, 1.25), preserve_range = True, per_channel = True, p_per_channel = 1 ), SimulateLowResolutionTransform( order_upsample = 3, order_downsample = 0, channels = None, per_channel = True, p_per_channel = 0.5, p_per_sample = 0.25, data_key = 'data', zoom_range = (0.5, 1), ignore_axes = None ), GammaTransform( p_per_sample = 0.1, retain_stats = True, per_channel = True, data_key = 'data', gamma_range = (0.7, 1.5), invert_image = True ), GammaTransform( p_per_sample = 0.3, retain_stats = True, per_channel = True, data_key = 'data', gamma_range = (0.7, 1.5), invert_image = False ), MirrorTransform( p_per_sample = 1, data_key = 'data', label_key = 'seg', axes = (0, 1, 2) ), RemoveLabelTransform( output_key = 'seg', input_key = 'seg', replace_with = 0, remove_label = -1 ), RenameTransform( delete_old = True, out_key = 'target', in_key = 'seg' ), DownsampleSegForDSTransform2( axes = None, output_key = 'target', input_key = 'target', order = 0, ds_scales = [[1.0, 1.0, 1.0], [1.0, 0.5, 0.5], [0.5, 0.25, 0.25], [0.25, 0.125, 0.125], [0.125, 0.0625, 0.0625]] ), NumpyToTensor( keys = ['data', 'target'], cast_to = 'float' )] )",
12
+ "dataloader_val": "<nnunetv2.training.data_augmentation.custom_transforms.limited_length_multithreaded_augmenter.LimitedLenWrapper object at 0x7fe9773c1a50>",
13
+ "dataloader_val.generator": "<nnunetv2.training.dataloading.data_loader_3d.nnUNetDataLoader3D object at 0x7fe9773c1d80>",
14
+ "dataloader_val.num_processes": "6",
15
+ "dataloader_val.transform": "Compose ( [RemoveLabelTransform( output_key = 'seg', input_key = 'seg', replace_with = 0, remove_label = -1 ), RenameTransform( delete_old = True, out_key = 'target', in_key = 'seg' ), DownsampleSegForDSTransform2( axes = None, output_key = 'target', input_key = 'target', order = 0, ds_scales = [[1.0, 1.0, 1.0], [1.0, 0.5, 0.5], [0.5, 0.25, 0.25], [0.25, 0.125, 0.125], [0.125, 0.0625, 0.0625]] ), NumpyToTensor( keys = ['data', 'target'], cast_to = 'float' )] )",
16
+ "dataset_json": "{'channel_names': {'0': '3TT1'}, 'labels': {'background': 0, 'WM': 1}, 'numTraining': 58, 'file_ending': '.nii.gz'}",
17
+ "device": "cuda:0",
18
+ "disable_checkpointing": "False",
19
+ "fold": "4",
20
+ "folder_with_segs_from_previous_stage": "None",
21
+ "gpu_name": "Quadro RTX 5000",
22
+ "grad_scaler": "<torch.cuda.amp.grad_scaler.GradScaler object at 0x7fe97735f4f0>",
23
+ "hostname": "lambda-picsl",
24
+ "inference_allowed_mirroring_axes": "(0, 1, 2)",
25
+ "initial_lr": "0.01",
26
+ "is_cascaded": "False",
27
+ "is_ddp": "False",
28
+ "label_manager": "<nnunetv2.utilities.label_handling.label_handling.LabelManager object at 0x7fe97735ee90>",
29
+ "local_rank": "0",
30
+ "log_file": "/data/liyue7/Data/M1_nnUNet/nnUNet_trained_models/Dataset303_3TT1WMSegASHSGT/nnUNetTrainer400Epoch__nnUNetPlans__3d_fullres/fold_4/training_log_2023_8_4_01_06_51.txt",
31
+ "logger": "<nnunetv2.training.logging.nnunet_logger.nnUNetLogger object at 0x7fe97735f790>",
32
