The viewer is disabled because this dataset repo requires arbitrary Python code execution. Please consider
removing the
loading script
and relying on
automated data support
(you can use
convert_to_parquet
from the datasets
library). If this is not possible, please
open a discussion
for direct help.
The P3 Dataset: Pixels, Points and Polygons
for Multimodal Building Vectorization
Raphael Sulzer1,2 Liuyun Duan1 Nicolas Girard1 Florent Lafarge2
1LuxCarta Technology2Centre Inria d'UniversitΓ© CΓ΄te d'Azur

Abstract
Highlights
- A global, multimodal dataset of aerial images, aerial LiDAR point clouds and building outline polygons, available at huggingface.co/datasets/rsi/PixelsPointsPolygons
- A library for training and evaluating state-of-the-art deep learning methods on the dataset, available at github.com/raphaelsulzer/PixelsPointsPolygons
- Pretrained model weights, available at huggingface.co/rsi/PixelsPointsPolygons
- A paper with an extensive experimental validation, available at arxiv.org/abs/2505.15379
Dataset
Overview

Download
The recommended and fastest way to download the dataset is to run
pip install huggingface_hub
python scripts/download_dataset.py --dataset-root $DATA_ROOT
Optionally you can also download the dataset by running
git lfs install
git clone https://huggingface.co/datasets/rsi/PixelsPointsPolygons $DATA_ROOT
Both options will download the full dataset, including aerial images (as .tif), aerial lidar point clouds (as .copc.laz) and building polygon annotaions (as MS-COCO .json) into $DATA_ROOT
. The size of the dataset is around 163GB.
Structure
π Click to expand dataset folder structure
PixelsPointsPolygons/data/224
βββ annotations
β βββ annotations_all_test.json
β βββ annotations_all_train.json
β βββ annotations_all_val.json
β ... (24 files total)
βββ images
β βββ train
β β βββ CH
β β β βββ 0
β β β β βββ image0_CH_train.tif
β β β β βββ image1000_CH_train.tif
β β β β βββ image1001_CH_train.tif
β β β β ... (5000 files total)
β β β βββ 5000
β β β β βββ image5000_CH_train.tif
β β β β βββ image5001_CH_train.tif
β β β β βββ image5002_CH_train.tif
β β β β ... (5000 files total)
β β β βββ 10000
β β β βββ image10000_CH_train.tif
β β β βββ image10001_CH_train.tif
β β β βββ image10002_CH_train.tif
β β β ... (5000 files total)
β β β ... (11 dirs total)
β β βββ NY
β β β βββ 0
β β β β βββ image0_NY_train.tif
β β β β βββ image1000_NY_train.tif
β β β β βββ image1001_NY_train.tif
β β β β ... (5000 files total)
β β β βββ 5000
β β β β βββ image5000_NY_train.tif
β β β β βββ image5001_NY_train.tif
β β β β βββ image5002_NY_train.tif
β β β β ... (5000 files total)
β β β βββ 10000
β β β βββ image10000_NY_train.tif
β β β βββ image10001_NY_train.tif
β β β βββ image10002_NY_train.tif
β β β ... (5000 files total)
β β β ... (11 dirs total)
β β βββ NZ
β β βββ 0
β β β βββ image0_NZ_train.tif
β β β βββ image1000_NZ_train.tif
β β β βββ image1001_NZ_train.tif
β β β ... (5000 files total)
β β βββ 5000
β β β βββ image5000_NZ_train.tif
β β β βββ image5001_NZ_train.tif
β β β βββ image5002_NZ_train.tif
β β β ... (5000 files total)
β β βββ 10000
β β βββ image10000_NZ_train.tif
β β βββ image10001_NZ_train.tif
β β βββ image10002_NZ_train.tif
β β ... (5000 files total)
β β ... (11 dirs total)
β βββ val
β β βββ CH
β β β βββ 0
β β β βββ image0_CH_val.tif
β β β βββ image100_CH_val.tif
β β β βββ image101_CH_val.tif
β β β ... (529 files total)
β β βββ NY
β β β βββ 0
β β β βββ image0_NY_val.tif
β β β βββ image100_NY_val.tif
β β β βββ image101_NY_val.tif
β β β ... (529 files total)
β β βββ NZ
β β βββ 0
β β βββ image0_NZ_val.tif
β β βββ image100_NZ_val.tif
β β βββ image101_NZ_val.tif
β β ... (529 files total)
β βββ test
β βββ CH
