file_path
stringlengths
7
180
content
stringlengths
0
811k
repo
stringclasses
11 values
docgen/src/main.rs
use regex::Regex; use std::fs; use std::path::Path; fn main() { // TENSOR DOC let trait_path = "src/operators/tensor/core.cairo"; let doc_path = "docs/framework/operators/tensor"; let label = "tensor"; let trait_name = "TensorTrait"; doc_trait(trait_path, doc_path, label); doc_functions(trait_path, doc_path, trait_name, label); // NN DOC let trait_path = "src/operators/nn/core.cairo"; let doc_path = "docs/framework/operators/neural-network"; let label = "nn"; let trait_name = "NNTrait"; doc_trait(trait_path, doc_path, label); doc_functions(trait_path, doc_path, trait_name, label); // SEQUENCE DOC let trait_path = "src/operators/sequence/core.cairo"; let doc_path = "docs/framework/operators/sequence"; let label = "sequence"; let trait_name = "SequenceTrait"; doc_trait(trait_path, doc_path, label); doc_functions(trait_path, doc_path, trait_name, label); // FIXED POINT DOC let trait_path = "src/numbers/fixed_point/core.cairo"; let doc_path = "docs/framework/numbers/fixed-point"; let label = "fp"; let trait_name = "FixedTrait"; doc_trait(trait_path, doc_path, label); doc_functions(trait_path, doc_path, trait_name, label); // COMPLEX NUMBER DOC let trait_path = "src/numbers/complex_number/complex_trait.cairo"; let doc_path = "docs/framework/numbers/complex-number"; let label = "complex"; let trait_name: &str = "ComplexTrait"; doc_trait(trait_path, doc_path, label); doc_functions(trait_path, doc_path, trait_name, label); // TREE ENSEMBLE CLASSIFIER DOC let trait_path = "src/operators/ml/tree_ensemble/tree_ensemble_classifier.cairo"; let doc_path = "docs/framework/operators/machine-learning/tree-ensemble-classifier"; let label = "tree_ensemble_classifier"; let trait_name: &str = "TreeEnsembleClassifierTrait"; doc_trait(trait_path, doc_path, label); doc_functions(trait_path, doc_path, trait_name, label); // TREE ENSEMBLE REGRESSOR DOC let trait_path = "src/operators/ml/tree_ensemble/tree_ensemble_regressor.cairo"; let doc_path = "docs/framework/operators/machine-learning/tree-ensemble-regressor"; let label = "tree_ensemble_regressor"; let trait_name: &str = "TreeEnsembleRegressorTrait"; doc_trait(trait_path, doc_path, label); doc_functions(trait_path, doc_path, trait_name, label); // LINEAR REGRESSOR DOC let trait_path = "src/operators/ml/linear/linear_regressor.cairo"; let doc_path = "docs/framework/operators/machine-learning/linear-regressor"; let label = "linear_regressor"; let trait_name: &str = "LinearRegressorTrait"; doc_trait(trait_path, doc_path, label); doc_functions(trait_path, doc_path, trait_name, label); // LINEAR CLASSIFIER DOC let trait_path = "src/operators/ml/linear/linear_classifier.cairo"; let doc_path = "docs/framework/operators/machine-learning/linear-classifier"; let label = "linear_classifier"; let trait_name: &str = "LinearClassifierTrait"; doc_trait(trait_path, doc_path, label); doc_functions(trait_path, doc_path, trait_name, label); // SVM REGRESSOR DOC let trait_path = "src/operators/ml/svm/svm_regressor.cairo"; let doc_path = "docs/framework/operators/machine-learning/svm-regressor"; let label = "svm_regressor"; let trait_name: &str = "SVMRegressorTrait"; doc_trait(trait_path, doc_path, label); doc_functions(trait_path, doc_path, trait_name, label); // SVM CLASSIFIER DOC let trait_path = "src/operators/ml/svm/svm_classifier.cairo"; let doc_path = "docs/framework/operators/machine-learning/svm-classifier"; let label = "svm_classifier"; let trait_name: &str = "SVMClassifierTrait"; doc_trait(trait_path, doc_path, label); doc_functions(trait_path, doc_path, trait_name, label); // NORMALIZER DOC let trait_path = "src/operators/ml/normalizer/normalizer.cairo"; let doc_path = "docs/framework/operators/machine-learning/normalizer"; let label = "normalizer"; let trait_name: &str = "NormalizerTrait"; doc_trait(trait_path, doc_path, label); doc_functions(trait_path, doc_path, trait_name, label); } fn doc_trait(trait_path: &str, doc_path: &str, label: &str) { // Open and read core.cairo file let path_str = format!("../{}", trait_path); let path = Path::new(&path_str); let contents = fs::read_to_string(&path).expect("Could not read the file"); // Create a regular expression to match the comment lines let re = Regex::new(r#"/// (\w+) - (.*)"#).unwrap(); // Initialize an empty string to store our new formatted table let mut table = String::from("| function | description |\n| --- | --- |\n"); // Go through the file and look for comments with our specific format for cap in re.captures_iter(&contents) { // Check if the function is the Trait definition and skip it if &cap[1] == "Trait" { continue; } // Add the function name and description to our table let func_name = format!( "[`{}.{}`]({}.{}.md)", label, &cap[1], label, &cap[1].replace('_', r"\_") ); let func_desc = &cap[2]; table += &format!("| {} | {} |\n", func_name, func_desc); } // Open the README.md file let readme_path_str = format!("../{}/README.md", doc_path); let readme_path = Path::new(&readme_path_str); let readme = fs::read_to_string(&readme_path).expect("Could not read the file"); // Use regex to replace the table let re_table = Regex::new(r"(?ms)\n\n\| fun.*?(\n[^|]|\z)").unwrap(); let new_readme = re_table.replace(&readme, &("\n\n".to_owned() + &table + "\n")); // Write the updated contents back to README.md fs::write(&readme_path, &*new_readme).expect("Could not write the file"); } fn doc_functions(trait_path: &str, doc_path: &str, trait_name: &str, label: &str) { let filepath_str = format!("../{}", trait_path); let filepath = Path::new(&filepath_str); let contents = fs::read_to_string(filepath).expect("Something went wrong reading the file"); // Find the trait block let trait_re = Regex::new(&format!( r"(?s)trait\s+{}\s*(<[\w\s,]*>)?\s*\{{.*?\n\s*\}}", trait_name )) .unwrap(); let trait_match = trait_re.captures(&contents).unwrap(); let trait_block = trait_match.get(0).unwrap().as_str(); // Iterate over each function let func_re = Regex::new(r"(?s)(///.*?\n)\s*fn (\w+)\((.*?)\) -> (.*?);").unwrap(); for func_match in func_re.captures_iter(trait_block) { let func_name = func_match.get(2).unwrap().as_str(); let doc_comment = func_match.get(1).unwrap().as_str(); // Go to the appropriate markdown file and write the transformed doc comment let markdown_filename = format!("../{}/{}.{}.md", doc_path, label, func_name); let transformed_comment = doc_comment .lines() .map(|line| { line.trim_start().strip_prefix("/// ").unwrap_or( line.trim_start() .strip_prefix("///") .unwrap_or(line.trim_start()), ) }) .collect::<Vec<_>>() .join("\n"); // Write or replace the transformed comment into the markdown file fs::write(markdown_filename, transformed_comment).expect("Unable to write file"); } }
https://github.com/gizatechxyz/orion
nodegen/__init__.py
https://github.com/gizatechxyz/orion
nodegen/file_manager.py
import os from pathlib import Path BASE_PATH = "./tests/nodes" class ModFile: def __init__(self): """ Initialize a ModFile object. This method creates a new file with a .cairo extension in the BASE_PATH directory. If the directory doesn't exist, it's created. The contents of the file are then read into the buffer attribute. """ self.path = Path(f"{BASE_PATH}.cairo") self.path.parent.mkdir(parents=True, exist_ok=True) with self.path.open("r") as f: self.buffer = f.readlines() def update(self, name: str): """ Update the .cairo file with a new module statement. Args: name (str): The name of the module to be added. This method checks if a module statement for the given name already exists in the buffer. If it doesn't, the new module statement is appended to the file. """ statement = f"mod {name};" if any([line.startswith(statement) for line in self.buffer]): return with self.path.open("a") as f: f.write(f"{statement}\n") class File: def __init__(self, path: str): """ Initialize a File object. Args: path (str): The file path where the File object will operate. This method creates a new file at the specified path. If the file already exists, its contents are read into the buffer attribute. """ self.path = Path(path) self.path.parent.mkdir(parents=True, exist_ok=True) self.buffer = [] if os.path.isfile(path): with self.path.open("r") as f: self.buffer = f.readlines() def dump(self): """ Write the contents of the buffer to the file. This method writes each line in the buffer to the file, ensuring each line is properly terminated with a newline character. """ with self.path.open("w") as f: f.writelines([f"{line}\n" for line in self.buffer]) class CairoTest(File): def __init__(self, file: str): super().__init__(os.path.join(BASE_PATH, file)) @classmethod def base_template( cls, name: str, arg_cnt: int, refs: list[str], func_sig: str, out_cnt: int = 1 ) -> list[str]: """ Create a template for a Cairo test function which expects a tensor output. Args: name (str): Name of the test function. arg_cnt (int): Number of arguments for the function. refs (list[str]): List of references (modules) to be used in the function. func_sig (str): The function signature. out_cnt (int): Number of outputs for the function. Defaults to 1. Returns: list[str]: A list of strings that together form the template of a Cairo test function. This method generates a list of strings that form the template of a Cairo test function, including module imports, function definition, and assertions. """ template = [ *[f"mod input_{i};" for i in range(arg_cnt)], *[f"mod output_{i};" for i in range(out_cnt)], "", "", *[f"use {ref};" for ref in refs], "", "#[test]", "#[available_gas(2000000000)]", f"fn test_{name}()" + " {", *[f" let input_{i} = input_{i}::input_{i}();" for i in range(arg_cnt)], *[f" let z_{i} = output_{i}::output_{i}();" for i in range(out_cnt)], "" ] # Handling conditional function signature based on the number of outputs if out_cnt > 1: template.append(f" let ({', '.join(f'y_{i}' for i in range(out_cnt))}) = {func_sig};") else: template.append(f" let y_0 = {func_sig};") # Continue appending to the template template.extend([ "", *[f" assert_eq(y_{i}, z_{i});" for i in range(out_cnt)], "}" ]) return template @classmethod def sequence_template(cls, name: str, arg_cnt: int, refs: list[str], func_sig: str) -> list[str]: """ Create a template for a Cairo test function which expects a tensor sequence. Args: name (str): Name of the test function. arg_cnt (int): Number of arguments for the function. refs (list[str]): List of references (modules) to be used in the function. func_sig (str): The function signature. Returns: list[str]: A list of strings that together form the template of a Cairo test function. This method generates a list of strings that form the template of a Cairo test function, including module imports, function definition, and assertions. """ return [ *[f"mod input_{i};" for i in range(arg_cnt)], *[ "mod output_0;"], *[ ""], *[ ""], *[f"use {ref};" for ref in refs], *[ ""], *[ "#[test]"], *[ "#[available_gas(2000000000)]"], *[f"fn test_{name}()"+" {"], *[f" let input_{i} = input_{i}::input_{i}();" for i in range(arg_cnt)], *[ " let z = output_0::output_0();"], *[ ""], *[f" let y = {func_sig};"], *[ ""], *[ " assert_seq_eq(y, z);"], *[ "}"], ] class CairoData(File): def __init__(self, file: str): super().__init__(os.path.join(BASE_PATH, file)) @classmethod def base_template( cls, func: str, dtype: str, refs: list[str], data: list[str], shape: tuple ) -> list[str]: """ Create a base template for data representation in Cairo. Args: func (str): The function name. dtype (str): The data type of the tensor. refs (list[str]): A list of module references. data (list[str]): The data to be included in the tensor. shape (tuple): The shape of the tensor. Returns: list[str]: A list of strings that together form the template of a data function in Cairo. This method generates a list of strings representing a function in Cairo for data handling, defining the shape and contents of a tensor. """ template = [ *[f"use {ref};" for ref in refs], *[""], *[f"fn {func}() -> Tensor<{dtype}>" + " {"], *[" let mut shape = ArrayTrait::<usize>::new();"], *[f" shape.append({s});" for s in shape], *[""], *[" let mut data = ArrayTrait::new();"], *[f" data.append({d});" for d in data], *[" TensorTrait::new(shape.span(), data.span())"], *["}"], ] return template @classmethod def sequence_template( cls, func: str, dtype: str, refs: list[str], data: list[list[str]], shape: list[tuple], ) -> list[str]: """ Create a template for handling tensor sequences in Cairo. Args: func (str): The function name. dtype (str): The data type of the tensor sequence. refs (list[str]): A list of module references. data (list[list[str]]): The data to be included in each tensor. shape (list[tuple]): The shapes of each tensor in the sequence. Returns: list[str]: A list of strings that together form the template of a sequence tensor function in Cairo. This method generates a list of strings representing a function in Cairo for handling a sequence of tensors, each with its own data and shape. """ def expand_sequence_init(s: list[tuple], d: list[list[str]]) -> list[str]: snippet = [] for i in range(len(s)): snippet += [ *[" let mut shape = ArrayTrait::<usize>::new();"], *[f" shape.append({s});" for s in s[i]], *[""], *[" let mut data = ArrayTrait::new();"], *[f" data.append({d});" for d in d[i]], *[""], *[ " sequence.append(TensorTrait::new(shape.span(), data.span()));" ], *[""], ] return snippet template = [ *[f"use {ref};" for ref in refs], *[""], *[f"fn {func}() -> Array<Tensor<{dtype}>>" + " {"], *[" let mut sequence = ArrayTrait::new();"], *[""], *expand_sequence_init(shape, data), *[" sequence"], *["}"], ] return template