+ "loss": "DeepSupervisionWrapper(\n (loss): DC_and_CE_loss(\n (ce): RobustCrossEntropyLoss()\n (dc): MemoryEfficientSoftDiceLoss()\n )\n)",
33
+ "lr_scheduler": "<nnunetv2.training.lr_scheduler.polylr.PolyLRScheduler object at 0x7fe9773c06a0>",
34
+ "my_init_kwargs": "{'plans': {'dataset_name': 'Dataset303_3TT1WMSegASHSGT', 'plans_name': 'nnUNetPlans', 'original_median_spacing_after_transp': [0.9765625, 0.5, 0.48828125], 'original_median_shape_after_transp': [64, 113, 113], 'image_reader_writer': 'SimpleITKIO', 'transpose_forward': [1, 0, 2], 'transpose_backward': [1, 0, 2], 'configurations': {'2d': {'data_identifier': 'nnUNetPlans_2d', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 145, 'patch_size': [128, 128], 'median_image_size_in_voxels': [113.0, 113.0], 'spacing': [0.5, 0.48828125], 'normalization_schemes': ['ZScoreNormalization'], 'use_mask_for_norm': [False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'num_pool_per_axis': [5, 5], 'pool_op_kernel_sizes': [[1, 1], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2]], 'conv_kernel_sizes': [[3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3]], 'unet_max_num_features': 512, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': True}, '3d_fullres': {'data_identifier': 'nnUNetPlans_3d_fullres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [64, 128, 128], 'median_image_size_in_voxels': [64.0, 113.0, 113.0], 'spacing': [0.9765625, 0.5, 0.48828125], 'normalization_schemes': ['ZScoreNormalization'], 'use_mask_for_norm': [False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'num_pool_per_axis': [4, 5, 5], 'pool_op_kernel_sizes': [[1, 1, 1], [1, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2]], 'conv_kernel_sizes': [[1, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'unet_max_num_features': 320, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': False}}, 'experiment_planner_used': 'ExperimentPlanner', 'label_manager': 'LabelManager', 'foreground_intensity_properties_per_channel': {'0': {'max': 685.0, 'mean': 356.69915771484375, 'median': 396.0, 'min': 117.0, 'percentile_00_5': 149.0, 'percentile_99_5': 570.0, 'std': 120.57451629638672}}}, 'configuration': '3d_fullres', 'fold': 4, 'dataset_json': {'channel_names': {'0': '3TT1'}, 'labels': {'background': 0, 'WM': 1}, 'numTraining': 58, 'file_ending': '.nii.gz'}, 'unpack_dataset': True, 'device': device(type='cuda')}",
35
+ "network": "PlainConvUNet",
36
+ "num_epochs": "400",
37
+ "num_input_channels": "1",
38
+ "num_iterations_per_epoch": "250",
39
+ "num_val_iterations_per_epoch": "50",
40
+ "optimizer": "SGD (\nParameter Group 0\n dampening: 0\n differentiable: False\n foreach: None\n initial_lr: 0.01\n lr: 0.01\n maximize: False\n momentum: 0.99\n nesterov: True\n weight_decay: 3e-05\n)",
41
+ "output_folder": "/data/liyue7/Data/M1_nnUNet/nnUNet_trained_models/Dataset303_3TT1WMSegASHSGT/nnUNetTrainer400Epoch__nnUNetPlans__3d_fullres/fold_4",
42
+ "output_folder_base": "/data/liyue7/Data/M1_nnUNet/nnUNet_trained_models/Dataset303_3TT1WMSegASHSGT/nnUNetTrainer400Epoch__nnUNetPlans__3d_fullres",
