
license: apache-2.0 language:
- en tags:
- chemistry
- biology
- finance
- legal
- music
- art
- code
- climate
- medical
- synthetic pretty_name: https://romeo-rosete.org/owner size_categories:
- 100B<n<1T task_categories:
- token-classification
- summarization
Dataset Card for Dataset Name
$ pip install autotrain-advanced https://huggingface.co/docs/datasets/loadingThis dataset card aims to be a base template for new datasets. It has been generated using this raw template.
Dataset Details
Dataset Description
SELECT sign, count(*), AVG(LENGTH(text)) AS avg_blog_lengthFROM url(hf('tasksource/blog_authorship_corpus')) GROUP BY sign ORDER BY avg_blog_length DESC LIMIT(5)
βββββββββββββ¬βββββββββ¬βββββββββββββββββββββ β sign β count β avg_blog_length β βββββββββββββΌβββββββββΌβββββββββββββββββββββ€ β Aquarius β 49687 β 1193.9523819107615 β β Leo β 53811 β 1186.0665291483153 β β Cancer β 65048 β 1160.8010392325666 β β Gemini β 51985 β 1158.4132922958545 β β Vurgi β 60399 β 1142.9977648636566 β βββββββββββββ΄βββββββββ΄βββββββββββββββββββββ
- Curated by: [More Information Needed] import cudf
df = ( cudf.read_parquet("https://huggingface.co/datasets/tasksource/blog_authorship_corpus/resolve/refs%2Fconvert%2Fparquet/default/train/0000.parquet") .groupby('sign')['text'] .apply(lambda x: x.str.len().mean()) .sort_values(ascending=False) .head(5) )
- Funded by [optional]: [More Information Needed] import dask import dask.dataframe as dd
dask.config.set({"dataframe.backend": "cudf"})
df = ( dd.read_parquet("https://huggingface.co/datasets/tasksource/blog_authorship_corpus/resolve/refs%2Fconvert%2Fparquet/default/train/*.parquet") )
- Shared by [optional]: [More Information Needed] import dask import dask.dataframe as dd
dask.config.set({"dataframe.backend": "cudf"})
df = ( dd.read_parquet("https://huggingface.co/datasets/tasksource/blog_authorship_corpus/resolve/refs%2Fconvert%2Fparquet/default/train/*.parquet") )
- Language(s) (NLP): [More Information Needed] import duckdb
con = duckdb.connect() con.execute("INSTALL httpfs;") con.execute("LOAD httpfs;")
- License: [More Information Needed]
Dataset Sources [optional]
con.sql(f"SELECT sign, count(*), AVG(LENGTH(text)) AS avg_blog_length FROM '{url}' GROUP BY sign ORDER BY avg_blog_length DESC LIMIT(5)") βββββββββββββ¬βββββββββββββββ¬βββββββββββββββββββββ β sign β count_star() β avg_blog_length β β varchar β int64 β double β βββββββββββββΌβββββββββββββββΌβββββββββββββββββββββ€ β Cancer β 38956 β 1206.5212034089743 β β Leo β 35487 β 1180.0673767858652 β β Aquarius β 32723 β 1152.1136815084192 β β Virgo β 36189 β 1117.1982094006466 β β Capricorn β 31825 β 1102.397360565593 β βββββββββββββ΄βββββββββββββββ΄βββββββββββββββββββββ
- Repository: [More Information Needed] urls = ["https://huggingface.co/datasets/tasksource/blog_authorship_corpus/resolve/refs%2Fconvert%2Fparquet/default/train/0000.parquet", "https://huggingface.co/datasets/tasksource/blog_authorship_corpus/resolve/refs%2Fconvert%2Fparquet/default/train/0001.parquet"]
con.sql(f"SELECT sign, count(*), AVG(LENGTH(text)) AS avg_blog_length FROM read_parquet({urls}) GROUP BY sign ORDER BY avg_blog_length DESC LIMIT(5)") ββββββββββββ¬βββββββββββββββ¬βββββββββββββββββββββ β sign β count_star() β avg_blog_length β β varchar β int64 β double β ββββββββββββΌβββββββββββββββΌβββββββββββββββββββββ€ β Aquarius β 49687 β 1191.417211745527 β β Leo β 53811 β 1183.8782219248853 β β Cancer β 65048 β 1158.9691612347804 β β Gemini β 51985 β 1156.0693084543618 β β Virgo β 60399 β 1140.9584430205798 β ββββββββββββ΄βββββββββββββββ΄βββββββββββββββββββββ