https://github.com/gizatechxyz/orion
nodegen/helpers.py
from enum import Enum import os from typing import List from .file_manager import CairoTest, CairoData, ModFile import numpy as np class FixedImpl(Enum): FP8x23 = 'FP8x23' FP16x16 = 'FP16x16' FP32x32 = 'FP32x32' def to_fp(x: np.ndarray, fp_impl: FixedImpl): match fp_impl: case FixedImpl.FP8x23: return (x * 2**23).astype(np.int64) case FixedImpl.FP16x16: return (x * 2**16).astype(np.int64) case FixedImpl.FP32x32: return (x * 2**32).astype(np.int64) class Dtype(Enum): FP8x23 = 'FP8x23' FP16x16 = 'FP16x16' FP32x32 = 'FP32x32' I8 = 'i8' I32 = 'i32' U32 = 'u32' BOOL = 'bool' COMPLEX64 = 'complex64' class Tensor: def __init__(self, dtype: Dtype, shape: tuple, data: np.ndarray): self.dtype = dtype self.shape = shape self.data = data Sequence = List[Tensor] class Trait(Enum): TENSOR = 'TENSOR' NN = 'NN' SEQUENCE = 'SEQUENCE' def make_test(inputs: list[Tensor | Sequence], output: Tensor | Sequence, func_sig: str, name: str, trait: Trait = Trait.TENSOR): """ Generate and write Cairo tests based on the provided inputs and output. Args: inputs (list[Tensor | list[Tensor]]): A list of input tensors or tensor sequences. output (Tensor | list[Tensor]): The expected output tensor or tensor sequences. func_sig (str): The signature of the function to be tested. name (str): The name of the test. trait (Trait, optional): The trait of the tensors. Defaults to Trait.TENSOR. """ ModFile().update(name) for i, input in enumerate(inputs): input_data = CairoData(os.path.join(name, f"input_{i}.cairo")) match input: case list(): input_data.buffer = CairoData.sequence_template( func=f"input_{i}", dtype=input[0].dtype.value, refs=get_data_refs(input[0].dtype), data=get_data_statement_for_sequences( input, input[0].dtype), shape=[x.shape for x in input], ) case Tensor(): input_data.buffer = CairoData.base_template( func=f"input_{i}", dtype=input.dtype.value, refs=get_data_refs(input.dtype), data=get_data_statement(input.data, input.dtype), shape=input.shape, ) input_data.dump() match output: case list(): output_data = CairoData(os.path.join(name, "output_0.cairo")) output_data.buffer = CairoData.sequence_template( func="output_0", dtype=output[0].dtype.value, refs=get_data_refs(output[0].dtype), data=get_data_statement_for_sequences(output, output[0].dtype), shape=[x.shape for x in output], ) output_data.dump() case tuple(): for i, out in enumerate(output): output_data = CairoData( os.path.join(name, f"output_{i}.cairo")) output_data.buffer = CairoData.base_template( func=f"output_{i}", dtype=out.dtype.value, refs=get_data_refs(out.dtype), data=get_data_statement(out.data, out.dtype), shape=out.shape, ) output_data.dump() case Tensor(): output_data = CairoData(os.path.join(name, "output_0.cairo")) output_data.buffer = CairoData.base_template( func="output_0", dtype=output.dtype.value, refs=get_data_refs(output.dtype), data=get_data_statement(output.data, output.dtype), shape=output.shape, ) output_data.dump() test_file = CairoTest(f"{name}.cairo") match output: case list(): test_file.buffer = CairoTest.sequence_template( name=name, arg_cnt=len(inputs), refs=get_all_test_refs(find_all_types([*inputs, *output]), trait), func_sig=func_sig, ) case Tensor(): test_file.buffer = CairoTest.base_template( name=name, arg_cnt=len(inputs), refs=get_all_test_refs(find_all_types([*inputs, output]), trait), func_sig=func_sig, ) case tuple(): test_file.buffer = CairoTest.base_template( name=name, arg_cnt=len(inputs), out_cnt=len(output), refs=get_all_test_refs(find_all_types([*inputs, output]), trait), func_sig=func_sig, ) test_file.dump() def get_data_refs(dtype: Dtype) -> list[str]: refs = [ *trait_to_ref[Trait.TENSOR], *dtype_to_tensor[dtype], *dtype_to_numbers[dtype], ] return refs def get_data_statement(data: np.ndarray, dtype: Dtype) -> list[str]: match dtype: case Dtype.U32: return [f"{int(x)}" for x in data.flatten()] case Dtype.I32: return [f"{int(x)}" for x in data.flatten()] case Dtype.I8: return [f"{int(x)}" for x in data.flatten()] case Dtype.FP8x23: return ["FP8x23 { "+f"mag: {abs(int(x))}, sign: {str(x < 0).lower()} "+"}" for x in data.flatten()] case Dtype.FP16x16: return ["FP16x16 { "+f"mag: {abs(int(x))}, sign: {str(x < 0).lower()} "+"}" for x in data.flatten()] case Dtype.FP32x32: return ["FP32x32 { "+f"mag: {abs(int(x))}, sign: {str(x < 0).lower()} "+"}" for x in data.flatten()] case Dtype.BOOL: return [str(x).lower() for x in data.flatten()] case Dtype.COMPLEX64: return ["complex64 { "+"real: FP64x64 { "+f"mag: {abs(int(np.real(x)))}, sign: {str(np.real(x) < 0).lower()} "+"} , img: FP64x64 { "+f"mag: {abs(int(np.imag(x)))}, sign: {str(np.imag(x) < 0).lower()} "+"} }" for x in data.flatten()] def get_data_statement_for_sequences(data: Sequence, dtype: Dtype) -> list[list[str]]: return [get_data_statement(x.data, dtype) for x in data] def get_all_test_refs(dtypes: list[Dtype], trait: Trait) -> list[str]: refs = [] for dtype in dtypes: # refs += [*dtype_to_numbers[dtype]] refs += get_test_refs(dtype, trait) return list(set(refs)) def get_test_refs(dtype: Dtype, trait: Trait) -> list[str]: if trait == Trait.NN and dtype == Dtype.BOOL: raise Exception("NN trait does not support bool dtype") if trait == Trait.NN: dtype_ref = dtype_to_nn[dtype] elif trait == Trait.SEQUENCE: dtype_ref = dtype_to_sequence[dtype] else: dtype_ref = dtype_to_tensor[dtype] refs = [ *trait_to_ref[trait], *dtype_ref, *dtype_to_partial_eq[dtype], "orion::utils::{assert_eq, assert_seq_eq}", ] return refs def find_all_types(tensors: list[Tensor | Sequence]) -> list[Dtype]: dtypes = [] for tensor in tensors: if isinstance(tensor, list) or isinstance(tensor, tuple): dtypes += [x.dtype for x in tensor] else: dtypes.append(tensor.dtype) return list(set(dtypes)) trait_to_ref = { Trait.TENSOR: [ "core::array::{ArrayTrait, SpanTrait}", "orion::operators::tensor::{TensorTrait, Tensor}", ], Trait.NN: [ "orion::numbers::FixedTrait", "orion::operators::nn::NNTrait", ], Trait.SEQUENCE: [ "core::array::{ArrayTrait, SpanTrait}", "orion::operators::sequence::SequenceTrait", ], } dtype_to_tensor = { Dtype.U32: ["orion::operators::tensor::{U32Tensor, U32TensorAdd}",], Dtype.I32: ["orion::operators::tensor::{I32Tensor, I32TensorAdd}",], Dtype.I8: ["orion::operators::tensor::{I8Tensor, I8TensorAdd}",], Dtype.FP8x23: ["orion::operators::tensor::{FP8x23Tensor, FP8x23TensorAdd}",], Dtype.FP16x16: ["orion::operators::tensor::{FP16x16Tensor, FP16x16TensorAdd}",], Dtype.BOOL: ["orion::operators::tensor::BoolTensor",], Dtype.COMPLEX64: ["orion::operators::tensor::Complex64Tensor",], Dtype.FP32x32: ["orion::operators::tensor::FP32x32Tensor",], } dtype_to_nn = { Dtype.U32: ["orion::operators::nn::U32NN",], Dtype.I32: ["orion::operators::nn::I32NN",], Dtype.I8: ["orion::operators::nn::I8NN",], Dtype.FP8x23: ["orion::operators::nn::FP8x23NN",], Dtype.FP16x16: ["orion::operators::nn::FP16x16NN",], } dtype_to_sequence = { Dtype.U32: ["orion::operators::sequence::U32Sequence",], Dtype.I32: ["orion::operators::sequence::I32Sequence",], Dtype.I8: ["orion::operators::sequence::I8Sequence",], Dtype.FP8x23: ["orion::operators::sequence::FP8x23Sequence",], Dtype.FP16x16: ["orion::operators::sequence::FP16x16Sequence",], } dtype_to_partial_eq = { Dtype.U32: ["orion::operators::tensor::U32TensorPartialEq",], Dtype.I32: ["orion::operators::tensor::I32TensorPartialEq",], Dtype.I8: ["orion::operators::tensor::I8TensorPartialEq",], Dtype.FP8x23: ["orion::operators::tensor::FP8x23TensorPartialEq",], Dtype.FP16x16: ["orion::operators::tensor::FP16x16TensorPartialEq",], Dtype.FP32x32: ["orion::operators::tensor::FP32x32TensorPartialEq",], Dtype.BOOL: ["orion::operators::tensor::BoolTensorPartialEq",], Dtype.COMPLEX64: ["orion::operators::tensor::Complex64TensorPartialEq",], } dtype_to_numbers = { Dtype.U32: ["orion::numbers::NumberTrait"], Dtype.I32: ["orion::numbers::NumberTrait"], Dtype.I8: ["orion::numbers::NumberTrait"], Dtype.FP8x23: ["orion::numbers::{FixedTrait, FP8x23}",], Dtype.FP16x16: ["orion::numbers::{FixedTrait, FP16x16}",], Dtype.FP32x32: ["orion::numbers::{FixedTrait, FP32x32}",], Dtype.BOOL: [], Dtype.COMPLEX64: ["orion::numbers::{NumberTrait, complex64}",], }
https://github.com/gizatechxyz/orion
nodegen/node/__init__.py
import argparse import importlib import os import sys class RunAll: @classmethod def run_all(cls): for method_name in dir(cls): if method_name.startswith('__') or method_name == 'run_all': continue method = getattr(cls, method_name) if callable(method): method() # Add the path to the 'orion' directory to the Python path sys.path.append(os.path.join(os.path.dirname(__file__), '..', '..')) def main(): parser = argparse.ArgumentParser(description="Generate nodes.") parser.add_argument('node_class', help="The class of node to run.") args = parser.parse_args() class_name = args.node_class.capitalize() # Verify that the specified Python file exists filename = os.path.join('nodegen/node', args.node_class + '.py') if not os.path.exists(filename): print(f"Error: {filename} does not exist.") return # Import the module dynamically module = importlib.import_module('nodegen.node.' + args.node_class) # Get the class from the module node_class = getattr(module, class_name) # Instantiate the class and call the run_all method node_instance = node_class() node_instance.run_all() if __name__ == "__main__": main()
https://github.com/gizatechxyz/orion
nodegen/node/abs.py
import numpy as np from nodegen.node import RunAll from ..helpers import make_test, to_fp, Tensor, Dtype, FixedImpl class Abs(RunAll): @staticmethod def abs_i32(): x = np.random.randint(-127, 127, (2, 2)).astype(np.int32) y = abs(x) x = Tensor(Dtype.I32, x.shape, x.flatten()) y = Tensor(Dtype.I32, y.shape, y.flatten()) name = "abs_i32" make_test([x], y, "input_0.abs()", name) @staticmethod def abs_i8(): x = np.random.randint(-127, 127, (2, 2)).astype(np.int8) y = abs(x) x = Tensor(Dtype.I8, x.shape, x.flatten()) y = Tensor(Dtype.I8, y.shape, y.flatten()) name = "abs_i8" make_test([x], y, "input_0.abs()", name) @staticmethod def abs_fp8x23(): x = to_fp(np.random.randint(-127, 127, (2, 2) ).astype(np.int64), FixedImpl.FP8x23) y = abs(x) x = Tensor(Dtype.FP8x23, x.shape, x.flatten()) y = Tensor(Dtype.FP8x23, y.shape, y.flatten()) name = "abs_fp8x23" make_test([x], y, "input_0.abs()", name) @staticmethod def abs_fp16x16(): x = to_fp(np.random.randint(-127, 127, (2, 2) ).astype(np.int64), FixedImpl.FP16x16) y = abs(x) x = Tensor(Dtype.FP16x16, x.shape, x.flatten()) y = Tensor(Dtype.FP16x16, y.shape, y.flatten()) name = "abs_fp16x16" make_test([x], y, "input_0.abs()", name)
https://github.com/gizatechxyz/orion
nodegen/node/acos.py
import numpy as np from nodegen.node import RunAll from ..helpers import make_test, to_fp, Tensor, Dtype, FixedImpl class Acos(RunAll): @staticmethod def acos_fp8x23(): x = np.random.uniform(-1, 1, (2, 2)).astype(np.float64) y = np.arccos(x) x = Tensor(Dtype.FP8x23, x.shape, to_fp(x.flatten(), FixedImpl.FP8x23)) y = Tensor(Dtype.FP8x23, y.shape, to_fp(y.flatten(), FixedImpl.FP8x23)) name = "acos_fp8x23" make_test([x], y, "input_0.acos()", name) @staticmethod def acos_fp16x16(): x = np.random.uniform(-1, 1, (2, 2)).astype(np.float64) y = np.arccos(x) x = Tensor(Dtype.FP16x16, x.shape, to_fp(x.flatten(), FixedImpl.FP16x16)) y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16)) name = "acos_fp16x16" make_test([x], y, "input_0.acos()", name)
https://github.com/gizatechxyz/orion
nodegen/node/acosh.py
import numpy as np from nodegen.node import RunAll from ..helpers import make_test, to_fp, Tensor, Dtype, FixedImpl class Acosh(RunAll): @staticmethod def acosh_fp8x23(): x = np.random.uniform(1, 5, (2, 2)).astype(np.float64) y = np.arccosh(x) x = Tensor(Dtype.FP8x23, x.shape, to_fp( x.flatten(), FixedImpl.FP8x23)) y = Tensor(Dtype.FP8x23, y.shape, to_fp( y.flatten(), FixedImpl.FP8x23)) name = "acosh_fp8x23" make_test([x], y, "input_0.acosh()", name) @staticmethod def acosh_fp16x16(): x = np.random.uniform(1, 5, (2, 2)).astype(np.float64) y = np.arccosh(x) x = Tensor(Dtype.FP16x16, x.shape, to_fp( x.flatten(), FixedImpl.FP16x16)) y = Tensor(Dtype.FP16x16, y.shape, to_fp( y.flatten(), FixedImpl.FP16x16)) name = "acosh_fp16x16" make_test([x], y, "input_0.acosh()", name)
https://github.com/gizatechxyz/orion
nodegen/node/add.py