43
+ "oversample_foreground_percent": "0.33",
44
+ "plans_manager": "{'dataset_name': 'Dataset303_3TT1WMSegASHSGT', 'plans_name': 'nnUNetPlans', 'original_median_spacing_after_transp': [0.9765625, 0.5, 0.48828125], 'original_median_shape_after_transp': [64, 113, 113], 'image_reader_writer': 'SimpleITKIO', 'transpose_forward': [1, 0, 2], 'transpose_backward': [1, 0, 2], 'configurations': {'2d': {'data_identifier': 'nnUNetPlans_2d', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 145, 'patch_size': [128, 128], 'median_image_size_in_voxels': [113.0, 113.0], 'spacing': [0.5, 0.48828125], 'normalization_schemes': ['ZScoreNormalization'], 'use_mask_for_norm': [False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'num_pool_per_axis': [5, 5], 'pool_op_kernel_sizes': [[1, 1], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2]], 'conv_kernel_sizes': [[3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3]], 'unet_max_num_features': 512, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': True}, '3d_fullres': {'data_identifier': 'nnUNetPlans_3d_fullres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [64, 128, 128], 'median_image_size_in_voxels': [64.0, 113.0, 113.0], 'spacing': [0.9765625, 0.5, 0.48828125], 'normalization_schemes': ['ZScoreNormalization'], 'use_mask_for_norm': [False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2], 'num_pool_per_axis': [4, 5, 5], 'pool_op_kernel_sizes': [[1, 1, 1], [1, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2]], 'conv_kernel_sizes': [[1, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'unet_max_num_features': 320, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': False}}, 'experiment_planner_used': 'ExperimentPlanner', 'label_manager': 'LabelManager', 'foreground_intensity_properties_per_channel': {'0': {'max': 685.0, 'mean': 356.69915771484375, 'median': 396.0, 'min': 117.0, 'percentile_00_5': 149.0, 'percentile_99_5': 570.0, 'std': 120.57451629638672}}}",
45
+ "preprocessed_dataset_folder": "/data/liyue7/Data/M1_nnUNet/nnUNet_preprocessed/Dataset303_3TT1WMSegASHSGT/nnUNetPlans_3d_fullres",
46
+ "preprocessed_dataset_folder_base": "/data/liyue7/Data/M1_nnUNet/nnUNet_preprocessed/Dataset303_3TT1WMSegASHSGT",
47
+ "save_every": "50",
48
+ "torch_version": "1.13.0+cu117",
49
+ "unpack_dataset": "True",
50
+ "was_initialized": "True",
51
+ "weight_decay": "3e-05"
52
+ }
models/nnunet_t1_wm/Dataset303_3TT1WMSegASHSGT/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_4/progress.png ADDED

Git LFS Details

  • SHA256: 1d15f9166fa7428b8edb26d1d5bec81cb9f9e6c6c605076ca74644914112c8aa
  • Pointer size: 131 Bytes
  • Size of remote file: 582 kB
models/nnunet_t1_wm/Dataset303_3TT1WMSegASHSGT/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_4/training_log_2023_8_4_01_06_51.txt ADDED
The diff for this file is too large to render. See raw diff
 
models/nnunet_t1_wm/Dataset303_3TT1WMSegASHSGT/nnUNetTrainer__nnUNetPlans__3d_fullres/plans.json ADDED