β β βββ 0
β β β βββ image0_CH_test.tif
β β β βββ image1000_CH_test.tif
β β β βββ image1001_CH_test.tif
β β β ... (5000 files total)
β β βββ 5000
β β β βββ image5000_CH_test.tif
β β β βββ image5001_CH_test.tif
β β β βββ image5002_CH_test.tif
β β β ... (5000 files total)
β β βββ 10000
β β βββ image10000_CH_test.tif
β β βββ image10001_CH_test.tif
β β βββ image10002_CH_test.tif
β β ... (4400 files total)
β βββ NY
β β βββ 0
β β β βββ image0_NY_test.tif
β β β βββ image1000_NY_test.tif
β β β βββ image1001_NY_test.tif
β β β ... (5000 files total)
β β βββ 5000
β β β βββ image5000_NY_test.tif
β β β βββ image5001_NY_test.tif
β β β βββ image5002_NY_test.tif
β β β ... (5000 files total)
β β βββ 10000
β β βββ image10000_NY_test.tif
β β βββ image10001_NY_test.tif
β β βββ image10002_NY_test.tif
β β ... (4400 files total)
β βββ NZ
β βββ 0
β β βββ image0_NZ_test.tif
β β βββ image1000_NZ_test.tif
β β βββ image1001_NZ_test.tif
β β ... (5000 files total)
β βββ 5000
β β βββ image5000_NZ_test.tif
β β βββ image5001_NZ_test.tif
β β βββ image5002_NZ_test.tif
β β ... (5000 files total)
β βββ 10000
β βββ image10000_NZ_test.tif
β βββ image10001_NZ_test.tif
β βββ image10002_NZ_test.tif
β ... (4400 files total)
βββ lidar
β βββ train
β β βββ CH
β β β βββ 0
β β β β βββ lidar0_CH_train.copc.laz
β β β β βββ lidar1000_CH_train.copc.laz
β β β β βββ lidar1001_CH_train.copc.laz
β β β β ... (5000 files total)
β β β βββ 5000
β β β β βββ lidar5000_CH_train.copc.laz
β β β β βββ lidar5001_CH_train.copc.laz
β β β β βββ lidar5002_CH_train.copc.laz
β β β β ... (5000 files total)
β β β βββ 10000
β β β βββ lidar10000_CH_train.copc.laz
β β β βββ lidar10001_CH_train.copc.laz
β β β βββ lidar10002_CH_train.copc.laz
β β β ... (5000 files total)
β β β ... (11 dirs total)
β β βββ NY
β β β βββ 0
β β β β βββ lidar0_NY_train.copc.laz
β β β β βββ lidar10_NY_train.copc.laz
β β β β βββ lidar1150_NY_train.copc.laz
β β β β ... (1071 files total)
β β β βββ 5000
β β β β βββ lidar5060_NY_train.copc.laz
β β β β βββ lidar5061_NY_train.copc.laz
β β β β βββ lidar5062_NY_train.copc.laz
β β β β ... (2235 files total)
β β β βββ 10000
β β β βββ lidar10000_NY_train.copc.laz
β β β βββ lidar10001_NY_train.copc.laz
β β β βββ lidar10002_NY_train.copc.laz
β β β ... (4552 files total)
β β β ... (11 dirs total)
β β βββ NZ
β β βββ 0
β β β βββ lidar0_NZ_train.copc.laz
β β β βββ lidar1000_NZ_train.copc.laz
β β β βββ lidar1001_NZ_train.copc.laz
β β β ... (5000 files total)
β β βββ 5000
β β β βββ lidar5000_NZ_train.copc.laz
β β β βββ lidar5001_NZ_train.copc.laz
β β β βββ lidar5002_NZ_train.copc.laz
β β β ... (5000 files total)
β β βββ 10000
β β βββ lidar10000_NZ_train.copc.laz
β β βββ lidar10001_NZ_train.copc.laz
β β βββ lidar10002_NZ_train.copc.laz
β β ... (4999 files total)
β β ... (11 dirs total)
β βββ val
β β βββ CH
β β β βββ 0
β β β βββ lidar0_CH_val.copc.laz
β β β βββ lidar100_CH_val.copc.laz
β β β βββ lidar101_CH_val.copc.laz
β β β ... (529 files total)
β β βββ NY
β β β βββ 0
β β β βββ lidar0_NY_val.copc.laz
β β β βββ lidar100_NY_val.copc.laz
β β β βββ lidar101_NY_val.copc.laz
β β β ... (529 files total)
β β βββ NZ
β β βββ 0
β β βββ lidar0_NZ_val.copc.laz
β β βββ lidar100_NZ_val.copc.laz
β β βββ lidar101_NZ_val.copc.laz
β β ... (529 files total)
β βββ test
β βββ CH
β β βββ 0
β β β βββ lidar0_CH_test.copc.laz
β β β βββ lidar1000_CH_test.copc.laz
β β β βββ lidar1001_CH_test.copc.laz
β β β ... (5000 files total)
β β βββ 5000
β β β βββ lidar5000_CH_test.copc.laz
β β β βββ lidar5001_CH_test.copc.laz
β β β βββ lidar5002_CH_test.copc.laz
β β β ... (5000 files total)
β β βββ 10000
β β βββ lidar10000_CH_test.copc.laz
β β βββ lidar10001_CH_test.copc.laz
β β βββ lidar10002_CH_test.copc.laz
