rasyosef's picture
Update README.md
7da2b5d verified
metadata
dataset_info:
  features:
    - name: query_id
      dtype: string
    - name: passage_id
      dtype: string
    - name: query
      dtype: string
    - name: passage
      dtype: string
    - name: category
      dtype: string
    - name: link
      dtype: string
    - name: negative_passages
      list:
        - name: cosine_sim_score
          dtype: float32
        - name: passage
          dtype: string
        - name: passage_id
          dtype: string
  splits:
    - name: train
      num_bytes: 2656983468
      num_examples: 44708
  download_size: 1229732613
  dataset_size: 2656983468
configs:
  - config_name: default
    data_files:
      - split: train
        path: data/train-*
license: cc-by-4.0
task_categories:
  - text-ranking
  - text-retrieval
language:
  - am
tags:
  - information-retrieval
  - amharic
size_categories:
  - 10K<n<100K

Amharic Passage Retrieval Dataset with Negatives

This dataset is a version of amharic-news-category-classification that has been filtered, deduplicated, and formatted for passage retrieval.

This dataset can be used directly with Sentence Transformers to train Amharic Text embedding and Reranking models.

Hard Negatives:

The negative_passages column contains hard negative passages that were mined using the roberta-amharic-text-embedding-medium embedding model.

Source Datasets:

Models and Code

The following Text Embedding and ColBERT late-interaction retrieval models were trained using this dataset as part of our ACL 2025 Findings paper: Optimized Text Embedding Models and Benchmarks for Amharic Passage Retrieval.

Citation

@inproceedings{mekonnen2025amharic,
  title={Optimized Text Embedding Models and Benchmarks for Amharic Passage Retrieval},
  author={Kidist Amde Mekonnen, Yosef Worku Alemneh, Maarten de Rijke },
  booktitle={Findings of ACL},
  year={2025}
}
@misc{https://doi.org/10.48550/arxiv.2103.05639,
  doi = {10.48550/ARXIV.2103.05639},
  url = {https://arxiv.org/abs/2103.05639},
  author = {Azime, Israel Abebe and Mohammed, Nebil},
  keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences},
  title = {An Amharic News Text classification Dataset},
  publisher = {arXiv},
  year = {2021},
  copyright = {arXiv.org perpetual, non-exclusive license}
}