@@ -0,0 +1,294 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "dataset_name": "Dataset303_3TT1WMSegASHSGT",
3
+ "plans_name": "nnUNetPlans",
4
+ "original_median_spacing_after_transp": [
5
+ 0.9765625,
6
+ 0.5,
7
+ 0.48828125
8
+ ],
9
+ "original_median_shape_after_transp": [
10
+ 64,
11
+ 113,
12
+ 113
13
+ ],
14
+ "image_reader_writer": "SimpleITKIO",
15
+ "transpose_forward": [
16
+ 1,
17
+ 0,
18
+ 2
19
+ ],
20
+ "transpose_backward": [
21
+ 1,
22
+ 0,
23
+ 2
24
+ ],
25
+ "configurations": {
26
+ "2d": {
27
+ "data_identifier": "nnUNetPlans_2d",
28
+ "preprocessor_name": "DefaultPreprocessor",
29
+ "batch_size": 145,
30
+ "patch_size": [
31
+ 128,
32
+ 128
33
+ ],
34
+ "median_image_size_in_voxels": [
35
+ 113.0,
36
+ 113.0
37
+ ],
38
+ "spacing": [
39
+ 0.5,
40
+ 0.48828125
41
+ ],
42
+ "normalization_schemes": [
43
+ "ZScoreNormalization"
44
+ ],
45
+ "use_mask_for_norm": [
46
+ false
47
+ ],
48
+ "UNet_class_name": "PlainConvUNet",
49
+ "UNet_base_num_features": 32,
50
+ "n_conv_per_stage_encoder": [
51
+ 2,
52
+ 2,
53
+ 2,
54
+ 2,
55
+ 2,
56
+ 2
57
+ ],
58
+ "n_conv_per_stage_decoder": [
59
+ 2,
60
+ 2,
61
+ 2,
62
+ 2,
63
+ 2
64
+ ],
65
+ "num_pool_per_axis": [
66
+ 5,
67
+ 5
68
+ ],
69
+ "pool_op_kernel_sizes": [
70
+ [
71
+ 1,
72
+ 1
73
+ ],
74
+ [
75
+ 2,
76
+ 2
77
+ ],
78
+ [
79
+ 2,
80
+ 2
81
+ ],
82
+ [
83
+ 2,
84
+ 2
85
+ ],
86
+ [
87
+ 2,
88
+ 2
89
+ ],
90
+ [
91
+ 2,
92
+ 2
93
+ ]
94
+ ],
95
+ "conv_kernel_sizes": [
96
+ [
97
+ 3,
98
+ 3
99
+ ],
100
+ [
101
+ 3,
102
+ 3
103
+ ],
104
+ [
105
+ 3,
106
+ 3
107
+ ],
108
+ [
109
+ 3,
110
+ 3
111
+ ],
112
+ [
113
+ 3,
114
+ 3
115
+ ],
116
+ [
117
+ 3,
118
+ 3
119
+ ]
120
+ ],
121
+ "unet_max_num_features": 512,
122
+ "resampling_fn_data": "resample_data_or_seg_to_shape",
123
+ "resampling_fn_seg": "resample_data_or_seg_to_shape",
124
+ "resampling_fn_data_kwargs": {
125
+ "is_seg": false,
126
+ "order": 3,
127
+ "order_z": 0,
128
+ "force_separate_z": null
129
+ },
130
+ "resampling_fn_seg_kwargs": {
131
+ "is_seg": true,
132
+ "order": 1,
133
+ "order_z": 0,
134
+ "force_separate_z": null
135
+ },
136
+ "resampling_fn_probabilities": "resample_data_or_seg_to_shape",
137
+ "resampling_fn_probabilities_kwargs": {
138
+ "is_seg": false,
139
+ "order": 1,
140
+ "order_z": 0,
141
+ "force_separate_z": null
142
+ },
143
+ "batch_dice": true
144
+ },
145
+ "3d_fullres": {
146
+ "data_identifier": "nnUNetPlans_3d_fullres",
147
+ "preprocessor_name": "DefaultPreprocessor",
148
+ "batch_size": 2,
149
+ "patch_size": [
150
+ 64,
151
+ 128,
152
+ 128
153
+ ],
154
+ "median_image_size_in_voxels": [
155
+ 64.0,
156
+ 113.0,
157
+ 113.0
158
+ ],
159
+ "spacing": [
160
+ 0.9765625,
161
+ 0.5,
162
+ 0.48828125
163
+ ],
164
+ "normalization_schemes": [
165
+ "ZScoreNormalization"
166
+ ],
167
+ "use_mask_for_norm": [
168
+ false
169
+ ],
170
+ "UNet_class_name": "PlainConvUNet",
171
+ "UNet_base_num_features": 32,
172
+ "n_conv_per_stage_encoder": [