β β ... (4400 files total)
β βββ NY
β β βββ 0
β β β βββ lidar0_NY_test.copc.laz
β β β βββ lidar1000_NY_test.copc.laz
β β β βββ lidar1001_NY_test.copc.laz
β β β ... (4964 files total)
β β βββ 5000
β β β βββ lidar5000_NY_test.copc.laz
β β β βββ lidar5001_NY_test.copc.laz
β β β βββ lidar5002_NY_test.copc.laz
β β β ... (4953 files total)
β β βββ 10000
β β βββ lidar10000_NY_test.copc.laz
β β βββ lidar10001_NY_test.copc.laz
β β βββ lidar10002_NY_test.copc.laz
β β ... (4396 files total)
β βββ NZ
β βββ 0
β β βββ lidar0_NZ_test.copc.laz
β β βββ lidar1000_NZ_test.copc.laz
β β βββ lidar1001_NZ_test.copc.laz
β β ... (5000 files total)
β βββ 5000
β β βββ lidar5000_NZ_test.copc.laz
β β βββ lidar5001_NZ_test.copc.laz
β β βββ lidar5002_NZ_test.copc.laz
β β ... (5000 files total)
β βββ 10000
β βββ lidar10000_NZ_test.copc.laz
β βββ lidar10001_NZ_test.copc.laz
β βββ lidar10002_NZ_test.copc.laz
β ... (4400 files total)
βββ ffl
βββ train
β βββ CH
β β βββ 0
β β β βββ image0_CH_train.pt
β β β βββ image1000_CH_train.pt
β β β βββ image1001_CH_train.pt
β β β ... (5000 files total)
β β βββ 5000
β β β βββ image5000_CH_train.pt
β β β βββ image5001_CH_train.pt
β β β βββ image5002_CH_train.pt
β β β ... (5000 files total)
β β βββ 10000
β β βββ image10000_CH_train.pt
β β βββ image10001_CH_train.pt
β β βββ image10002_CH_train.pt
β β ... (5000 files total)
β β ... (11 dirs total)
β βββ NY
β β βββ 0
β β β βββ image0_NY_train.pt
β β β βββ image1000_NY_train.pt
β β β βββ image1001_NY_train.pt
β β β ... (5000 files total)
β β βββ 5000
β β β βββ image5000_NY_train.pt
β β β βββ image5001_NY_train.pt
β β β βββ image5002_NY_train.pt
β β β ... (5000 files total)
β β βββ 10000
β β βββ image10000_NY_train.pt
β β βββ image10001_NY_train.pt
β β βββ image10002_NY_train.pt
β β ... (5000 files total)
β β ... (11 dirs total)
β βββ NZ
β β βββ 0
β β β βββ image0_NZ_train.pt
β β β βββ image1000_NZ_train.pt
β β β βββ image1001_NZ_train.pt
β β β ... (5000 files total)
β β βββ 5000
β β β βββ image5000_NZ_train.pt
β β β βββ image5001_NZ_train.pt
β β β βββ image5002_NZ_train.pt
β β β ... (5000 files total)
β β βββ 10000
β β βββ image10000_NZ_train.pt
β β βββ image10001_NZ_train.pt
β β βββ image10002_NZ_train.pt
β β ... (5000 files total)
β β ... (11 dirs total)
β βββ processed-flag-all
β βββ processed-flag-CH
β βββ processed-flag-NY
β ... (8 files total)
βββ val
β βββ CH
β β βββ 0
β β βββ image0_CH_val.pt
β β βββ image100_CH_val.pt
β β βββ image101_CH_val.pt
β β ... (529 files total)
β βββ NY
β β βββ 0
β β βββ image0_NY_val.pt
β β βββ image100_NY_val.pt
β β βββ image101_NY_val.pt
β β ... (529 files total)
β βββ NZ
β β βββ 0
β β βββ image0_NZ_val.pt
β β βββ image100_NZ_val.pt
β β βββ image101_NZ_val.pt
β β ... (529 files total)
β βββ processed-flag-all
β βββ processed-flag-CH
β βββ processed-flag-NY
β ... (8 files total)
βββ test
βββ CH
β βββ 0
β β βββ image0_CH_test.pt
β β βββ image1000_CH_test.pt
β β βββ image1001_CH_test.pt
β β ... (5000 files total)
β βββ 5000
β β βββ image5000_CH_test.pt
β β βββ image5001_CH_test.pt
β β βββ image5002_CH_test.pt
β β ... (5000 files total)
β βββ 10000
β βββ image10000_CH_test.pt
β βββ image10001_CH_test.pt
β βββ image10002_CH_test.pt
β ... (4400 files total)
βββ NY
β βββ 0
β β βββ image0_NY_test.pt
β β βββ image1000_NY_test.pt
β β βββ image1001_NY_test.pt
β β ... (5000 files total)
β βββ 5000
β β βββ image5000_NY_test.pt
β β βββ image5001_NY_test.pt
β β βββ image5002_NY_test.pt
β β ... (5000 files total)
β βββ 10000
β βββ image10000_NY_test.pt
β βββ image10001_NY_test.pt
β βββ image10002_NY_test.pt
β ... (4400 files total)
βββ NZ
β βββ 0
β β βββ image0_NZ_test.pt
β β βββ image1000_NZ_test.pt
β β βββ image1001_NZ_test.pt