import numpy as np from nodegen.node import RunAll from ..helpers import make_test, to_fp, Tensor, Dtype, FixedImpl class Add(RunAll): @staticmethod def add_u32(): def default(): x = np.random.randint(0, 3, (3, 3, 3)).astype(np.uint32) y = np.random.randint(0, 3, (3, 3, 3)).astype(np.uint32) z = x + y x = Tensor(Dtype.U32, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) z = Tensor(Dtype.U32, z.shape, z.flatten()) name = "add_u32" make_test([x, y], z, "input_0 + input_1", name) def broadcast(): x = np.random.randint(0, 3, (3, 3, 3)).astype(np.uint32) y = np.random.randint(0, 3, (1, 3, 1)).astype(np.uint32) z = x + y x = Tensor(Dtype.U32, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) z = Tensor(Dtype.U32, z.shape, z.flatten()) name = "add_u32_broadcast" make_test([x, y], z, "input_0 + input_1", name) default() broadcast() @staticmethod def add_i32(): def default(): x = np.random.randint(-3, 3, (3, 3, 3)).astype(np.int32) y = np.random.randint(-3, 3, (3, 3, 3)).astype(np.int32) z = x + y x = Tensor(Dtype.I32, x.shape, x.flatten()) y = Tensor(Dtype.I32, y.shape, y.flatten()) z = Tensor(Dtype.I32, z.shape, z.flatten()) name = "add_i32" make_test([x, y], z, "input_0 + input_1", name) def broadcast(): x = np.random.randint(-3, 3, (3, 3, 3)).astype(np.int32) y = np.random.randint(-3, 3, (1, 3, 1)).astype(np.int32) z = x + y x = Tensor(Dtype.I32, x.shape, x.flatten()) y = Tensor(Dtype.I32, y.shape, y.flatten()) z = Tensor(Dtype.I32, z.shape, z.flatten()) name = "add_i32_broadcast" make_test([x, y], z, "input_0 + input_1", name) default() broadcast() @staticmethod def add_i8(): def default(): x = np.random.randint(-3, 3, (3, 3, 3)).astype(np.int8) y = np.random.randint(-3, 3, (3, 3, 3)).astype(np.int8) z = x + y x = Tensor(Dtype.I8, x.shape, x.flatten()) y = Tensor(Dtype.I8, y.shape, y.flatten()) z = Tensor(Dtype.I8, z.shape, z.flatten()) name = "add_i8" make_test([x, y], z, "input_0 + input_1", name) def broadcast(): x = np.random.randint(-3, 3, (3, 3, 3)).astype(np.int8) y = np.random.randint(-3, 3, (1, 3, 1)).astype(np.int8) z = x + y x = Tensor(Dtype.I8, x.shape, x.flatten()) y = Tensor(Dtype.I8, y.shape, y.flatten()) z = Tensor(Dtype.I8, z.shape, z.flatten()) name = "add_i8_broadcast" make_test([x, y], z, "input_0 + input_1", name) default() broadcast() @staticmethod def add_fp8x23(): def default(): x = np.random.randint(-3, 3, (3, 3, 3)).astype(np.float64) y = np.random.randint(-3, 3, (3, 3, 3)).astype(np.float64) z = x + y x = Tensor(Dtype.FP8x23, x.shape, to_fp( x.flatten(), FixedImpl.FP8x23)) y = Tensor(Dtype.FP8x23, y.shape, to_fp( y.flatten(), FixedImpl.FP8x23)) z = Tensor(Dtype.FP8x23, z.shape, to_fp( z.flatten(), FixedImpl.FP8x23)) name = "add_fp8x23" make_test([x, y], z, "input_0 + input_1", name) def broadcast(): x = np.random.randint(-3, 3, (3, 3, 3)).astype(np.float64) y = np.random.randint(-3, 3, (1, 3, 1)).astype(np.float64) z = x + y x = Tensor(Dtype.FP8x23, x.shape, to_fp( x.flatten(), FixedImpl.FP8x23)) y = Tensor(Dtype.FP8x23, y.shape, to_fp( y.flatten(), FixedImpl.FP8x23)) z = Tensor(Dtype.FP8x23, z.shape, to_fp( z.flatten(), FixedImpl.FP8x23)) name = "add_fp8x23_broadcast" make_test([x, y], z, "input_0 + input_1", name) default() broadcast() @staticmethod def add_fp16x16(): def default(): x = np.random.randint(-3, 3, (3, 3, 3)).astype(np.float64) y = np.random.randint(-3, 3, (3, 3, 3)).astype(np.float64) z = x + y x = Tensor(Dtype.FP16x16, x.shape, to_fp( x.flatten(), FixedImpl.FP16x16)) y = Tensor(Dtype.FP16x16, y.shape, to_fp( y.flatten(), FixedImpl.FP16x16)) z = Tensor(Dtype.FP16x16, z.shape, to_fp( z.flatten(), FixedImpl.FP16x16)) name = "add_fp16x16" make_test([x, y], z, "input_0 + input_1", name) def broadcast(): x = np.random.randint(-3, 3, (3, 3, 3)).astype(np.float64) y = np.random.randint(-3, 3, (1, 3, 1)).astype(np.float64) z = x + y x = Tensor(Dtype.FP16x16, x.shape, to_fp( x.flatten(), FixedImpl.FP16x16)) y = Tensor(Dtype.FP16x16, y.shape, to_fp( y.flatten(), FixedImpl.FP16x16)) z = Tensor(Dtype.FP16x16, z.shape, to_fp( z.flatten(), FixedImpl.FP16x16)) name = "add_fp16x16_broadcast" make_test([x, y], z, "input_0 + input_1", name) default() broadcast()
https://github.com/gizatechxyz/orion
nodegen/node/and.py
import numpy as np from nodegen.node import RunAll from ..helpers import make_test, to_fp, Tensor, Dtype, FixedImpl class And(RunAll): @staticmethod def and_bool(): def default(): x = (np.random.randn(3, 4) > 0).astype(bool) y = (np.random.randn(3, 4) > 0).astype(bool) z = np.logical_and(x, y) x = Tensor(Dtype.BOOL, x.shape, x.flatten()) y = Tensor(Dtype.BOOL, y.shape, y.flatten()) z = Tensor(Dtype.BOOL, z.shape, z.flatten()) name = "and_bool" make_test([x, y], z, "BoolTensor::and(@input_0, @input_1)", name) def broadcast(): x = (np.random.randn(3, 4, 5) > 0).astype(bool) y = (np.random.randn(3, 4, 5) > 0).astype(bool) z = np.logical_and(x, y) x = Tensor(Dtype.BOOL, x.shape, x.flatten()) y = Tensor(Dtype.BOOL, y.shape, y.flatten()) z = Tensor(Dtype.BOOL, z.shape, z.flatten()) name = "and_bool_broadcast" make_test([x, y], z, "BoolTensor::and(@input_0, @input_1)", name) default() broadcast()
https://github.com/gizatechxyz/orion
nodegen/node/argmax.py
import numpy as np from nodegen.node import RunAll from ..helpers import make_test, to_fp, Tensor, Dtype, FixedImpl def argmax_use_numpy(data: np.ndarray, axis: int = 0, keepdims: int = 1) -> np.ndarray: result = np.argmax(data, axis=axis) if keepdims == 1: result = np.expand_dims(result, axis) return result.astype(np.int64) def argmax_use_numpy_select_last_index( data: np.ndarray, axis: int = 0, keepdims: int = True ) -> np.ndarray: data = np.flip(data, axis) result = np.argmax(data, axis=axis) result = data.shape[axis] - result - 1 if keepdims: result = np.expand_dims(result, axis) return result.astype(np.int64) class Argmax(RunAll): @staticmethod def no_keepdims(): data = np.array([[2, 1], [3, 10]], dtype=np.float32) axis = 1 keepdims = 0 result = argmax_use_numpy(data, axis=axis, keepdims=keepdims) x = Tensor(Dtype.FP16x16, data.shape, data.flatten()) y = Tensor(Dtype.I32, result.shape, result.flatten()) name = "argmax_no_keepdims" make_test( [x], y, "input_0.argmax(1, Option::Some(false), Option::None(()))", name) @staticmethod def keepdims(): data = np.array([[2, 1], [3, 10]], dtype=np.float32) axis = 1 keepdims = 1 result = argmax_use_numpy(data, axis=axis, keepdims=keepdims) x = Tensor(Dtype.FP16x16, data.shape, data.flatten()) y = Tensor(Dtype.I32, result.shape, result.flatten()) name = "argmax_keepdims" make_test( [x], y, "input_0.argmax(1, Option::Some(true), Option::None(()))", name) @staticmethod def default_axes_keepdims(): data = np.array([[2, 1], [3, 10]], dtype=np.float32) keepdims = 1 result = argmax_use_numpy(data, keepdims=keepdims) x = Tensor(Dtype.FP16x16, data.shape, data.flatten()) y = Tensor(Dtype.I32, result.shape, result.flatten()) name = "argmax_default_axes_keepdims" make_test( [x], y, "input_0.argmax(0, Option::Some(true), Option::None(()))", name) @staticmethod def negative_axis_keepdims(): data = np.array([[2, 1], [3, 10]], dtype=np.float32) axis = -1 keepdims = 1 result = argmax_use_numpy(data, axis=axis, keepdims=keepdims) x = Tensor(Dtype.FP16x16, data.shape, data.flatten()) y = Tensor(Dtype.I32, result.shape, result.flatten()) name = "argmax_negative_axis_keepdims" make_test( [x], y, "input_0.argmax(-1, Option::Some(true), Option::None(()))", name) @staticmethod def no_keepdims_select_last_index(): data = np.array([[2, 2], [3, 10]], dtype=np.float32) axis = 1 keepdims = 0 result = argmax_use_numpy_select_last_index( data, axis=axis, keepdims=keepdims) x = Tensor(Dtype.FP16x16, data.shape, data.flatten()) y = Tensor(Dtype.I32, result.shape, result.flatten()) name = "argmax_no_keepdims_select_last_index" make_test( [x], y, "input_0.argmax(1, Option::Some(false), Option::Some(true))", name) @staticmethod def keepdims_select_last_index(): data = np.array([[2, 2], [3, 10]], dtype=np.float32) axis = 1 keepdims = 1 result = argmax_use_numpy_select_last_index( data, axis=axis, keepdims=keepdims) x = Tensor(Dtype.FP16x16, data.shape, data.flatten()) y = Tensor(Dtype.I32, result.shape, result.flatten()) name = "argmax_keepdims_select_last_index" make_test( [x], y, "input_0.argmax(1, Option::Some(true), Option::Some(true))", name) @staticmethod def default_axes_keepdims_select_last_index(): data = np.array([[2, 2], [3, 10]], dtype=np.float32) keepdims = 1 result = argmax_use_numpy_select_last_index(data, keepdims=keepdims) x = Tensor(Dtype.FP16x16, data.shape, data.flatten()) y = Tensor(Dtype.I32, result.shape, result.flatten()) name = "argmax_default_axes_keepdims_select_last_index" make_test( [x], y, "input_0.argmax(0, Option::Some(true), Option::Some(true))", name) @staticmethod def negative_axis_keepdims_select_last_index(): data = np.array([[2, 2], [3, 10]], dtype=np.float32) axis = -1 keepdims = 1 result = argmax_use_numpy_select_last_index(data, axis=axis, keepdims=keepdims) x = Tensor(Dtype.FP16x16, data.shape, data.flatten()) y = Tensor(Dtype.I32, result.shape, result.flatten()) name = "argmax_negative_axis_keepdims_select_last_index" make_test( [x], y, "input_0.argmax(-1, Option::Some(true), Option::Some(true))", name)
https://github.com/gizatechxyz/orion
nodegen/node/argmin.py
import numpy as np from nodegen.node import RunAll from ..helpers import make_test, to_fp, Tensor, Dtype, FixedImpl def argmin_use_numpy(data: np.ndarray, axis: int = 0, keepdims: int = 1, dtype=np.int64) -> np.ndarray: result = np.argmin(data, axis=axis) if keepdims == 1: result = np.expand_dims(result, axis) return result.astype(dtype) def argmin_use_numpy_select_last_index( data: np.ndarray, axis: int = 0, keepdims: int = True, dtype=np.int64 ) -> np.ndarray: data = np.flip(data, axis) result = np.argmin(data, axis=axis) result = data.shape[axis] - result - 1 if keepdims: result = np.expand_dims(result, axis) return result.astype(dtype) class Argmin(RunAll): @staticmethod def argmin_u32(): def argmin_1D(): def default_params(): x = np.random.randint(0, 255, (3)).astype(np.uint32) y = argmin_use_numpy(x, dtype=np.uint32).reshape((1)) x = Tensor(Dtype.U32, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "argmin_u32_1D_default" make_test( [x], y, "input_0.argmin(0, Option::None(()), Option::None(()))", name) def keepdims_false(): x = np.random.randint(0, 255, (3)).astype(np.uint32) y = argmin_use_numpy( x, keepdims=0, dtype=np.uint32).reshape((1)) x = Tensor(Dtype.U32, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "argmin_u32_1D_keepdims_false" make_test( [x], y, "input_0.argmin(0, Option::Some(false), Option::None(()))", name) def last_index(): x = np.random.randint(0, 255, (3)).astype(np.uint32) y = argmin_use_numpy_select_last_index( x, dtype=np.uint32).reshape((1)) x = Tensor(Dtype.U32, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "argmin_u32_1D_last_index" make_test( [x], y, "input_0.argmin(0, Option::None(()), Option::Some(true))", name) default_params() keepdims_false() last_index() argmin_1D() def argmin_2D(): def default_params(): x = np.random.randint(0, 255, (2, 2)).astype(np.uint32) y = argmin_use_numpy(x, dtype=np.uint32) x = Tensor(Dtype.U32, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "argmin_u32_2D_default" make_test( [x], y, "input_0.argmin(0, Option::None(()), Option::None(()))", name) def keepdims_false(): x = np.random.randint(0, 255, (2, 2)).astype(np.uint32) y = argmin_use_numpy( x, keepdims=0, dtype=np.uint32) x = Tensor(Dtype.U32, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "argmin_u32_2D_keepdims_false" make_test( [x], y, "input_0.argmin(0, Option::Some(false), Option::None(()))", name) def last_index(): x = np.random.randint(0, 255, (2, 2)).astype(np.uint32) y = argmin_use_numpy_select_last_index( x, dtype=np.uint32) x = Tensor(Dtype.U32, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "argmin_u32_2D_last_index" make_test( [x], y, "input_0.argmin(0, Option::None(()), Option::Some(true))", name) default_params() keepdims_false() last_index() argmin_2D() def argmin_3D(): def default_params(): x = np.random.randint(0, 255, (2, 2, 2)).astype(np.uint32) y = argmin_use_numpy(x, dtype=np.uint32) x = Tensor(Dtype.U32, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "argmin_u32_3D_default" make_test( [x], y, "input_0.argmin(0, Option::None(()), Option::None(()))", name) def keepdims_false(): x = np.random.randint(0, 255, (2, 2, 2)).astype(np.uint32) y = argmin_use_numpy( x, keepdims=0, dtype=np.uint32) x = Tensor(Dtype.U32, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "argmin_u32_3D_keepdims_false" make_test( [x], y, "input_0.argmin(0, Option::Some(false), Option::None(()))", name) def last_index(): x = np.random.randint(0, 255, (2, 2, 2)).astype(np.uint32) y = argmin_use_numpy_select_last_index( x, dtype=np.uint32) x = Tensor(Dtype.U32, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "argmin_u32_3D_last_index" make_test( [x], y, "input_0.argmin(0, Option::None(()), Option::Some(true))", name) default_params() keepdims_false() last_index() argmin_3D() @staticmethod def argmin_i32(): def argmin_1D(): def default_params(): x = np.random.randint(-127, 127, (3)).astype(np.int32) y = argmin_use_numpy(x, dtype=np.uint32).reshape((1)) x = Tensor(Dtype.I32, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "argmin_i32_1D_default" make_test( [x], y, "input_0.argmin(0, Option::None(()), Option::None(()))", name) def keepdims_false(): x = np.random.randint(-127, 127, (3)).astype(np.int32) y = argmin_use_numpy( x, keepdims=0, dtype=np.uint32).reshape((1)) x = Tensor(Dtype.I32, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "argmin_i32_1D_keepdims_false" make_test( [x], y, "input_0.argmin(0, Option::Some(false), Option::None(()))", name) def last_index(): x = np.random.randint(0, 255, (3)).astype(np.int32) y = argmin_use_numpy_select_last_index( x, dtype=np.uint32).reshape((1)) x = Tensor(Dtype.I32, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "argmin_i32_1D_last_index" make_test( [x], y, "input_0.argmin(0, Option::None(()), Option::Some(true))", name) default_params() keepdims_false() last_index() argmin_1D() def argmin_2D(): def default_params(): x = np.random.randint(-127, 127, (2, 2)).astype(np.int32) y = argmin_use_numpy(x, dtype=np.uint32) x = Tensor(Dtype.I32, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "argmin_i32_2D_default" make_test( [x], y, "input_0.argmin(0, Option::None(()), Option::None(()))", name) def keepdims_false(): x = np.random.randint(-127, 127, (2, 2)).astype(np.int32) y = argmin_use_numpy( x, keepdims=0, dtype=np.uint32) x = Tensor(Dtype.I32, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "argmin_i32_2D_keepdims_false" make_test( [x], y, "input_0.argmin(0, Option::Some(false), Option::None(()))", name) def last_index(): x = np.random.randint(-127, 127, (2, 2)).astype(np.int32) y = argmin_use_numpy_select_last_index( x, dtype=np.int32) x = Tensor(Dtype.I32, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "argmin_i32_2D_last_index" make_test( [x], y, "input_0.argmin(0, Option::None(()), Option::Some(true))", name) default_params() keepdims_false() last_index() argmin_2D() def argmin_3D(): def default_params(): x = np.random.randint(-127, 127, (2, 2, 2)).astype(np.int32) y = argmin_use_numpy(x, dtype=np.uint32) x = Tensor(Dtype.I32, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "argmin_i32_3D_default" make_test( [x], y, "input_0.argmin(0, Option::None(()), Option::None(()))", name) def keepdims_false(): x = np.random.randint(-127, 127, (2, 2, 2)).astype(np.int32) y = argmin_use_numpy( x, keepdims=0, dtype=np.uint32) x = Tensor(Dtype.I32, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "argmin_i32_3D_keepdims_false" make_test( [x], y, "input_0.argmin(0, Option::Some(false), Option::None(()))", name) def last_index(): x = np.random.randint(-127, 127, (2, 2, 2)).astype(np.int32) y = argmin_use_numpy_select_last_index( x, dtype=np.uint32) x = Tensor(Dtype.I32, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "argmin_i32_3D_last_index" make_test( [x], y, "input_0.argmin(0, Option::None(()), Option::Some(true))", name) default_params() keepdims_false() last_index() argmin_3D() @staticmethod def argmin_i8(): def argmin_1D(): def default_params(): x = np.random.randint(-127, 127, (3)).astype(np.int8) y = argmin_use_numpy(x, dtype=np.uint32).reshape((1)) x = Tensor(Dtype.I8, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "argmin_i8_1D_default" make_test( [x], y, "input_0.argmin(0, Option::None(()), Option::None(()))", name) def keepdims_false(): x = np.random.randint(-127, 127, (3)).astype(np.int8) y = argmin_use_numpy( x, keepdims=0, dtype=np.uint32).reshape((1)) x = Tensor(Dtype.I8, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "argmin_i8_1D_keepdims_false" make_test( [x], y, "input_0.argmin(0, Option::Some(false), Option::None(()))", name) def last_index(): x = np.random.randint(0, 255, (3)).astype(np.int8) y = argmin_use_numpy_select_last_index( x, dtype=np.uint32).reshape((1)) x = Tensor(Dtype.I8, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "argmin_i8_1D_last_index" make_test( [x], y, "input_0.argmin(0, Option::None(()), Option::Some(true))", name) default_params() keepdims_false() last_index() argmin_1D() def argmin_2D(): def default_params(): x = np.random.randint(-127, 127, (2, 2)).astype(np.int8) y = argmin_use_numpy(x, dtype=np.uint32) x = Tensor(Dtype.I8, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "argmin_i8_2D_default" make_test( [x], y, "input_0.argmin(0, Option::None(()), Option::None(()))", name) def keepdims_false(): x = np.random.randint(-127, 127, (2, 2)).astype(np.int8) y = argmin_use_numpy( x, keepdims=0, dtype=np.uint32) x = Tensor(Dtype.I8, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "argmin_i8_2D_keepdims_false" make_test( [x], y, "input_0.argmin(0, Option::Some(false), Option::None(()))", name) def last_index(): x = np.random.randint(-127, 127, (2, 2)).astype(np.int8) y = argmin_use_numpy_select_last_index( x, dtype=np.int8) x = Tensor(Dtype.I8, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "argmin_i8_2D_last_index" make_test( [x], y, "input_0.argmin(0, Option::None(()), Option::Some(true))", name) default_params() keepdims_false() last_index() argmin_2D() def argmin_3D(): def default_params(): x = np.random.randint(-127, 127, (2, 2, 2)).astype(np.int8) y = argmin_use_numpy(x, dtype=np.uint32) x = Tensor(Dtype.I8, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "argmin_i8_3D_default" make_test( [x], y, "input_0.argmin(0, Option::None(()), Option::None(()))", name) def keepdims_false(): x = np.random.randint(-127, 127, (2, 2, 2)).astype(np.int8) y = argmin_use_numpy( x, keepdims=0, dtype=np.uint32) x = Tensor(Dtype.I8, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "argmin_i8_3D_keepdims_false" make_test( [x], y, "input_0.argmin(0, Option::Some(false), Option::None(()))", name) def last_index(): x = np.random.randint(-127, 127, (2, 2, 2)).astype(np.int8) y = argmin_use_numpy_select_last_index( x, dtype=np.uint32) x = Tensor(Dtype.I8, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "argmin_i8_3D_last_index" make_test( [x], y, "input_0.argmin(0, Option::None(()), Option::Some(true))", name) default_params() keepdims_false() last_index() argmin_3D() @staticmethod def argmin_fp16x16(): def argmin_1D(): def default_params(): x = to_fp(np.random.randint(-127, 127, (3) ).astype(np.int8), FixedImpl.FP16x16) y = argmin_use_numpy(x, dtype=np.uint32).reshape((1)) x = Tensor(Dtype.FP16x16, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "argmin_fp16x16_1D_default" make_test( [x], y, "input_0.argmin(0, Option::None(()), Option::None(()))", name) def keepdims_false(): x = to_fp(np.random.randint(-127, 127, (3) ).astype(np.int8), FixedImpl.FP16x16) y = argmin_use_numpy( x, keepdims=0, dtype=np.uint32).reshape((1)) x = Tensor(Dtype.FP16x16, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "argmin_fp16x16_1D_keepdims_false" make_test( [x], y, "input_0.argmin(0, Option::Some(false), Option::None(()))", name) def last_index(): x = to_fp(np.random.randint(0, 255, (3)).astype( np.int8), FixedImpl.FP16x16) y = argmin_use_numpy_select_last_index( x, dtype=np.uint32).reshape((1)) x = Tensor(Dtype.FP16x16, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "argmin_fp16x16_1D_last_index" make_test( [x], y, "input_0.argmin(0, Option::None(()), Option::Some(true))", name) default_params() keepdims_false() last_index() argmin_1D() def argmin_2D(): def default_params(): x = to_fp(np.random.randint(-127, 127, (2, 2) ).astype(np.int8), FixedImpl.FP16x16) y = argmin_use_numpy(x, dtype=np.uint32) x = Tensor(Dtype.FP16x16, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "argmin_fp16x16_2D_default" make_test( [x], y, "input_0.argmin(0, Option::None(()), Option::None(()))", name) def keepdims_false(): x = to_fp(np.random.randint(-127, 127, (2, 2) ).astype(np.int8), FixedImpl.FP16x16) y = argmin_use_numpy( x, keepdims=0, dtype=np.uint32) x = Tensor(Dtype.FP16x16, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "argmin_fp16x16_2D_keepdims_false" make_test( [x], y, "input_0.argmin(0, Option::Some(false), Option::None(()))", name) def last_index(): x = to_fp(np.random.randint(-127, 127, (2, 2) ).astype(np.int8), FixedImpl.FP16x16) y = argmin_use_numpy_select_last_index( x, dtype=np.int8) x = Tensor(Dtype.FP16x16, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "argmin_fp16x16_2D_last_index" make_test( [x], y, "input_0.argmin(0, Option::None(()), Option::Some(true))", name) default_params() keepdims_false() last_index() argmin_2D() def argmin_3D(): def default_params(): x = to_fp(np.random.randint(-127, 127, (2, 2, 2) ).astype(np.int8), FixedImpl.FP16x16) y = argmin_use_numpy(x, dtype=np.uint32) x = Tensor(Dtype.FP16x16, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "argmin_fp16x16_3D_default" make_test( [x], y, "input_0.argmin(0, Option::None(()), Option::None(()))", name) def keepdims_false(): x = to_fp(np.random.randint(-127, 127, (2, 2, 2) ).astype(np.int8), FixedImpl.FP16x16) y = argmin_use_numpy( x, keepdims=0, dtype=np.uint32) x = Tensor(Dtype.FP16x16, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "argmin_fp16x16_3D_keepdims_false" make_test( [x], y, "input_0.argmin(0, Option::Some(false), Option::None(()))", name) def last_index(): x = to_fp(np.random.randint(-127, 127, (2, 2, 2) ).astype(np.int8), FixedImpl.FP16x16) y = argmin_use_numpy_select_last_index( x, dtype=np.uint32) x = Tensor(Dtype.FP16x16, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "argmin_fp16x16_3D_last_index" make_test( [x], y, "input_0.argmin(0, Option::None(()), Option::Some(true))", name) default_params() keepdims_false() last_index() argmin_3D() @staticmethod def argmin_fp8x23(): def argmin_1D(): def default_params(): x = to_fp(np.random.randint(-127, 127, (3) ).astype(np.int8), FixedImpl.FP8x23) y = argmin_use_numpy(x, dtype=np.uint32).reshape((1)) x = Tensor(Dtype.FP8x23, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "argmin_fp8x23_1D_default" make_test( [x], y, "input_0.argmin(0, Option::None(()), Option::None(()))", name) def keepdims_false(): x = to_fp(np.random.randint(-127, 127, (3) ).astype(np.int8), FixedImpl.FP8x23) y = argmin_use_numpy( x, keepdims=0, dtype=np.uint32).reshape((1)) x = Tensor(Dtype.FP8x23, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "argmin_fp8x23_1D_keepdims_false" make_test( [x], y, "input_0.argmin(0, Option::Some(false), Option::None(()))", name) def last_index(): x = to_fp(np.random.randint(0, 255, (3)).astype( np.int8), FixedImpl.FP8x23) y = argmin_use_numpy_select_last_index( x, dtype=np.uint32).reshape((1)) x = Tensor(Dtype.FP8x23, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "argmin_fp8x23_1D_last_index" make_test( [x], y, "input_0.argmin(0, Option::None(()), Option::Some(true))", name) default_params() keepdims_false() last_index() argmin_1D() def argmin_2D(): def default_params(): x = to_fp(np.random.randint(-127, 127, (2, 2) ).astype(np.int8), FixedImpl.FP8x23) y = argmin_use_numpy(x, dtype=np.uint32) x = Tensor(Dtype.FP8x23, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "argmin_fp8x23_2D_default" make_test( [x], y, "input_0.argmin(0, Option::None(()), Option::None(()))", name) def keepdims_false(): x = to_fp(np.random.randint(-127, 127, (2, 2) ).astype(np.int8), FixedImpl.FP8x23) y = argmin_use_numpy( x, keepdims=0, dtype=np.uint32) x = Tensor(Dtype.FP8x23, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "argmin_fp8x23_2D_keepdims_false" make_test( [x], y, "input_0.argmin(0, Option::Some(false), Option::None(()))", name) def last_index(): x = to_fp(np.random.randint(-127, 127, (2, 2) ).astype(np.int8), FixedImpl.FP8x23) y = argmin_use_numpy_select_last_index( x, dtype=np.int8) x = Tensor(Dtype.FP8x23, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "argmin_fp8x23_2D_last_index" make_test( [x], y, "input_0.argmin(0, Option::None(()), Option::Some(true))", name) default_params() keepdims_false() last_index() argmin_2D() def argmin_3D(): def default_params(): x = to_fp(np.random.randint(-127, 127, (2, 2, 2) ).astype(np.int8), FixedImpl.FP8x23) y = argmin_use_numpy(x, dtype=np.uint32) x = Tensor(Dtype.FP8x23, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "argmin_fp8x23_3D_default" make_test( [x], y, "input_0.argmin(0, Option::None(()), Option::None(()))", name) def keepdims_false(): x = to_fp(np.random.randint(-127, 127, (2, 2, 2) ).astype(np.int8), FixedImpl.FP8x23) y = argmin_use_numpy( x, keepdims=0, dtype=np.uint32) x = Tensor(Dtype.FP8x23, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "argmin_fp8x23_3D_keepdims_false" make_test( [x], y, "input_0.argmin(0, Option::Some(false), Option::None(()))", name) def last_index(): x = to_fp(np.random.randint(-127, 127, (2, 2, 2) ).astype(np.int8), FixedImpl.FP8x23) y = argmin_use_numpy_select_last_index( x, dtype=np.uint32) x = Tensor(Dtype.FP8x23, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "argmin_fp8x23_3D_last_index" make_test( [x], y, "input_0.argmin(0, Option::None(()), Option::Some(true))", name) default_params() keepdims_false() last_index() argmin_3D()
https://github.com/gizatechxyz/orion
nodegen/node/array_feature_extractor.py