173
+ 2,
174
+ 2,
175
+ 2,
176
+ 2,
177
+ 2,
178
+ 2
179
+ ],
180
+ "n_conv_per_stage_decoder": [
181
+ 2,
182
+ 2,
183
+ 2,
184
+ 2,
185
+ 2
186
+ ],
187
+ "num_pool_per_axis": [
188
+ 4,
189
+ 5,
190
+ 5
191
+ ],
192
+ "pool_op_kernel_sizes": [
193
+ [
194
+ 1,
195
+ 1,
196
+ 1
197
+ ],
198
+ [
199
+ 1,
200
+ 2,
201
+ 2
202
+ ],
203
+ [
204
+ 2,
205
+ 2,
206
+ 2
207
+ ],
208
+ [
209
+ 2,
210
+ 2,
211
+ 2
212
+ ],
213
+ [
214
+ 2,
215
+ 2,
216
+ 2
217
+ ],
218
+ [
219
+ 2,
220
+ 2,
221
+ 2
222
+ ]
223
+ ],
224
+ "conv_kernel_sizes": [
225
+ [
226
+ 1,
227
+ 3,
228
+ 3
229
+ ],
230
+ [
231
+ 3,
232
+ 3,
233
+ 3
234
+ ],
235
+ [
236
+ 3,
237
+ 3,
238
+ 3
239
+ ],
240
+ [
241
+ 3,
242
+ 3,
243
+ 3
244
+ ],
245
+ [
246
+ 3,
247
+ 3,
248
+ 3
249
+ ],
250
+ [
251
+ 3,
252
+ 3,
253
+ 3
254
+ ]
255
+ ],
256
+ "unet_max_num_features": 320,
257
+ "resampling_fn_data": "resample_data_or_seg_to_shape",
258
+ "resampling_fn_seg": "resample_data_or_seg_to_shape",
259
+ "resampling_fn_data_kwargs": {
260
+ "is_seg": false,
261
+ "order": 3,
262
+ "order_z": 0,
263
+ "force_separate_z": null
264
+ },
265
+ "resampling_fn_seg_kwargs": {
266
+ "is_seg": true,
267
+ "order": 1,
268
+ "order_z": 0,
269
+ "force_separate_z": null
270
+ },
271
+ "resampling_fn_probabilities": "resample_data_or_seg_to_shape",
272
+ "resampling_fn_probabilities_kwargs": {
273
+ "is_seg": false,
274
+ "order": 1,
275
+ "order_z": 0,
276
+ "force_separate_z": null
277
+ },
278
+ "batch_dice": false
279
+ }
280
+ },
281
+ "experiment_planner_used": "ExperimentPlanner",
282
+ "label_manager": "LabelManager",
283
+ "foreground_intensity_properties_per_channel": {
284
+ "0": {
285
+ "max": 685.0,
286
+ "mean": 356.69915771484375,
287
+ "median": 396.0,
288
+ "min": 117.0,
289
+ "percentile_00_5": 149.0,
290
+ "percentile_99_5": 570.0,
291
+ "std": 120.57451629638672
292
+ }
293
+ }
294
+ }
models/nnunet_t1_wm/config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "model": "Dataset303_3TT1WMSegASHSGT/nnUNetTrainer__nnUNetPlans__3d_fullres",
3
+ "trainer": "nnUNetTrainer400Epoch",
4
+ "target_orientation": "ASL",
5
+ "target_spacing": [1.0, 0.5, 0.5]
6
+ }
7
+
models/upsample_ashs_pmc_t2/config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"config": {"patch_size": [5, 32, 32], "upsample_factor": [5, 1, 1]}, "id_train": ["100551R", "104937L", "106049L", "106312R", "113909R", "116748R", "117243R", "117667R", "118374L", "118430R", "119349L", "119359R", "119933L", "120126L", "120267L", "120937L", "121250L"], "epochs": 2000, "batch_size": 64}
models/upsample_ashs_pmc_t2/model.dat ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6e93f327a87805ef9abff4358e07dc6b156153df93bb929b5c97d73d00cfb709
3
+ size 40489817
templates/.DS_Store ADDED
Binary file (6.15 kB). View file
 
templates/ashs_pmc_alveus/template.json ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "ashs_label_type": {
3
+ "wm": [15],
4
+ "gm": [1, 2, 4, 8, 10, 11, 12, 13],
5
+ "bg": [0, 3, 7, 14]
6
+ },
7
