The viewer is disabled because this dataset repo requires arbitrary Python code execution. Please consider
removing the
loading script
and relying on
automated data support
(you can use
convert_to_parquet
from the datasets
library). If this is not possible, please
open a discussion
for direct help.
Dataset Card for Tiny ImageNet
Dataset Details
Dataset Description
In Tiny ImageNet, there are 100,000 images divided up into 200 classes.
- License: MIT License
Dataset Sources
- Homepage: https://www.kaggle.com/c/tiny-imagenet
- Paper: Le, Y., & Yang, X. (2015). Tiny imagenet visual recognition challenge. CS 231N, 7(7), 3.
Dataset Structure
Total images: 110,000
Classes: 200 categories
Splits:
Train: 100,000 images
Validation: 10,000 images
Image specs: JPEG format, 64×64 pixels, RGB
Example Usage
Below is a quick example of how to load this dataset via the Hugging Face Datasets library.
from datasets import load_dataset
# Load the dataset
dataset = load_dataset("randall-lab/tiny-imagenet", split="train", trust_remote_code=True)
# dataset = load_dataset("randall-lab/tiny-imagenet", split="validation", trust_remote_code=True)
# Access a sample from the dataset
example = dataset[0]
image = example["image"]
label = example["label"]
image.show() # Display the image
print(f"Label: {label}")
Citation
BibTeX:
@article{le2015tiny, title={Tiny imagenet visual recognition challenge}, author={Le, Yann and Yang, Xuan}, journal={CS 231N}, volume={7}, number={7}, pages={3}, year={2015} }
- Downloads last month
- 6