import numpy as np from nodegen.node import RunAll from ..helpers import make_test, to_fp, Tensor, Dtype, FixedImpl class Array_feature_extractor(RunAll): @staticmethod def array_feature_extractor_3D(): def array_feature_extractor_i32(): x = np.random.randint(-3, 3, (2, 3, 4)).astype(np.int32) y = np.array([1, 3]).astype(np.uint32) z = (x[..., y]) x = Tensor(Dtype.I32, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) z = Tensor(Dtype.I32, z.shape, z.flatten()) name = "array_feature_extractor_3D_i32" make_test([x, y], z, "TensorTrait::array_feature_extractor(@input_0, input_1)", name) def array_feature_extractor_fp8x23(): x = np.random.randint(-3, 3, (2, 3, 4)).astype(np.float64) y = np.array([1, 3]).astype(np.uint32) z = (x[..., y]) x = Tensor(Dtype.FP8x23, x.shape, to_fp( x.flatten(), FixedImpl.FP8x23)) y = Tensor(Dtype.U32, y.shape, y.flatten()) z = Tensor(Dtype.FP8x23, z.shape, to_fp( z.flatten(), FixedImpl.FP8x23)) name = "array_feature_extractor_3D_fp8x23" make_test([x, y], z, "TensorTrait::array_feature_extractor(@input_0, input_1)", name) def array_feature_extractor_fp16x16(): x = np.random.randint(-3, 3, (2, 3, 4)).astype(np.float64) y = np.array([1, 3]).astype(np.uint32) z = (x[..., y]) x = Tensor(Dtype.FP16x16, x.shape, to_fp( x.flatten(), FixedImpl.FP16x16)) y = Tensor(Dtype.U32, y.shape, y.flatten()) z = Tensor(Dtype.FP16x16, z.shape, to_fp( z.flatten(), FixedImpl.FP16x16)) name = "array_feature_extractor_3D_fp16x16" make_test([x, y], z, "TensorTrait::array_feature_extractor(@input_0, input_1)", name) array_feature_extractor_i32() array_feature_extractor_fp8x23() array_feature_extractor_fp16x16() @staticmethod def array_feature_extractor_2D(): def array_feature_extractor_i32(): x = np.random.randint(-3, 3, (3, 4)).astype(np.int32) y = np.array([1, 3]).astype(np.uint32) z = (x[..., y]) x = Tensor(Dtype.I32, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) z = Tensor(Dtype.I32, z.shape, z.flatten()) name = "array_feature_extractor_2D_i32" make_test([x, y], z, "TensorTrait::array_feature_extractor(@input_0, input_1)", name) def array_feature_extractor_fp8x23(): x = np.random.randint(-3, 3, (3, 4)).astype(np.float64) y = np.array([1, 3]).astype(np.uint32) z = (x[..., y]) x = Tensor(Dtype.FP8x23, x.shape, to_fp( x.flatten(), FixedImpl.FP8x23)) y = Tensor(Dtype.U32, y.shape, y.flatten()) z = Tensor(Dtype.FP8x23, z.shape, to_fp( z.flatten(), FixedImpl.FP8x23)) name = "array_feature_extractor_2D_fp8x23" make_test([x, y], z, "TensorTrait::array_feature_extractor(@input_0, input_1)", name) def array_feature_extractor_fp16x16(): x = np.random.randint(-3, 3, (3, 4)).astype(np.float64) y = np.array([1, 3]).astype(np.uint32) z = (x[..., y]) x = Tensor(Dtype.FP16x16, x.shape, to_fp( x.flatten(), FixedImpl.FP16x16)) y = Tensor(Dtype.U32, y.shape, y.flatten()) z = Tensor(Dtype.FP16x16, z.shape, to_fp( z.flatten(), FixedImpl.FP16x16)) name = "array_feature_extractor_2D_fp16x16" make_test([x, y], z, "TensorTrait::array_feature_extractor(@input_0, input_1)", name) array_feature_extractor_i32() array_feature_extractor_fp8x23() array_feature_extractor_fp16x16() @staticmethod def array_feature_extractor_1D(): def array_feature_extractor_i32(): x = np.random.randint(-3, 3, (4)).astype(np.int32) y = np.array([1, 3]).astype(np.uint32) z = (x[..., y]) x = Tensor(Dtype.I32, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) z = Tensor(Dtype.I32, z.shape, z.flatten()) name = "array_feature_extractor_1D_i32" make_test([x, y], z, "TensorTrait::array_feature_extractor(@input_0, input_1)", name) def array_feature_extractor_fp8x23(): x = np.random.randint(-3, 3, (4)).astype(np.float64) y = np.array([1, 3]).astype(np.uint32) z = (x[..., y]) x = Tensor(Dtype.FP8x23, x.shape, to_fp( x.flatten(), FixedImpl.FP8x23)) y = Tensor(Dtype.U32, y.shape, y.flatten()) z = Tensor(Dtype.FP8x23, z.shape, to_fp( z.flatten(), FixedImpl.FP8x23)) name = "array_feature_extractor_1D_fp8x23" make_test([x, y], z, "TensorTrait::array_feature_extractor(@input_0, input_1)", name) def array_feature_extractor_fp16x16(): x = np.random.randint(-3, 3, (4)).astype(np.float64) y = np.array([1, 3]).astype(np.uint32) z = (x[..., y]) x = Tensor(Dtype.FP16x16, x.shape, to_fp( x.flatten(), FixedImpl.FP16x16)) y = Tensor(Dtype.U32, y.shape, y.flatten()) z = Tensor(Dtype.FP16x16, z.shape, to_fp( z.flatten(), FixedImpl.FP16x16)) name = "array_feature_extractor_1D_fp16x16" make_test([x, y], z, "TensorTrait::array_feature_extractor(@input_0, input_1)", name) array_feature_extractor_i32() array_feature_extractor_fp8x23() array_feature_extractor_fp16x16()
https://github.com/gizatechxyz/orion
nodegen/node/asin.py
import numpy as np from nodegen.node import RunAll from ..helpers import make_test, to_fp, Tensor, Dtype, FixedImpl class Asin(RunAll): @staticmethod def asin_fp8x23(): x = np.random.uniform(-1, 1, (2, 2)).astype(np.float64) y = np.arcsin(x) x = Tensor(Dtype.FP8x23, x.shape, to_fp(x.flatten(), FixedImpl.FP8x23)) y = Tensor(Dtype.FP8x23, y.shape, to_fp(y.flatten(), FixedImpl.FP8x23)) name = "asin_fp8x23" make_test([x], y, "input_0.asin()", name) @staticmethod def asin_fp16x16(): x = np.random.uniform(-1, 1, (2, 2)).astype(np.float64) y = np.arcsin(x) x = Tensor(Dtype.FP16x16, x.shape, to_fp(x.flatten(), FixedImpl.FP16x16)) y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16)) name = "asin_fp16x16" make_test([x], y, "input_0.asin()", name)
https://github.com/gizatechxyz/orion
nodegen/node/asinh.py
import numpy as np from nodegen.node import RunAll from ..helpers import make_test, to_fp, Tensor, Dtype, FixedImpl class Asinh(RunAll): @staticmethod def asinh_fp8x23(): x = np.random.uniform(1, 5, (2, 2)).astype(np.float64) y = np.arcsinh(x) x = Tensor(Dtype.FP8x23, x.shape, to_fp( x.flatten(), FixedImpl.FP8x23)) y = Tensor(Dtype.FP8x23, y.shape, to_fp( y.flatten(), FixedImpl.FP8x23)) name = "asinh_fp8x23" make_test([x], y, "input_0.asinh()", name) @staticmethod def asinh_fp16x16(): x = np.random.uniform(1, 5, (2, 2)).astype(np.float64) y = np.arcsinh(x) x = Tensor(Dtype.FP16x16, x.shape, to_fp( x.flatten(), FixedImpl.FP16x16)) y = Tensor(Dtype.FP16x16, y.shape, to_fp( y.flatten(), FixedImpl.FP16x16)) name = "asinh_fp16x16" make_test([x], y, "input_0.asinh()", name)
https://github.com/gizatechxyz/orion
nodegen/node/atan.py
import numpy as np from nodegen.node import RunAll from ..helpers import make_test, to_fp, Tensor, Dtype, FixedImpl class Atan(RunAll): @staticmethod def atan_fp8x23(): x = np.random.uniform(-10, 127, (2, 2)).astype(np.float64) y = np.arctan(x) x = Tensor(Dtype.FP8x23, x.shape, to_fp( x.flatten(), FixedImpl.FP8x23)) y = Tensor(Dtype.FP8x23, y.shape, to_fp( y.flatten(), FixedImpl.FP8x23)) name = "atan_fp8x23" make_test([x], y, "input_0.atan()", name) @staticmethod def atan_fp16x16(): x = np.random.uniform(-10, 127, (2, 2)).astype(np.float64) y = np.arctan(x) x = Tensor(Dtype.FP16x16, x.shape, to_fp( x.flatten(), FixedImpl.FP16x16)) y = Tensor(Dtype.FP16x16, y.shape, to_fp( y.flatten(), FixedImpl.FP16x16)) name = "atan_fp16x16" make_test([x], y, "input_0.atan()", name)
https://github.com/gizatechxyz/orion
nodegen/node/binarizer.py
import numpy as np from nodegen.node import RunAll from ..helpers import make_node, make_test, to_fp, Tensor, Dtype, FixedImpl class Binarizer(RunAll): @staticmethod def binarizer_fp8x23(): x = np.random.uniform(-3, 3, (3, 3, 3)).astype(np.float64) threshold = np.float64(1) y = (x > threshold).astype(np.float64) x = Tensor(Dtype.FP8x23, x.shape, to_fp( x.flatten(), FixedImpl.FP8x23)) y = Tensor(Dtype.FP8x23, y.shape, to_fp( y.flatten(), FixedImpl.FP8x23)) name = "binarizer_fp8x23" make_node([x], [y], name) make_test([x], y, "TensorTrait::binarizer(@input_0, Option::Some(FixedTrait::new(8388608, false));", name) @staticmethod def binarizer_fp16x16(): x = np.random.uniform(-3, 3, (3, 3, 3)).astype(np.float64) threshold = np.float64(1) y = (x > threshold).astype(np.float64) x = Tensor(Dtype.FP16x16, x.shape, to_fp( x.flatten(), FixedImpl.FP16x16)) y = Tensor(Dtype.FP16x16, y.shape, to_fp( y.flatten(), FixedImpl.FP16x16)) name = "binarizer_fp16x16" make_node([x], [y], name) make_test([x], y, "TensorTrait::binarizer(@input_0, Option::Some(FixedTrait::new(65536, false));", name)
https://github.com/gizatechxyz/orion
nodegen/node/blackman_window.py
import numpy as np from nodegen.node import RunAll from ..helpers import make_test, to_fp, Tensor, Dtype, FixedImpl, Trait, get_data_statement def blackman_window(size, output_datatype=None, periodic=None) -> np.ndarray: # type: ignore if periodic == 1: N_1 = size else: N_1 = size - 1 ni = np.arange(size, dtype=output_datatype) alpha = 0.42 beta = 0.08 y = np.cos((ni * (np.float64(np.pi).astype(output_datatype) * 2)) / N_1).astype(output_datatype) * (-0.5) y += np.cos((ni * (np.float64(np.pi).astype(output_datatype) * 4)) / N_1) * beta y += alpha return y.astype(output_datatype) class Blackman_window(RunAll): @staticmethod # We test here with fp8x23 implementation. def fp8x23(): args = [3] # x = np.float64(4) args_str = get_data_statement(to_fp(np.array(args).flatten(), FixedImpl.FP8x23), Dtype.FP8x23) y = blackman_window(*args, np.float64) # Convert the floats values in `y` to fixed points with `to_fp` method: y = Tensor(Dtype.FP8x23, y.shape, to_fp(y.flatten(), FixedImpl.FP8x23)) # Define the name of the generated folder. name = "blackman_window_fp8x23" # Invoke `make_test` method to generate corresponding Cairo tests: make_test( [], # List of input tensors. y, # The expected output result. f"TensorTrait::blackman_window({','.join(args_str)}, Option::Some(0))", # The code signature. name # The name of the generated folder. ) @staticmethod # We test here with fp16x16 implementation. def fp16x16(): print(get_data_statement(to_fp(np.array([np.pi]).flatten(), FixedImpl.FP16x16), Dtype.FP16x16)) args = [3] # x = np.float64(4) args_str = get_data_statement(to_fp(np.array(args).flatten(), FixedImpl.FP16x16), Dtype.FP16x16) y = blackman_window(*args, np.float16, 1) # Convert the floats values in `y` to fixed points with `to_fp` method: y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16)) # Define the name of the generated folder. name = "blackman_window_fp16x16" # Invoke `make_test` method to generate corresponding Cairo tests: make_test( [], # List of input tensors. y, # The expected output result. f"TensorTrait::blackman_window({','.join(args_str)}, Option::Some(1))", # The code signature. name # The name of the generated folder. ) # @staticmethod # # We test here with i8 implementation. # def i8(): # print(get_data_statement(np.array([np.pi]).flatten(), Dtype.I8)) # args = [5] # # x = np.float64(4) # args_str = get_data_statement(np.array(args).flatten(), Dtype.I8) # y = blackman_window(*args, np.int8) # print(y) # # Convert the floats values in `y` to fixed points with `to_fp` method: # y = Tensor(Dtype.I8, y.shape, y.flatten()) # # Define the name of the generated folder. # name = "blackman_window_i8" # # Invoke `make_test` method to generate corresponding Cairo tests: # make_test( # [], # List of input tensors. # y, # The expected output result. # f"TensorTrait::blackman_window({','.join(args_str)}, Option::Some(1))", # The code signature. # name # The name of the generated folder. # ) # @staticmethod # # We test here with i32 implementation. # def i32(): # print(get_data_statement(np.array([np.pi]).flatten(), Dtype.I32)) # args = [4] # # x = np.float64(4) # args_str = get_data_statement(np.array(args).flatten(), Dtype.I32) # y = blackman_window(*args, np.int32) # print(y) # # Convert the floats values in `y` to fixed points with `to_fp` method: # y = Tensor(Dtype.I32, y.shape, y.flatten()) # # Define the name of the generated folder. # name = "blackman_window_i32" # # Invoke `make_test` method to generate corresponding Cairo tests: # make_test( # [], # List of input tensors. # y, # The expected output result. # f"TensorTrait::blackman_window({','.join(args_str)}, Option::Some(0))", # The code signature. # name # The name of the generated folder. # ) # @staticmethod # # We test here with u32 implementation. # def u32(): # print(get_data_statement(np.array([np.pi]).flatten(), Dtype.U32)) # args = [4] # # x = np.float64(4) # args_str = get_data_statement(np.array(args).flatten(), Dtype.U32) # y = blackman_window(*args, np.uint32) # print(y) # # Convert the floats values in `y` to fixed points with `to_fp` method: # y = Tensor(Dtype.U32, y.shape, y.flatten()) # # Define the name of the generated folder. # name = "blackman_window_u32" # # Invoke `make_test` method to generate corresponding Cairo tests: # make_test( # [], # List of input tensors. # y, # The expected output result. # f"TensorTrait::blackman_window({','.join(args_str)}, Option::Some(0))", # The code signature. # name # The name of the generated folder. # )
https://github.com/gizatechxyz/orion
nodegen/node/ceil.py
import numpy as np from nodegen.node import RunAll from ..helpers import make_test, to_fp, Tensor, Dtype, FixedImpl class Ceil(RunAll): @staticmethod def ceil_fp8x23(): x = np.random.uniform(-1, 1, (2, 2)).astype(np.float64) y = np.ceil(x) x = Tensor(Dtype.FP8x23, x.shape, to_fp(x.flatten(), FixedImpl.FP8x23)) y = Tensor(Dtype.FP8x23, y.shape, to_fp(y.flatten(), FixedImpl.FP8x23)) name = "ceil_fp8x23" make_test([x], y, "input_0.ceil()", name) @staticmethod def ceil_fp16x16(): x = np.random.uniform(-1, 1, (2, 2)).astype(np.float64) y = np.ceil(x) x = Tensor(Dtype.FP16x16, x.shape, to_fp(x.flatten(), FixedImpl.FP16x16)) y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16)) name = "ceil_fp16x16" make_test([x], y, "input_0.ceil()", name)
https://github.com/gizatechxyz/orion
nodegen/node/clip.py