+ "labels_for_surface_matching": [15, 1, 2, 4, 8, 10, 11, 12, 13],
8
+ "preprocessing": {
9
+ "mode": "t2_alveus",
10
+ "t2_alveus_param": {
11
+ "dg_labels": [3],
12
+ "cortex_labels": [11, 12, 13],
13
+ "suberc_labels": [8, 10],
14
+ "ca_labels": [1, 2, 4],
15
+ "upsample_model": "upsample_ashs_pmc_t2"
16
+ },
17
+ "nnunet_wm": "nnunet_t1_wm"
18
+ }
19
+ }
templates/ashs_pmc_alveus/template_shoot_left.vtk ADDED
The diff for this file is too large to render. See raw diff
 
templates/ashs_pmc_alveus/template_shoot_right.vtk ADDED
The diff for this file is too large to render. See raw diff
 
templates/ashs_pmc_alveus/upsample.json ADDED
File without changes
templates/ashs_pmc_t1/ashs_template_flip.mat ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ -0.992704 0.120567 0.00126359 -5.55375
2
+ 0.120571 0.9927 0.00299536 0.381202
3
+ 0.000893229 -0.00312585 0.999995 0.121834
4
+ 0 0 0 1
templates/ashs_pmc_t1/template.json ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "ashs_label_type": {
3
+ "wm": [20],
4
+ "gm": [1, 2, 10, 11, 12, 13],
5
+ "bg": [0, 4, 6, 7, 9, 14, 16, 17, 18, 19]
6
+ },
7
+ "labels_for_surface_matching": [ 20, 1, 2, 10, 11, 12, 13 ],
8
+ "preprocessing": {
9
+ "mode": "t1_add_wm",
10
+ "t1_add_wm_param": {
11
+ "cortex_labels": [11, 12],
12
+ "suberc_labels": [10],
13
+ "hipp_labels": [1]
14
+ },
15
+ "nnunet_wm": "nnunet_t1_wm"
16
+ }
17
+ }
18
+
templates/ashs_pmc_t1/template_shoot_left.vtk ADDED
The diff for this file is too large to render. See raw diff
 
templates/ashs_pmc_t1/template_shoot_right.vtk ADDED
The diff for this file is too large to render. See raw diff
 
templates/exvivo_phg_94t/template.json ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "sides": {
3
+ "left": {
4
+ "mesh": "template_shoot_left.vtk",
5
+ "mesh_reduced": "template_shoot_reduced_left.vtk"
6
+ },
7
+ "right": {
8
+ "mesh": "template_shoot_right.vtk",
9
+ "mesh_reduced": "template_shoot_reduced_right.vtk"
10
+ }
11
+ },
12
+ "registration": {
13
+ "varifold_sigma": 2.0,
14
+ "lddmm_sigma": 2.0,
15
+ "lddmm_gamma": 0.05,
16
+ "lddmm_nt": 10,
17
+ "jacobian_penalty": 10.0,
18
+ "lddmm_maxiter": 250,
19
+ "affine_maxiter": 50
20
+ },
21
+ "cruise": {
22
+ "inflate_maxiter": 2000,
23
+ "inflate_reduction": 4000,
24
+ "laminar_n_layers": 10,
25
+ "laminar_method": "distance-preserving"
26
+ },
27
+ "template_build": {
28
+ "schedule": [
29
+ 10,
30
+ 10,
31
+ 20,
32
+ 200
33
+ ],
34
+ "remeshing_edge_length_pct": 2.0,
35
+ "root_sigma_factor": 2.4,
36
+ "remeshing_feature_angle": 180.0
37
+ },
38
+ "ashs_label_type": {
39
+ "wm": [
40
+ 10
41
+ ],
42
+ "gm": [
43
+ 1,
44
+ 3
45
+ ],
46
+ "bg": [
47
+ 0,
48
+ 5
49
+ ]
50
+ },
51
+ "labels_for_surface_matching": [
52
+ 10,
53
+ 1,
54
+ 3
55
+ ]
56
+ }
templates/exvivo_phg_94t/template_shoot_left.vtk ADDED
The diff for this file is too large to render. See raw diff
 
templates/exvivo_phg_94t/template_shoot_reduced_left.vtk ADDED
The diff for this file is too large to render. See raw diff