Datasets:
Faquad-nli needs to be updated
#1
by
nicholasKluge
- opened
Hi Ruan!
As of datasets==4.0
, loading scripts and trust_remote_code
are no longer supported.
This breaks things, like the lm-evaluation-harness-pt, which people who work with Portuguese LLMs need for running evals.
I made a script for you to convert your dataset:
"""Convert FaQUAD-NLI to Parquet format"""
import json
import os
import pandas as pd
from datasets import Dataset, DatasetDict, DownloadManager
_URLS = {
"data": "https://raw.githubusercontent.com/liafacom/faquad/6ad978f20672bb41625b3b71fbe4a88b893d0a86/data/dataset.json",
"spans": "https://huggingface.co/datasets/ruanchaves/faquad-nli/raw/main/spans.csv"
}
def check_overlap(interval1, interval2):
"""Check for overlap between two integer intervals"""
return not (interval1[1] < interval2[0] or interval2[1] < interval1[0])
def process_data(json_data, spans_data, split):
"""Process the data similar to the original script's _generate_examples method"""
examples = {
"document_index": [],
"document_title": [],
"paragraph_index": [],
"question": [],
"answer": [],
"label": []
}
for span_row in spans_data:
if span_row["split"] != split:
continue
document_title = json_data["data"][
span_row["document_index"]
]["title"]
sentence = json_data["data"][
span_row["document_index"]
]["paragraphs"][
span_row["paragraph_index"]
]["context"][
span_row["sentence_start_char"]:span_row["sentence_end_char"]
]
sentence_interval = (span_row["sentence_start_char"], span_row["sentence_end_char"])
for qas_row in json_data["data"][
span_row["document_index"]
]["paragraphs"][
span_row["paragraph_index"]
]["qas"]:
question = qas_row["question"]
question_spans = []
for qas_answer in qas_row["answers"]:
qas_answer_start_span = qas_answer["answer_start"]
qas_answer_end_span = qas_answer["answer_start"] + len(qas_answer["text"])
question_spans.append((qas_answer_start_span, qas_answer_end_span))
overlap_found = False
for question_interval in question_spans:
if check_overlap(sentence_interval, question_interval):
examples["document_index"].append(span_row["document_index"])
examples["document_title"].append(document_title)
examples["paragraph_index"].append(span_row["paragraph_index"])
examples["question"].append(question)
examples["answer"].append(sentence)
examples["label"].append(1)
overlap_found = True
break
if not overlap_found:
examples["document_index"].append(span_row["document_index"])
examples["document_title"].append(document_title)
examples["paragraph_index"].append(span_row["paragraph_index"])
examples["question"].append(question)
examples["answer"].append(sentence)
examples["label"].append(0)
return examples
def main():
# Download the data
download_manager = DownloadManager()
downloaded_files = download_manager.download(_URLS)
# Load the data
with open(downloaded_files["data"], 'r') as f:
json_data = json.load(f)
spans = pd.read_csv(downloaded_files["spans"]).to_dict("records")
# Create datasets for each split
dataset_dict = DatasetDict()
for split in ["train", "validation", "test"]:
examples = process_data(json_data, spans, split)
dataset_dict[split] = Dataset.from_dict(examples)
# Save the dataset in parquet format
output_dir = "./faquad-nli-parquet"
os.makedirs(output_dir, exist_ok=True)
dataset_dict.save_to_disk(output_dir)
print(f"Dataset saved to {output_dir}")
print("Dataset statistics:")
for split, dataset in dataset_dict.items():
print(f" {split}: {len(dataset)} examples")
if __name__ == "__main__":
main()
from datasets import load_from_disk
dataset = load_from_disk("./faquad-nli-parquet")
dataset.push_to_hub("ruanchaves/faquad-nli-parquet")
I made a working copy of your dataset just so I can keep running evals (nicholasKluge/faquad-nli-parquet). I'll delete it as soon as you update your dataset.