import numpy as np from nodegen.node import RunAll from ..helpers import make_test, to_fp, Tensor, Dtype, FixedImpl class Clip(RunAll): @staticmethod def clip_u32(): def clip_2D(): x = np.random.randint(0, 255, (2, 4)).astype(np.uint32) y = np.clip(x, np.uint32(10), np.uint32(20)) x = Tensor(Dtype.U32, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "clip_u32_2d" make_test( [x], y, "input_0.clip(Option::Some(10_u32), Option::Some(20_u32))", name) def clip_3D(): x = np.random.randint(0, 255, (20, 10, 5)).astype(np.uint32) y = np.clip(x, np.uint32(10), np.uint32(20)) x = Tensor(Dtype.U32, x.shape, x.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "clip_u32_3d" make_test( [x], y, "input_0.clip(Option::Some(10_u32), Option::Some(20_u32))", name) clip_2D() clip_3D() @staticmethod def clip_i32(): def clip_2D(): x = np.random.randint(-127, 127, (2, 4)).astype(np.int32) y = np.clip(x, np.int32(-10), np.int32(20)) x = Tensor(Dtype.I32, x.shape, x.flatten()) y = Tensor(Dtype.I32, y.shape, y.flatten()) name = "clip_i32_2d" make_test( [x], y, "input_0.clip(Option::Some(-10_i32), Option::Some(20_i32))", name) def clip_3D(): x = np.random.randint(-127, 127, (20, 10, 5)).astype(np.int32) y = np.clip(x, np.int32(-10), np.int32(20)) x = Tensor(Dtype.I32, x.shape, x.flatten()) y = Tensor(Dtype.I32, y.shape, y.flatten()) name = "clip_i32_3d" make_test( [x], y, "input_0.clip(Option::Some(-10_i32), Option::Some(20_i32))", name) clip_2D() clip_3D() @staticmethod def clip_i8(): def clip_2D(): x = np.random.randint(-127, 127, (2, 4)).astype(np.int8) y = np.clip(x, np.int8(-10), np.int8(20)) x = Tensor(Dtype.I8, x.shape, x.flatten()) y = Tensor(Dtype.I8, y.shape, y.flatten()) name = "clip_i8_2d" make_test( [x], y, "input_0.clip(Option::Some(-10_i8), Option::Some(20_i8))", name) def clip_3D(): x = np.random.randint(-127, 127, (20, 10, 5)).astype(np.int8) y = np.clip(x, np.int8(-10), np.int8(20)) x = Tensor(Dtype.I8, x.shape, x.flatten()) y = Tensor(Dtype.I8, y.shape, y.flatten()) name = "clip_i8_3d" make_test( [x], y, "input_0.clip(Option::Some(-10_i8), Option::Some(20_i8))", name) clip_2D() clip_3D() @staticmethod def clip_fp8x23(): def clip_2D(): x = to_fp(np.random.randint(-127, 127, (2, 4) ).astype(np.int64), FixedImpl.FP8x23) y = np.clip(x, to_fp(np.int64(-10), FixedImpl.FP8x23), to_fp(np.int64(20), FixedImpl.FP8x23)) x = Tensor(Dtype.FP8x23, x.shape, x.flatten()) y = Tensor(Dtype.FP8x23, y.shape, y.flatten()) name = "clip_fp8x23_2d" make_test( [x], y, "input_0.clip(Option::Some(FP8x23 { mag: 83886080, sign: true }), Option::Some(FP8x23 { mag: 167772160, sign: false }))", name) def clip_3D(): x = to_fp(np.random.randint(-127, 127, (20, 10, 5) ).astype(np.int64), FixedImpl.FP8x23) y = np.clip(x, to_fp(np.int64(-10), FixedImpl.FP8x23), to_fp(np.int64(20), FixedImpl.FP8x23)) x = Tensor(Dtype.FP8x23, x.shape, x.flatten()) y = Tensor(Dtype.FP8x23, y.shape, y.flatten()) name = "clip_fp8x23_3d" make_test( [x], y, "input_0.clip(Option::Some(FP8x23 { mag: 83886080, sign: true }), Option::Some(FP8x23 { mag: 167772160, sign: false }))", name) clip_2D() clip_3D() @staticmethod def clip_fp16x16(): def clip_2D(): x = to_fp(np.random.randint(-127, 127, (2, 4) ).astype(np.int64), FixedImpl.FP16x16) y = np.clip(x, to_fp(np.int64(-10), FixedImpl.FP16x16), to_fp(np.int64(20), FixedImpl.FP16x16)) x = Tensor(Dtype.FP16x16, x.shape, x.flatten()) y = Tensor(Dtype.FP16x16, y.shape, y.flatten()) name = "clip_fp16x16_2d" make_test( [x], y, "input_0.clip(Option::Some(FP16x16 { mag: 655360, sign: true }), Option::Some(FP16x16 { mag: 1310720, sign: false }))", name) def clip_3D(): x = to_fp(np.random.randint(-127, 127, (20, 10, 5) ).astype(np.int64), FixedImpl.FP16x16) y = np.clip(x, to_fp(np.int64(-10), FixedImpl.FP16x16), to_fp(np.int64(20), FixedImpl.FP16x16)) x = Tensor(Dtype.FP16x16, x.shape, x.flatten()) y = Tensor(Dtype.FP16x16, y.shape, y.flatten()) name = "clip_fp16x16_3d" make_test( [x], y, "input_0.clip(Option::Some(FP16x16 { mag: 655360, sign: true }), Option::Some(FP16x16 { mag: 1310720, sign: false }))", name) clip_2D() clip_3D()
https://github.com/gizatechxyz/orion
nodegen/node/col2im.py
import numpy as np from nodegen.node import RunAll from ..helpers import make_test, to_fp, Tensor, Dtype, FixedImpl, Trait def col2im(data, image_shape, block_shape, dilations=None, pads=None, strides=None): # type: ignore if dilations is None: dilations = [1 for s in image_shape] if pads is None: pads = [0 for s in image_shape] * 2 if strides is None: strides = [1 for s in image_shape] bl = np.prod(block_shape) C = data.shape[1] // bl data = data.reshape(data.shape[:1] + (C,) + (bl,) + data.shape[2:]) ks = tuple(block_shape) res = None for n in range(data.shape[0]): for c in range(data.shape[1]): out = col2im_naive_implementation( data[n, c, ...], image_shape, ks, dilations, pads, strides ) if res is None: new_shape = data.shape[:2] + out.shape res = np.empty(new_shape, dtype=data.dtype) res[n, c, ...] = out return (res,) # type: ignore def _get_indices(i, shape): res = np.empty((len(shape),), dtype=np.int64) k = len(shape) - 1 while k > 0: m = i % shape[k] res[k] = m i -= m i /= shape[k] k -= 1 res[0] = i return res def _col2im_shape_check(X, output_shape, kernel_shape, dilations, pads, strides): # type: ignore n_input_plane = X.shape[0] kernel_size = np.prod(kernel_shape) if n_input_plane % kernel_size != 0: raise ValueError( f"Expected size of input's dimension 1 to be divisible by the " f"product of kernel_size={kernel_size}, " f"but got input.size(1)={n_input_plane} " f"and kernel_shape={kernel_shape}, X.shape={X.shape}, output_shape={output_shape}." ) input_length = X.shape[1] n_dims = len(output_shape) n_blocks = [] for i in range(n_dims): n_block = ( output_shape[i] + pads[i, :].sum() - dilations[i] * (kernel_shape[i] - 1) - 1 ) // strides[i] + 1 n_blocks.append(n_block) block_size = np.prod(n_blocks) if input_length != block_size: raise ValueError( f"Given n_input_plane={n_input_plane}, X.shape={X.shape}, " f"output_shape={output_shape}, kernel_shape={kernel_shape}, " f"dilations={dilations}, pads={pads}, strides={strides}, " f"expected size of input's dimension 2 to match the calculated number of " f"sliding blocks {n_blocks} = {block_size}, " f"but got input.size(2)={input_length}.", ) def col2im_naive_implementation(data, image_shape, kernel_shape, dilations, pads, strides): # type: ignore n_dims = len(pads) // 2 new_pads = np.array([(pads[i], pads[i + n_dims]) for i in range(n_dims)]) _col2im_shape_check(data, image_shape, kernel_shape, dilations, new_pads, strides) data_col = data data_im = np.zeros(image_shape, dtype=data.dtype) dim_col = [] for i in range(n_dims): col = ( image_shape[i] + new_pads[i, :].sum() - (dilations[i] * (kernel_shape[i] - 1) + 1) ) // strides[i] + 1 dim_col.append(col) kernel_size = np.prod(kernel_shape) col_size = np.prod(dim_col) for c_col in range(kernel_size): offset = _get_indices(c_col, kernel_shape) for col in range(col_size): ind_col = _get_indices(col, dim_col) ind_im = [] for i in range(n_dims): ind = ( ind_col[i] * strides[i] - new_pads[i, 0] + offset[i] * dilations[i] ) ind_im.append(ind) if not _is_out(ind_im, data_im.shape): data_im[tuple(ind_im)] += data_col[c_col, col] return data_im def _is_out(ind, shape): for i, s in zip(ind, shape): if i < 0: return True if i >= s: return True return False class Col2im(RunAll): @staticmethod def export_col2im() -> None: x = np.array( [ [ [1.0, 6.0, 11.0, 16.0, 21.0], # (1, 5, 5) [2.0, 7.0, 12.0, 17.0, 22.0], [3.0, 8.0, 13.0, 18.0, 23.0], [4.0, 9.0, 14.0, 19.0, 24.0], [5.0, 0.0, 15.0, 20.0, 25.0], ] ] ).astype(np.float32) image_shape = np.array([5, 5]).astype(np.int64) block_shape = np.array([1, 5]).astype(np.int64) y = col2im(x,image_shape,block_shape) y = np.array(y[0]) x = Tensor(Dtype.FP16x16, x.shape, to_fp(x.flatten(), FixedImpl.FP16x16)) y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16)) name = "col2im" func_sig = "NNTrait::col2im(" func_sig += "@input_0," func_sig += "array![5, 5].span()," func_sig += "array![1, 5].span()," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None)" make_test( [x], y, func_sig, name, Trait.NN) @staticmethod def export_col2im_strides() -> None: x = np.array( [ [ [0.0, 0.0, 0.0, 0.0], # (1, 9, 4) [1.0, 1.0, 1.0, 1.0], [1.0, 1.0, 1.0, 1.0], [1.0, 1.0, 1.0, 1.0], [0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0], [1.0, 1.0, 1.0, 1.0], [0.0, 0.0, 0.0, 0.0], ] ] ).astype(np.float32) image_shape = np.array([5, 5]).astype(np.int64) block_shape = np.array([3, 3]).astype(np.int64) y = col2im(x,image_shape,block_shape,strides=[2, 2]) y = np.array(y[0]) x = Tensor(Dtype.FP16x16, x.shape, to_fp(x.flatten(), FixedImpl.FP16x16)) y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16)) name = "col2im_strides" func_sig = "NNTrait::col2im(" func_sig += "@input_0," func_sig += "array![5, 5].span()," func_sig += "array![3, 3].span()," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::Some(array![2, 2].span()))" make_test( [x], y, func_sig, name, Trait.NN) @staticmethod def export_col2im_pads() -> None: x = np.array( [ [ [ 1.0, 6.0, 11.0, 16.0, 21.0, 26, 31, 36, 41, 46, 51, 56, 61, 66, 71, ], # (1, 5, 15) [ 2.0, 7.0, 12.0, 17.0, 22.0, 27, 32, 37, 42, 47, 52, 57, 62, 67, 72, ], [ 3.0, 8.0, 13.0, 18.0, 23.0, 28, 33, 38, 43, 48, 53, 58, 63, 68, 73, ], [ 4.0, 9.0, 14.0, 19.0, 24.0, 29, 34, 39, 44, 49, 54, 59, 64, 69, 74, ], [ 5.0, 10.0, 15.0, 20.0, 25.0, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, ], ] ] ).astype(np.float32) image_shape = np.array([5, 5]).astype(np.int64) block_shape = np.array([1, 5]).astype(np.int64) y = col2im(x,image_shape,block_shape,pads=[0, 1, 0, 1]) y = np.array(y[0]) x = Tensor(Dtype.FP16x16, x.shape, to_fp(x.flatten(), FixedImpl.FP16x16)) y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16)) name = "col2im_pads" func_sig = "NNTrait::col2im(" func_sig += "@input_0," func_sig += "array![5, 5].span()," func_sig += "array![1, 5].span()," func_sig += "Option::None," func_sig += "Option::Some(array![0, 1, 0, 1].span())," func_sig += "Option::None)" make_test( [x], y, func_sig, name, Trait.NN) @staticmethod def export_col2im_dilations() -> None: x = np.array( [ [ [1.0, 5.0, 9.0, 13.0, 17], # (1, 4, 5) [2.0, 6.0, 10.0, 14.0, 18], [3.0, 7.0, 11.0, 15.0, 19], [4.0, 8.0, 12.0, 16.0, 20], ] ] ).astype(np.float32) image_shape = np.array([6, 6]).astype(np.int64) block_shape = np.array([2, 2]).astype(np.int64) y = col2im(x,image_shape,block_shape, dilations=[1, 5]) y = np.array(y[0]) x = Tensor(Dtype.FP16x16, x.shape, to_fp(x.flatten(), FixedImpl.FP16x16)) y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16)) name = "col2im_dilations" func_sig = "NNTrait::col2im(" func_sig += "@input_0," func_sig += "array![6, 6].span()," func_sig += "array![2, 2].span()," func_sig += "Option::Some(array![1, 5].span())," func_sig += "Option::None," func_sig += "Option::None)" make_test( [x], y, func_sig, name, Trait.NN) @staticmethod def export_col2im_5D() -> None: x = np.array( [ [ [1, 6, 11, 16, 21, 26, 31, 36, 41, 46, 51, 56], # (1, 10, 12) [2, 7, 12, 17, 22, 27, 32, 37, 42, 47, 52, 57], [3, 8, 13, 18, 23, 28, 33, 38, 43, 48, 53, 58], [4, 9, 14, 19, 24, 29, 34, 39, 44, 49, 54, 59], [5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60], [61, 66, 71, 76, 81, 86, 91, 96, 101, 106, 111, 116], [62, 67, 72, 77, 82, 87, 92, 97, 102, 107, 112, 117], [63, 68, 73, 78, 83, 88, 93, 98, 103, 108, 113, 118], [64, 69, 74, 79, 84, 89, 94, 99, 104, 109, 114, 119], [65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120], ] ] ).astype(np.float32) image_shape = np.array([3, 4, 5]).astype(np.int64) block_shape = np.array([1, 1, 5]).astype(np.int64) y = col2im(x,image_shape,block_shape) y = np.array(y[0]) x = Tensor(Dtype.FP16x16, x.shape, to_fp(x.flatten(), FixedImpl.FP16x16)) y = Tensor(Dtype.FP16x16, y.shape, to_fp(y.flatten(), FixedImpl.FP16x16)) name = "col2im_5D" func_sig = "NNTrait::col2im(" func_sig += "@input_0," func_sig += "array![3, 4, 5].span()," func_sig += "array![1, 1, 5].span()," func_sig += "Option::None," func_sig += "Option::None," func_sig += "Option::None)" make_test( [x], y, func_sig, name, Trait.NN)
https://github.com/gizatechxyz/orion
nodegen/node/compress.py