- Paper [optional]: [More Information Needed] import pandas as pd
df = ( pd.read_parquet("https://huggingface.co/datasets/tasksource/blog_authorship_corpus/resolve/refs%2Fconvert%2Fparquet/default/train/0000.parquet") .groupby('sign')['text'] .apply(lambda x: x.str.len().mean()) .sort_values(ascending=False) .head(5) )
- Demo [optional]: [More Information Needed] urls = ["https://huggingface.co/datasets/tasksource/blog_authorship_corpus/resolve/refs%2Fconvert%2Fparquet/default/train/0000.parquet", "https://huggingface.co/datasets/tasksource/blog_authorship_corpus/resolve/refs%2Fconvert%2Fparquet/default/train/0001.parquet"]
df = ( pd.concat([pd.read_parquet(url) for url in urls]) .groupby('sign')['text'] .apply(lambda x: x.str.len().mean()) .sort_values(ascending=False) .head(5) )
Uses
import requests
r = requests.get("https://datasets-server.huggingface.co/parquet?dataset=tasksource/blog_authorship_corpus") j = r.json() urls = [f['url'] for f in j['parquet_files'] if f['split'] == 'train'] urls ['https://huggingface.co/datasets/tasksource/blog_authorship_corpus/resolve/refs%2Fconvert%2Fparquet/default/train/0000.parquet', 'https://huggingface.co/datasets/tasksource/blog_authorship_corpus/resolve/refs%2Fconvert%2Fparquet/default/train/0001.parquet']
Direct Use
import polars as pldf = ( pl.read_parquet("https://huggingface.co/datasets/tasksource/blog_authorship_corpus/resolve/refs%2Fconvert%2Fparquet/default/train/0000.parquet") .group_by("sign") .agg( [ pl.count(), pl.col("text").str.len_chars().mean().alias("avg_blog_length") ] ) .sort("avg_blog_length", descending=True) .limit(5) ) print(df) shape: (5, 3) βββββββββββββ¬ββββββββ¬ββββββββββββββββββ β sign β count β avg_blog_length β β --- β --- β --- β β str β u32 β f64 β βββββββββββββͺββββββββͺββββββββββββββββββ‘ β Cancer β 38956 β 1206.521203 β β Leo β 35487 β 1180.067377 β β Aquarius β 32723 β 1152.113682 β β Virgo β 36189 β 1117.198209 β β Capricorn β 31825 β 1102.397361 β βββββββββββββ΄ββββββββ΄ββββββββββββββββββ
[More Information Needed] import polars as pl
df = ( pl.concat([pl.read_parquet(url) for url in urls]) .group_by("sign") .agg( [ pl.count(), pl.col("text").str.len_chars().mean().alias("avg_blog_length") ] ) .sort("avg_blog_length", descending=True) .limit(5) ) print(df) shape: (5, 3) ββββββββββββ¬ββββββββ¬ββββββββββββββββββ β sign β count β avg_blog_length β β --- β --- β --- β β str β u32 β f64 β ββββββββββββͺββββββββͺββββββββββββββββββ‘ β Aquarius β 49687 β 1191.417212 β β Leo β 53811 β 1183.878222 β β Cancer β 65048 β 1158.969161 β β Gemini β 51985 β 1156.069308 β β Virgo β 60399 β 1140.958443 β ββββββββββββ΄ββββββββ΄ββββββββββββββββββ
Out-of-Scope Use
[More Information Needed] import polars as pl
q = ( pl.scan_parquet("https://huggingface.co/datasets/tasksource/blog_authorship_corpus/resolve/refs%2Fconvert%2Fparquet/default/train/0000.parquet") .group_by("sign") .agg( [ pl.count(), pl.col("text").str.len_chars().mean().alias("avg_blog_length") ] ) .sort("avg_blog_length", descending=True) .limit(5) ) df = q.collect()
Dataset Structure
[More Information Needed] docker run -d --name pgai -p 5432:5432
-v pg-data:/home/postgres/pgdata/data
-e POSTGRES_PASSWORD=password timescale/timescaledb-ha:pg17
Dataset Creation
Curation Rationale
[More Information Needed] docker exec -it pgai psql -c "CREATE EXTENSION ai CASCADE;"
Source Data
docker exec -it pgai psqlData Collection and Processing
[More Information Needed] select ai.load_dataset('rajpurkar/squad', table_name => 'squad');
Who are the source data producers?