β β ... (5000 files total)
β βββ 5000
β β βββ image5000_NZ_test.pt
β β βββ image5001_NZ_test.pt
β β βββ image5002_NZ_test.pt
β β ... (5000 files total)
β βββ 10000
β βββ image10000_NZ_test.pt
β βββ image10001_NZ_test.pt
β βββ image10002_NZ_test.pt
β ... (4400 files total)
βββ processed-flag-all
βββ processed-flag-CH
βββ processed-flag-NY
... (8 files total)
Pretrained model weights
Download
The recommended and fastest way to download the pretrained model weights is to run
python scripts/download_pretrained.py --model-root $MODEL_ROOT
Optionally you can also download the weights by running
git clone https://huggingface.co/rsi/PixelsPointsPolygons $MODEL_ROOT
Both options will download all checkpoints (as .pth) and results presented in the paper (as MS-COCO .json) into $MODEL_ROOT
.
Code
Download
git clone https://github.com/raphaelsulzer/PixelsPointsPolygons
Installation
To create a conda environment named p3
and install the repository as a python package with all dependencies run
bash install.sh
or, if you want to manage the environment yourself run
pip install -r requirements-torch-cuda.txt
pip install .
β οΈ Warning: The implementation of the LiDAR point cloud encoder uses Open3D-ML. Currently, Open3D-ML officially only supports the PyTorch version specified in requirements-torch-cuda.txt
.
Setup
The project supports hydra configuration which allows to modify any parameter either from a .yaml
file or directly from the command line.
To setup the project structure we recommend to specify your $DATA_ROOT
and $MODEL_ROOT
in config/host/default.yaml
.
To view all available configuration options run
python scripts/train.py --help
Predict demo tile
After downloading the model weights and setting up the code you can predict a demo tile by running
python scripts/predict_demo.py checkpoint=best_val_iou experiment=$MODEL_$MODALITY +image_file=demo_data/image0_CH_val.tif +lidar_file=demo_data/lidar0_CH_val.copc.laz
At least one of image_file
or lidar_file
has to be specified. $MODEL
can be one of the following: ffl
, hisup
or p2p
. $MODALITY
can be image
, lidar
or fusion
.
The result will be stored in prediction.png
.
Reproduce paper results
To reproduce the results from the paper you can run the following commands
python scripts/modality_ablation.py
python scripts/lidar_density_ablation.py
python scripts/all_countries.py
Custom training, prediction and evaluation
We recommend to first setup a custom experiment file $EXP_FILE
in config/experiment/
following the structure of one of the existing files, e.g. ffl_fusion.yaml
. You can then run
# train your model (on multiple GPUs)
torchrun --nproc_per_node=$NUM_GPU scripts/train.py experiment=$EXP_FILE
# predict the test set with your model (on multiple GPUs)
torchrun --nproc_per_node=$NUM_GPU scripts/predict.py experiment=$EXP_FILE evaluation=test checkpoint=best_val_iou
# evaluate your prediction of the test set
python scripts/evaluate.py experiment=$EXP_FILE evaluation=test checkpoint=best_val_iou
You could also continue training from a provided pretrained model with
# train your model (on a single GPU)
python scripts/train.py experiment=p2p_fusion checkpoint=latest
Citation
If you use our work please cite
@misc{sulzer2025p3datasetpixelspoints,
title={The P$^3$ dataset: Pixels, Points and Polygons for Multimodal Building Vectorization},
author={Raphael Sulzer and Liuyun Duan and Nicolas Girard and Florent Lafarge},
year={2025},
eprint={2505.15379},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2505.15379},
}
Acknowledgements
This repository benefits from the following open-source work. We thank the authors for their great work.
- Downloads last month
- 3,040