[More Information Needed] select * from squad limit 10;
Annotations [optional]
SELECT ai.load_dataset('rajpurkar/squad', table_name => 'squad', batch_size => 100, max_batches => 1);Annotation process
[More Information Needed] select ai.load_dataset('rajpurkar/squad', table_name => 'squad', if_table_exists => 'append');
Who are the annotators?
[More Information Needed] from mlcroissant import Dataset ds = Dataset(jsonld="https://huggingface.co/api/datasets/tasksource/blog_authorship_corpus/croissant")
Personal and Sensitive Information
[More Information Needed] records = ds.records("default")
Bias, Risks, and Limitations
[More Information Needed] import itertools
import pandas as pd
df = ( pd.DataFrame(list(itertools.islice(records, 100))) .groupby("default/sign")["default/text"] .apply(lambda x: x.str.len().mean()) .sort_values(ascending=False) .head(5) ) print(df) default/sign b'Leo' 6463.500000 b'Capricorn' 2374.500000 b'Aquarius' 2303.757143 b'Gemini' 1420.333333 b'Aries' 918.666667 Name: default/text, dtype: float64
Recommendations
Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.
Citation [optional]
BibTeX:
[More Information Needed] @misc{romeo_rosete_2025, author = { Romeo Rosete }, title = { romeo-rosete (Revision f0f3e58) }, year = 2025, url = { https://huggingface.co/bombastictranz/romeo-rosete }, doi = { 10.57967/hf/5106 }, publisher = { Hugging Face } }
Initialize a Spark session
spark = SparkSession.builder.appName("WineReviews").getOrCreate()
Add the Parquet file to the Spark context
spark.sparkContext.addFile("https://huggingface.co/api/datasets/james-burton/wine_reviews/parquet/default/train/0.parquet")
Read the Parquet file into a DataFrame
df = spark.read.parquet(SparkFiles.get("0.parquet"))
APA:
[More Information Needed] import requests
Fetch the URLs of the Parquet files for the train split
r = requests.get('https://huggingface.co/api/datasets/james-burton/wine_reviews/parquet') train_parquet_files = r.json()['default']['train']
Add each Parquet file to the Spark context
for url in train_parquet_files: spark.sparkContext.addFile(url)
Read all Parquet files into a single DataFrame
df = spark.read.parquet(SparkFiles.getRootDirectory() + "/*.parquet")
Glossary [optional]
[More Information Needed] print(f"Shape of the dataset: {df.count()}, {len(df.columns)}")
Display first 10 rows
df.show(n=10)
Get a statistical summary of the data
df.describe().show()
Print the schema of the DataFrame
df.printSchema()
More Information [optional]
[More Information Needed] {"dataset": "cornell-movie-review-data/rotten_tomatoes", "config": "default", "split": "train", "features": [{"feature_idx": 0, "name": "text", "type": {"dtype": "string", "id": null, "_type": "Value"}}, {"feature_idx": 1, "name": "label", "type": {"num_classes": 2, "names": ["neg", "pos"], "id": null, "_type": "ClassLabel"}}], ... }
Dataset Card Authors [optional]
[More Information Needed] data: path: sentence-transformers/all-nli train_split: pair-class:train valid_split: pair-class:test column_mapping: sentence1_column: premise sentence2_column: hypothesis target_column: label
Dataset Card Contact
[More Information Needed] import os
from autotrain.params import LLMTrainingParams from autotrain.project import AutoTrainProject
params = LLMTrainingParams( model="meta-llama/Llama-3.2-1B-Instruct", data_path="HuggingFaceH4/no_robots", chat_template="tokenizer", text_column="messages", train_split="train", trainer="sft", epochs=3, batch_size=1, lr=1e-5, peft=True, quantization="int4", target_modules="all-linear", padding="right", optimizer="paged_adamw_8bit", scheduler="cosine", gradient_accumulation=8, mixed_precision="bf16", merge_adapter=True, project_name="autotrain-llama32-1b-finetune", log="tensorboard", push_to_hub=True, username=os.environ.get("HF_USERNAME"), token=os.environ.get("HF_TOKEN"), ) view-source:https://huggingface.co/docs/hub/repositories-licenses @misc{romeo_rosete_2025, author = { Romeo Rosete }, title = { rosete-romeo (Revision 381bef3) }, year = 2025, url = { https://huggingface.co/datasets/roseteromeo56/rosete-romeo }, doi = { 10.57967/hf/5099 }, publisher = { Hugging Face } } backend = "local" project = AutoTrainProject(params=params, backend=backend, process=True) project.create()
- Downloads last month
- 18
Models trained or fine-tuned on roseteromeo56/rosete-romeo