import numpy as np from nodegen.node import RunAll from ..helpers import make_test, to_fp, Tensor, Dtype, FixedImpl, Trait class Compress(RunAll): @staticmethod def compress_fp16x16(): def compress_3D(): def default(): x1 = np.arange(0,27).reshape(3,3,3).astype(np.int64) x2 = np.array([0, 1, 1]).astype(np.uint32) y = x1.compress(x2, axis=0) x1 = Tensor(Dtype.FP16x16, x1.shape, to_fp(x1.flatten(), FixedImpl.FP16x16)) x2 = Tensor(Dtype.U32, x2.shape, x2.flatten()) y = Tensor(Dtype.FP16x16, y.shape, to_fp( y.flatten(), FixedImpl.FP16x16)) name = "compress_fp16x16_3d_default" make_test( inputs = [x1, x2], output = y, func_sig = "input_0.compress(condition:input_1, axis:Option::Some(0))", name= name) def axis1(): x1 = np.arange(0,180).reshape(3,4,3,5).astype(np.int64) x2 = np.array([1, 1, 1, 0]).astype(np.int64) y = x1.compress(x2, axis=1) x1 = Tensor(Dtype.FP16x16, x1.shape, to_fp(x1.flatten(), FixedImpl.FP16x16)) x2 = Tensor(Dtype.U32, x2.shape, x2.flatten()) y = Tensor(Dtype.FP16x16, y.shape, to_fp( y.flatten(), FixedImpl.FP16x16)) name = "compress_fp16x16_3d_axis1" make_test( inputs = [x1, x2], output = y, func_sig = "input_0.compress(condition:input_1, axis:Option::Some(1))", name= name) def axis2(): x1 = np.arange(0,48).reshape(4,3,4).astype(np.int64) x2 = np.array([1, 0, 1, 1]).astype(np.int64) y = x1.compress(x2, axis=2) x1 = Tensor(Dtype.FP16x16, x1.shape, to_fp(x1.flatten(), FixedImpl.FP16x16)) x2 = Tensor(Dtype.U32, x2.shape, x2.flatten()) y = Tensor(Dtype.FP16x16, y.shape, to_fp( y.flatten(), FixedImpl.FP16x16)) name = "compress_fp16x16_3d_axis2" make_test( inputs = [x1, x2], output = y, func_sig = "input_0.compress(condition:input_1, axis:Option::Some(2))", name= name) def axis3(): x1 = np.arange(0,96).reshape(4,3,4, 2).astype(np.int64) x2 = np.array([1, 0]).astype(np.int64) y = x1.compress(x2, axis=3) x1 = Tensor(Dtype.FP16x16, x1.shape, to_fp(x1.flatten(), FixedImpl.FP16x16)) x2 = Tensor(Dtype.U32, x2.shape, x2.flatten()) y = Tensor(Dtype.FP16x16, y.shape, to_fp( y.flatten(), FixedImpl.FP16x16)) name = "compress_fp16x16_3d_axis3" make_test( inputs = [x1, x2], output = y, func_sig = "input_0.compress(condition:input_1, axis:Option::Some(3))", name= name) def noaxis(): x1 = np.arange(0,27).reshape(3,3,3).astype(np.int64) x2 = np.array([1, 0, 1, 0, 1, 1, 1, 1, 1]).astype(np.int64) y = x1.compress(x2) x1 = Tensor(Dtype.FP16x16, x1.shape, to_fp(x1.flatten(), FixedImpl.FP16x16)) x2 = Tensor(Dtype.U32, x2.shape, x2.flatten()) y = Tensor(Dtype.FP16x16, y.shape, to_fp( y.flatten(), FixedImpl.FP16x16)) name = "compress_fp16x16_3d_noaxis" make_test( inputs = [x1, x2], output = y, func_sig = "input_0.compress(condition:input_1, axis:Option::None(()))", name= name) default() axis1() axis2() axis3() noaxis() compress_3D() @staticmethod def compress_fp8x23(): def compress_3D(): def default(): x1 = np.arange(0,27).reshape(3,3,3).astype(np.int64) x2 = np.array([0, 1, 1]).astype(np.uint32) y = x1.compress(x2, axis=0) x1 = Tensor(Dtype.FP8x23, x1.shape, to_fp(x1.flatten(), FixedImpl.FP8x23)) x2 = Tensor(Dtype.U32, x2.shape, x2.flatten()) y = Tensor(Dtype.FP8x23, y.shape, to_fp(y.flatten(), FixedImpl.FP8x23)) name = "compress_fp8x23_3d_default" make_test( inputs = [x1, x2], output = y, func_sig = "input_0.compress(condition:input_1, axis:Option::Some(0))", name= name) def axis1(): x1 = np.arange(0,27).reshape(3,3,3).astype(np.int64) x2 = np.array([0, 1, 1]).astype(np.uint32) y = x1.compress(x2, axis=1) x1 = Tensor(Dtype.FP8x23, x1.shape, to_fp(x1.flatten(), FixedImpl.FP8x23)) x2 = Tensor(Dtype.U32, x2.shape, x2.flatten()) y = Tensor(Dtype.FP8x23, y.shape, to_fp(y.flatten(), FixedImpl.FP8x23)) name = "compress_fp8x23_3d_axis1" make_test( inputs = [x1, x2], output = y, func_sig = "input_0.compress(condition:input_1, axis:Option::Some(1))", name= name) def axis2(): x1 = np.arange(0,27).reshape(3,3,3).astype(np.int64) x2 = np.array([0, 1, 1]).astype(np.uint32) y = x1.compress(x2, axis=2) x1 = Tensor(Dtype.FP8x23, x1.shape, to_fp(x1.flatten(), FixedImpl.FP8x23)) x2 = Tensor(Dtype.U32, x2.shape, x2.flatten()) y = Tensor(Dtype.FP8x23, y.shape, to_fp(y.flatten(), FixedImpl.FP8x23)) name = "compress_fp8x23_3d_axis2" make_test( inputs = [x1, x2], output = y, func_sig = "input_0.compress(condition:input_1, axis:Option::Some(2))", name= name) default() axis1() axis2() compress_3D() @staticmethod def compress_i8(): def compress_3D(): def default(): x1 = np.arange(0,27).reshape(3,3,3).astype(np.int8) x2 = np.array([0, 1, 1]).astype(np.uint8) y = x1.compress(x2, axis=0) x1 = Tensor(Dtype.I8, x1.shape, x1.flatten()) x2 = Tensor(Dtype.U32, x2.shape, x2.flatten()) y = Tensor(Dtype.I8, y.shape, y.flatten()) name = "compress_i8_3d_default" make_test( inputs = [x1, x2], output = y, func_sig = "input_0.compress(condition:input_1, axis:Option::Some(0))", name= name) def axis1(): x1 = np.arange(0,27).reshape(3,3,3).astype(np.int8) x2 = np.array([0, 1, 1]).astype(np.uint8) y = x1.compress(x2, axis=1) x1 = Tensor(Dtype.I8, x1.shape, x1.flatten()) x2 = Tensor(Dtype.U32, x2.shape, x2.flatten()) y = Tensor(Dtype.I8, y.shape, y.flatten()) name = "compress_i8_3d_axis1" make_test( inputs = [x1, x2], output = y, func_sig = "input_0.compress(condition:input_1, axis:Option::Some(1))", name= name) def axis2(): x1 = np.arange(0,27).reshape(3,3,3).astype(np.int8) x2 = np.array([0, 1, 1]).astype(np.uint8) y = x1.compress(x2, axis=2) x1 = Tensor(Dtype.I8, x1.shape, x1.flatten()) x2 = Tensor(Dtype.U32, x2.shape, x2.flatten()) y = Tensor(Dtype.I8, y.shape, y.flatten()) name = "compress_i8_3d_axis2" make_test( inputs = [x1, x2], output = y, func_sig = "input_0.compress(condition:input_1, axis:Option::Some(2))", name= name) default() axis1() axis2() compress_3D() @staticmethod def compress_i32(): def compress_3D(): def default(): x1 = np.arange(0,27).reshape(3,3,3).astype(np.int32) x2 = np.array([0, 1, 1]).astype(np.int32) y = x1.compress(x2, axis=0) x1 = Tensor(Dtype.I32, x1.shape, x1.flatten()) x2 = Tensor(Dtype.U32, x2.shape, x2.flatten()) y = Tensor(Dtype.I32, y.shape, y.flatten()) name = "compress_i32_3d_default" make_test( inputs = [x1, x2], output = y, func_sig = "input_0.compress(condition:input_1, axis:Option::Some(0))", name= name) def axis1(): x1 = np.arange(0,27).reshape(3,3,3).astype(np.int32) x2 = np.array([0, 1, 1]).astype(np.int32) y = x1.compress(x2, axis=1) x1 = Tensor(Dtype.I32, x1.shape, x1.flatten()) x2 = Tensor(Dtype.U32, x2.shape, x2.flatten()) y = Tensor(Dtype.I32, y.shape, y.flatten()) name = "compress_i32_3d_axis1" make_test( inputs = [x1, x2], output = y, func_sig = "input_0.compress(condition:input_1, axis:Option::Some(1))", name= name) def axis2(): x1 = np.arange(0,27).reshape(3,3,3).astype(np.int32) x2 = np.array([0, 1, 1]).astype(np.int32) y = x1.compress(x2, axis=2) x1 = Tensor(Dtype.I32, x1.shape, x1.flatten()) x2 = Tensor(Dtype.U32, x2.shape, x2.flatten()) y = Tensor(Dtype.I32, y.shape, y.flatten()) name = "compress_i32_3d_axis2" make_test( inputs = [x1, x2], output = y, func_sig = "input_0.compress(condition:input_1, axis:Option::Some(2))", name= name) default() axis1() axis2() compress_3D() @staticmethod def compress_u32(): def compress_3D(): def default(): x1 = np.arange(0,48).reshape(4,4,3).astype(np.uint32) x2 = np.array([1, 1]).astype(np.uint32) y = x1.compress(x2, axis=0) x1 = Tensor(Dtype.U32, x1.shape, x1.flatten()) x2 = Tensor(Dtype.U32, x2.shape, x2.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "compress_u32_3d_default" make_test( inputs = [x1, x2], output = y, func_sig = "input_0.compress(condition:input_1, axis:Option::Some(0))", name= name) def axis1(): x1 = np.arange(0,36).reshape(3,4,3).astype(np.uint32) x2 = np.array([0, 1, 1]).astype(np.uint32) y = x1.compress(x2, axis=1) x1 = Tensor(Dtype.U32, x1.shape, x1.flatten()) x2 = Tensor(Dtype.U32, x2.shape, x2.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "compress_u32_3d_axis1" make_test( inputs = [x1, x2], output = y, func_sig = "input_0.compress(condition:input_1, axis:Option::Some(1))", name= name) def axis2(): x1 = np.arange(0,48).reshape(3,4,4).astype(np.uint32) x2 = np.array([0, 1, 1]).astype(np.uint32) y = x1.compress(x2, axis=2) x1 = Tensor(Dtype.U32, x1.shape, x1.flatten()) x2 = Tensor(Dtype.U32, x2.shape, x2.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "compress_u32_3d_axis2" make_test( inputs = [x1, x2], output = y, func_sig = "input_0.compress(condition:input_1, axis:Option::Some(2))", name= name) def axis2_2(): x1 = np.arange(0,60).reshape(3,4,5).astype(np.uint32) x2 = np.array([0, 1, 1]).astype(np.uint32) y = x1.compress(x2, axis=2) x1 = Tensor(Dtype.U32, x1.shape, x1.flatten()) x2 = Tensor(Dtype.U32, x2.shape, x2.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "compress_u32_3d_axis2_2" make_test( inputs = [x1, x2], output = y, func_sig = "input_0.compress(condition:input_1, axis:Option::Some(2))", name= name) def axis3(): x1 = np.arange(0,270).reshape(3,3,5,6).astype(np.uint32) x2 = np.array([0, 1, 1,1,0,1]).astype(np.uint32) y = x1.compress(x2, axis=3) x1 = Tensor(Dtype.U32, x1.shape, x1.flatten()) x2 = Tensor(Dtype.U32, x2.shape, x2.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "compress_u32_3d_axis3" make_test( inputs = [x1, x2], output = y, func_sig = "input_0.compress(condition:input_1, axis:Option::Some(3))", name= name) default() axis1() axis2() axis2_2() axis3() compress_3D()
https://github.com/gizatechxyz/orion
nodegen/node/concat.py
import numpy as np from nodegen.node import RunAll from ..helpers import make_test, to_fp, Tensor, Dtype, FixedImpl, Trait # 687 class Concat(RunAll): @staticmethod def concat_u32(): def concat_1D(): x1 = np.arange(0,3).astype(np.uint32) x2 = np.arange(3,6).astype(np.uint32) y = np.concatenate((x1, x2)) x1 = Tensor(Dtype.U32, x1.shape, x1.flatten()) x2 = Tensor(Dtype.U32, x2.shape, x2.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "concat_u32_1d" make_test( inputs = [x1, x2], output = y, func_sig = "TensorTrait::concat(array![input_0, input_1].span(), 0)", name= name, trait= Trait.TENSOR) def concat_2D(): x1 = np.arange(0,4).astype(np.uint32).reshape(2,2) x2 = np.arange(4,8).astype(np.uint32).reshape(2,2) y = np.concatenate((x1, x2), axis=0) x1 = Tensor(Dtype.U32, x1.shape, x1.flatten()) x2 = Tensor(Dtype.U32, x2.shape, x2.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "concat_u32_2d" make_test( inputs = [x1, x2], output = y, func_sig = "TensorTrait::concat(array![input_0, input_1].span(), 0)", name= name, trait= Trait.TENSOR) def concat_3D(): def default(): x1 = np.arange(0,27).astype(np.uint32).reshape(3,3,3) x2 = np.arange(27,54).astype(np.uint32).reshape(3,3,3) y = np.concatenate((x1, x2), axis=0) x1 = Tensor(Dtype.U32, x1.shape, x1.flatten()) x2 = Tensor(Dtype.U32, x2.shape, x2.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "concat_u32_3d_default" make_test( inputs = [x1, x2], output = y, func_sig = "TensorTrait::concat(array![input_0, input_1].span(), 0)", name= name, trait= Trait.TENSOR) def axis_1(): x1 = np.arange(0,27).astype(np.uint32).reshape(3,3,3) x2 = np.arange(27,54).astype(np.uint32).reshape(3,3,3) y = np.concatenate((x1, x2), axis=1) x1 = Tensor(Dtype.U32, x1.shape, x1.flatten()) x2 = Tensor(Dtype.U32, x2.shape, x2.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "concat_u32_3d_axis_1" make_test( inputs = [x1, x2], output = y, func_sig = "TensorTrait::concat(array![input_0, input_1].span(), 1)", name= name, trait= Trait.TENSOR) def axis_2(): x1 = np.arange(0,27).astype(np.uint32).reshape(3,3,3) x2 = np.arange(27,54).astype(np.uint32).reshape(3,3,3) y = np.concatenate((x1, x2), axis=2) x1 = Tensor(Dtype.U32, x1.shape, x1.flatten()) x2 = Tensor(Dtype.U32, x2.shape, x2.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "concat_u32_3d_axis_2" make_test( inputs = [x1, x2], output = y, func_sig = "TensorTrait::concat(array![input_0, input_1].span(), 2)", name= name, trait= Trait.TENSOR) def three_tensors_axis_1(): x1 = np.arange(0,27).astype(np.uint32).reshape(3,3,3) x2 = np.arange(27,54).astype(np.uint32).reshape(3,3,3) x3 = np.arange(54,81).astype(np.uint32).reshape(3,3,3) y = np.concatenate((x1, x2, x3), axis=1) x1 = Tensor(Dtype.U32, x1.shape, x1.flatten()) x2 = Tensor(Dtype.U32, x2.shape, x2.flatten()) x3 = Tensor(Dtype.U32, x3.shape, x3.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "concat_u32_3d_three_tensors_axis_1" make_test( inputs = [x1, x2, x3], output = y, func_sig = "TensorTrait::concat(array![input_0, input_1, input_2].span(), 1)", name= name, trait= Trait.TENSOR) def three_tensors_axis_2(): x1 = np.arange(0,27).astype(np.uint32).reshape(3,3,3) x2 = np.arange(27,54).astype(np.uint32).reshape(3,3,3) x3 = np.arange(54,81).astype(np.uint32).reshape(3,3,3) y = np.concatenate((x1, x2, x3), axis=2) x1 = Tensor(Dtype.U32, x1.shape, x1.flatten()) x2 = Tensor(Dtype.U32, x2.shape, x2.flatten()) x3 = Tensor(Dtype.U32, x3.shape, x3.flatten()) y = Tensor(Dtype.U32, y.shape, y.flatten()) name = "concat_u32_3d_three_tensors_axis_2" make_test( inputs = [x1, x2, x3], output = y, func_sig = "TensorTrait::concat(array![input_0, input_1, input_2].span(), 2)", name= name, trait= Trait.TENSOR) default() axis_1() axis_2() three_tensors_axis_1() three_tensors_axis_2() concat_1D() concat_2D() concat_3D() @staticmethod def concat_i32(): def concat_1D(): x1 = np.arange(0,3).astype(np.int32) x2 = np.arange(3,6).astype(np.int32) y = np.concatenate((x1, x2)) x1 = Tensor(Dtype.I32, x1.shape, x1.flatten()) x2 = Tensor(Dtype.I32, x2.shape, x2.flatten()) y = Tensor(Dtype.I32, y.shape, y.flatten()) name = "concat_i32_1d" make_test( inputs = [x1, x2], output = y, func_sig = "TensorTrait::concat(array![input_0, input_1].span(), 0)", name= name, trait= Trait.TENSOR.TENSOR) def concat_2D(): x1 = np.arange(0,4).astype(np.int32).reshape(2,2) x2 = np.arange(4,8).astype(np.int32).reshape(2,2) y = np.concatenate((x1, x2), axis=0) x1 = Tensor(Dtype.I32, x1.shape, x1.flatten()) x2 = Tensor(Dtype.I32, x2.shape, x2.flatten()) y = Tensor(Dtype.I32, y.shape, y.flatten()) name = "concat_i32_2d" make_test( inputs = [x1, x2], output = y, func_sig = "TensorTrait::concat(array![input_0, input_1].span(), 0)", name= name, trait= Trait.TENSOR) def concat_3D(): def default(): x1 = np.arange(0,27).astype(np.int32).reshape(3,3,3) x2 = np.arange(27,54).astype(np.int32).reshape(3,3,3) y = np.concatenate((x1, x2), axis=0) x1 = Tensor(Dtype.I32, x1.shape, x1.flatten()) x2 = Tensor(Dtype.I32, x2.shape, x2.flatten()) y = Tensor(Dtype.I32, y.shape, y.flatten()) name = "concat_i32_3d_default" make_test( inputs = [x1, x2], output = y, func_sig = "TensorTrait::concat(array![input_0, input_1].span(), 0)", name= name, trait= Trait.TENSOR) def axis_1(): x1 = np.arange(0,27).astype(np.int32).reshape(3,3,3) x2 = np.arange(27,54).astype(np.int32).reshape(3,3,3) y = np.concatenate((x1, x2), axis=1) x1 = Tensor(Dtype.I32, x1.shape, x1.flatten()) x2 = Tensor(Dtype.I32, x2.shape, x2.flatten()) y = Tensor(Dtype.I32, y.shape, y.flatten()) name = "concat_i32_3d_axis_1" make_test( inputs = [x1, x2], output = y, func_sig = "TensorTrait::concat(array![input_0, input_1].span(), 1)", name= name, trait= Trait.TENSOR) def axis_2(): x1 = np.arange(0,27).astype(np.int32).reshape(3,3,3) x2 = np.arange(27,54).astype(np.int32).reshape(3,3,3) y = np.concatenate((x1, x2), axis=2) x1 = Tensor(Dtype.I32, x1.shape, x1.flatten()) x2 = Tensor(Dtype.I32, x2.shape, x2.flatten()) y = Tensor(Dtype.I32, y.shape, y.flatten()) name = "concat_i32_3d_axis_2" make_test( inputs = [x1, x2], output = y, func_sig = "TensorTrait::concat(array![input_0, input_1].span(), 2)", name= name, trait= Trait.TENSOR) def three_tensors_axis_1(): x1 = np.arange(0,27).astype(np.int32).reshape(3,3,3) x2 = np.arange(27,54).astype(np.int32).reshape(3,3,3) x3 = np.arange(54,81).astype(np.int32).reshape(3,3,3) y = np.concatenate((x1, x2, x3), axis=1) x1 = Tensor(Dtype.I32, x1.shape, x1.flatten()) x2 = Tensor(Dtype.I32, x2.shape, x2.flatten()) x3 = Tensor(Dtype.I32, x3.shape, x3.flatten()) y = Tensor(Dtype.I32, y.shape, y.flatten()) name = "concat_i32_3d_three_tensors_axis_1" make_test( inputs = [x1, x2, x3], output = y, func_sig = "TensorTrait::concat(array![input_0, input_1, input_2].span(), 1)", name= name, trait= Trait.TENSOR) def three_tensors_axis_2(): x1 = np.arange(0,27).astype(np.int32).reshape(3,3,3) x2 = np.arange(27,54).astype(np.int32).reshape(3,3,3) x3 = np.arange(54,81).astype(np.int32).reshape(3,3,3) y = np.concatenate((x1, x2, x3), axis=2) x1 = Tensor(Dtype.I32, x1.shape, x1.flatten()) x2 = Tensor(Dtype.I32, x2.shape, x2.flatten()) x3 = Tensor(Dtype.I32, x3.shape, x3.flatten()) y = Tensor(Dtype.I32, y.shape, y.flatten()) name = "concat_i32_3d_three_tensors_axis_2" make_test( inputs = [x1, x2, x3], output = y, func_sig = "TensorTrait::concat(array![input_0, input_1, input_2].span(), 2)", name= name, trait= Trait.TENSOR) default() axis_1() axis_2() three_tensors_axis_1() three_tensors_axis_2() concat_1D() concat_2D() concat_3D() @staticmethod def concat_i8(): def concat_1D(): x1 = np.arange(0,3).astype(np.int8) x2 = np.arange(3,6).astype(np.int8) y = np.concatenate((x1, x2)) x1 = Tensor(Dtype.FP8x23, x1.shape, x1.flatten()) x2 = Tensor(Dtype.FP8x23, x2.shape, x2.flatten()) y = Tensor(Dtype.FP8x23, y.shape, y.flatten()) name = "concat_i8_1d" make_test( inputs = [x1, x2], output = y, func_sig = "TensorTrait::concat(array![input_0, input_1].span(), 0)", name= name, trait= Trait.TENSOR.TENSOR) def concat_2D(): x1 = np.arange(0,4).astype(np.int8).reshape(2,2) x2 = np.arange(4,8).astype(np.int8).reshape(2,2) y = np.concatenate((x1, x2), axis=0) x1 = Tensor(Dtype.FP8x23, x1.shape, x1.flatten()) x2 = Tensor(Dtype.FP8x23, x2.shape, x2.flatten()) y = Tensor(Dtype.FP8x23, y.shape, y.flatten()) name = "concat_i8_2d" make_test( inputs = [x1, x2], output = y, func_sig = "TensorTrait::concat(array![input_0, input_1].span(), 0)", name= name, trait= Trait.TENSOR) def concat_3D(): def default(): x1 = np.arange(0,27).astype(np.int8).reshape(3,3,3) x2 = np.arange(27,54).astype(np.int8).reshape(3,3,3) y = np.concatenate((x1, x2), axis=0) x1 = Tensor(Dtype.FP8x23, x1.shape, x1.flatten()) x2 = Tensor(Dtype.FP8x23, x2.shape, x2.flatten()) y = Tensor(Dtype.FP8x23, y.shape, y.flatten()) name = "concat_i8_3d_default" make_test( inputs = [x1, x2], output = y, func_sig = "TensorTrait::concat(array![input_0, input_1].span(), 0)", name= name, trait= Trait.TENSOR) def axis_1(): x1 = np.arange(0,27).astype(np.int8).reshape(3,3,3) x2 = np.arange(27,54).astype(np.int8).reshape(3,3,3) y = np.concatenate((x1, x2), axis=1) x1 = Tensor(Dtype.FP8x23, x1.shape, x1.flatten()) x2 = Tensor(Dtype.FP8x23, x2.shape, x2.flatten()) y = Tensor(Dtype.FP8x23, y.shape, y.flatten()) name = "concat_i8_3d_axis_1" make_test( inputs = [x1, x2], output = y, func_sig = "TensorTrait::concat(array![input_0, input_1].span(), 1)", name= name, trait= Trait.TENSOR) def axis_2(): x1 = np.arange(0,27).astype(np.int8).reshape(3,3,3) x2 = np.arange(27,54).astype(np.int8).reshape(3,3,3) y = np.concatenate((x1, x2), axis=2) x1 = Tensor(Dtype.FP8x23, x1.shape, x1.flatten()) x2 = Tensor(Dtype.FP8x23, x2.shape, x2.flatten()) y = Tensor(Dtype.FP8x23, y.shape, y.flatten()) name = "concat_i8_3d_axis_2" make_test( inputs = [x1, x2], output = y, func_sig = "TensorTrait::concat(array![input_0, input_1].span(), 2)", name= name, trait= Trait.TENSOR) def three_tensors_axis_1(): x1 = np.arange(0,27).astype(np.int8).reshape(3,3,3) x2 = np.arange(27,54).astype(np.int8).reshape(3,3,3) x3 = np.arange(54,81).astype(np.int8).reshape(3,3,3) y = np.concatenate((x1, x2, x3), axis=1) x1 = Tensor(Dtype.FP8x23, x1.shape, x1.flatten()) x2 = Tensor(Dtype.FP8x23, x2.shape, x2.flatten()) x3 = Tensor(Dtype.FP8x23, x3.shape, x3.flatten()) y = Tensor(Dtype.FP8x23, y.shape, y.flatten()) name = "concat_i8_3d_three_tensors_axis_1" make_test( inputs = [x1, x2, x3], output = y, func_sig = "TensorTrait::concat(array![input_0, input_1, input_2].span(), 1)", name= name, trait= Trait.TENSOR) def three_tensors_axis_2(): x1 = np.arange(0,27).astype(np.int8).reshape(3,3,3) x2 = np.arange(27,54).astype(np.int8).reshape(3,3,3) x3 = np.arange(54,81).astype(np.int8).reshape(3,3,3) y = np.concatenate((x1, x2, x3), axis=2) x1 = Tensor(Dtype.FP8x23, x1.shape, x1.flatten()) x2 = Tensor(Dtype.FP8x23, x2.shape, x2.flatten()) x3 = Tensor(Dtype.FP8x23, x3.shape, x3.flatten()) y = Tensor(Dtype.FP8x23, y.shape, y.flatten()) name = "concat_i8_3d_three_tensors_axis_2" make_test( inputs = [x1, x2, x3], output = y, func_sig = "TensorTrait::concat(array![input_0, input_1, input_2].span(), 2)", name= name, trait= Trait.TENSOR) default() axis_1() axis_2() three_tensors_axis_1() three_tensors_axis_2() concat_1D() concat_2D() concat_3D() @staticmethod def concat_fp8x23(): def concat_1D(): x1 = np.arange(0,3).astype(np.int64) x2 = np.arange(3,6).astype(np.int64) y = np.concatenate((x1, x2)) x1 = Tensor(Dtype.FP8x23, x1.shape, to_fp( x1.flatten(), FixedImpl.FP8x23)) x2 = Tensor(Dtype.FP8x23, x2.shape, to_fp( x2.flatten(), FixedImpl.FP8x23)) y = Tensor(Dtype.FP8x23, y.shape, to_fp( y.flatten(), FixedImpl.FP8x23)) name = "concat_fp8x23_1d" make_test( inputs = [x1, x2], output = y, func_sig = "TensorTrait::concat(array![input_0, input_1].span(), 0)", name= name, trait= Trait.TENSOR.TENSOR) def concat_2D(): x1 = np.arange(0,4).astype(np.int64).reshape(2,2) x2 = np.arange(4,8).astype(np.int64).reshape(2,2) y = np.concatenate((x1, x2), axis=0) x1 = Tensor(Dtype.FP8x23, x1.shape, to_fp( x1.flatten(), FixedImpl.FP8x23)) x2 = Tensor(Dtype.FP8x23, x2.shape, to_fp( x2.flatten(), FixedImpl.FP8x23)) y = Tensor(Dtype.FP8x23, y.shape, to_fp( y.flatten(), FixedImpl.FP8x23)) name = "concat_fp8x23_2d" make_test( inputs = [x1, x2], output = y, func_sig = "TensorTrait::concat(array![input_0, input_1].span(), 0)", name= name, trait= Trait.TENSOR) def concat_3D(): def default(): x1 = np.arange(0,27).astype(np.int64).reshape(3,3,3) x2 = np.arange(27,54).astype(np.int64).reshape(3,3,3) y = np.concatenate((x1, x2), axis=0) x1 = Tensor(Dtype.FP8x23, x1.shape, to_fp( x1.flatten(), FixedImpl.FP8x23)) x2 = Tensor(Dtype.FP8x23, x2.shape, to_fp( x2.flatten(), FixedImpl.FP8x23)) y = Tensor(Dtype.FP8x23, y.shape,to_fp( y.flatten(), FixedImpl.FP8x23)) name = "concat_fp8x23_3d_default" make_test( inputs = [x1, x2], output = y, func_sig = "TensorTrait::concat(array![input_0, input_1].span(), 0)", name= name, trait= Trait.TENSOR) def axis_1(): x1 = np.arange(0,27).astype(np.int64).reshape(3,3,3) x2 = np.arange(27,54).astype(np.int64).reshape(3,3,3) y = np.concatenate((x1, x2), axis=1) x1 = Tensor(Dtype.FP8x23, x1.shape, to_fp( x1.flatten(), FixedImpl.FP8x23)) x2 = Tensor(Dtype.FP8x23, x2.shape, to_fp( x2.flatten(), FixedImpl.FP8x23)) y = Tensor(Dtype.FP8x23, y.shape, to_fp( y.flatten(), FixedImpl.FP8x23)) name = "concat_fp8x23_3d_axis_1" make_test( inputs = [x1, x2], output = y, func_sig = "TensorTrait::concat(array![input_0, input_1].span(), 1)", name= name, trait= Trait.TENSOR) def axis_2(): x1 = np.arange(0,27).astype(np.int64).reshape(3,3,3) x2 = np.arange(27,54).astype(np.int64).reshape(3,3,3) y = np.concatenate((x1, x2), axis=2) x1 = Tensor(Dtype.FP8x23, x1.shape, to_fp( x1.flatten(), FixedImpl.FP8x23)) x2 = Tensor(Dtype.FP8x23, x2.shape, to_fp( x2.flatten(), FixedImpl.FP8x23)) y = Tensor(Dtype.FP8x23, y.shape, to_fp( y.flatten(), FixedImpl.FP8x23)) name = "concat_fp8x23_3d_axis_2" make_test( inputs = [x1, x2], output = y, func_sig = "TensorTrait::concat(array![input_0, input_1].span(), 2)", name= name, trait= Trait.TENSOR) def three_tensors_axis_1(): x1 = np.arange(0,27).astype(np.int64).reshape(3,3,3) x2 = np.arange(27,54).astype(np.int64).reshape(3,3,3) x3 = np.arange(54,81).astype(np.int64).reshape(3,3,3) y = np.concatenate((x1, x2, x3), axis=1) x1 = Tensor(Dtype.FP8x23, x1.shape, to_fp( x1.flatten(), FixedImpl.FP8x23)) x2 = Tensor(Dtype.FP8x23, x2.shape, to_fp( x2.flatten(), FixedImpl.FP8x23)) x3 = Tensor(Dtype.FP8x23, x3.shape,to_fp( x3.flatten(), FixedImpl.FP8x23)) y = Tensor(Dtype.FP8x23, y.shape, to_fp( y.flatten(), FixedImpl.FP8x23)) name = "concat_fp8x23_3d_three_tensors_axis_1" make_test( inputs = [x1, x2, x3], output = y, func_sig = "TensorTrait::concat(array![input_0, input_1, input_2].span(), 1)", name= name, trait= Trait.TENSOR) def three_tensors_axis_2(): x1 = np.arange(0,27).astype(np.int64).reshape(3,3,3) x2 = np.arange(27,54).astype(np.int64).reshape(3,3,3) x3 = np.arange(54,81).astype(np.int64).reshape(3,3,3) y = np.concatenate((x1, x2, x3), axis=2) x1 = Tensor(Dtype.FP8x23, x1.shape, to_fp( x1.flatten(), FixedImpl.FP8x23)) x2 = Tensor(Dtype.FP8x23, x2.shape, to_fp( x2.flatten(), FixedImpl.FP8x23)) x3 = Tensor(Dtype.FP8x23, x3.shape, to_fp( x3.flatten(), FixedImpl.FP8x23)) y = Tensor(Dtype.FP8x23, y.shape, to_fp( y.flatten(), FixedImpl.FP8x23)) name = "concat_fp8x23_3d_three_tensors_axis_2" make_test( inputs = [x1, x2, x3], output = y, func_sig = "TensorTrait::concat(array![input_0, input_1, input_2].span(), 2)", name= name, trait= Trait.TENSOR) default() axis_1() axis_2() three_tensors_axis_1() three_tensors_axis_2() concat_1D() concat_2D() concat_3D() staticmethod def concat_fp16x16(): def concat_1D(): x1 = np.arange(0,3).astype(np.int64) x2 = np.arange(3,6).astype(np.int64) y = np.concatenate((x1, x2)) x1 = Tensor(Dtype.FP16x16, x1.shape, to_fp( x1.flatten(), FixedImpl.FP16x16)) x2 = Tensor(Dtype.FP16x16, x2.shape, to_fp( x2.flatten(), FixedImpl.FP16x16)) y = Tensor(Dtype.FP16x16, y.shape, to_fp( y.flatten(), FixedImpl.FP16x16)) name = "concat_fp16x16_1d" make_test( inputs = [x1, x2], output = y, func_sig = "TensorTrait::concat(array![input_0, input_1].span(), 0)", name= name, trait= Trait.TENSOR.TENSOR) def concat_2D(): x1 = np.arange(0,4).astype(np.int64).reshape(2,2) x2 = np.arange(4,8).astype(np.int64).reshape(2,2) y = np.concatenate((x1, x2), axis=0) x1 = Tensor(Dtype.FP16x16, x1.shape, to_fp( x1.flatten(), FixedImpl.FP16x16)) x2 = Tensor(Dtype.FP16x16, x2.shape, to_fp( x2.flatten(), FixedImpl.FP16x16)) y = Tensor(Dtype.FP16x16, y.shape, to_fp( y.flatten(), FixedImpl.FP16x16)) name = "concat_fp16x16_2d" make_test( inputs = [x1, x2], output = y, func_sig = "TensorTrait::concat(array![input_0, input_1].span(), 0)", name= name, trait= Trait.TENSOR) def concat_3D(): def default(): x1 = np.arange(0,27).astype(np.int64).reshape(3,3,3) x2 = np.arange(27,54).astype(np.int64).reshape(3,3,3) y = np.concatenate((x1, x2), axis=0) x1 = Tensor(Dtype.FP16x16, x1.shape, to_fp( x1.flatten(), FixedImpl.FP16x16)) x2 = Tensor(Dtype.FP16x16, x2.shape, to_fp( x2.flatten(), FixedImpl.FP16x16)) y = Tensor(Dtype.FP16x16, y.shape, to_fp( y.flatten(), FixedImpl.FP16x16)) name = "concat_fp16x16_3d_default" make_test( inputs = [x1, x2], output = y, func_sig = "TensorTrait::concat(array![input_0, input_1].span(), 0)", name= name, trait= Trait.TENSOR) def axis_1(): x1 = np.arange(0,27).astype(np.int64).reshape(3,3,3) x2 = np.arange(27,54).astype(np.int64).reshape(3,3,3) y = np.concatenate((x1, x2), axis=1) x1 = Tensor(Dtype.FP16x16, x1.shape, to_fp( x1.flatten(), FixedImpl.FP16x16)) x2 = Tensor(Dtype.FP16x16, x2.shape, to_fp( x2.flatten(), FixedImpl.FP16x16)) y = Tensor(Dtype.FP16x16, y.shape ,to_fp( y.flatten(), FixedImpl.FP16x16)) name = "concat_fp16x16_3d_axis_1" make_test( inputs = [x1, x2], output = y, func_sig = "TensorTrait::concat(array![input_0, input_1].span(), 1)", name= name, trait= Trait.TENSOR) def axis_2(): x1 = np.arange(0,27).astype(np.int64).reshape(3,3,3) x2 = np.arange(27,54).astype(np.int64).reshape(3,3,3) y = np.concatenate((x1, x2), axis=2) x1 = Tensor(Dtype.FP16x16, x1.shape, to_fp( x1.flatten(), FixedImpl.FP16x16)) x2 = Tensor(Dtype.FP16x16, x2.shape, to_fp( x2.flatten(), FixedImpl.FP16x16)) y = Tensor(Dtype.FP16x16, y.shape, to_fp( y.flatten(), FixedImpl.FP16x16)) name = "concat_fp16x16_3d_axis_2" make_test( inputs = [x1, x2], output = y, func_sig = "TensorTrait::concat(array![input_0, input_1].span(), 2)", name= name, trait= Trait.TENSOR) def three_tensors_axis_1(): x1 = np.arange(0,27).astype(np.int64).reshape(3,3,3) x2 = np.arange(27,54).astype(np.int64).reshape(3,3,3) x3 = np.arange(54,81).astype(np.int64).reshape(3,3,3) y = np.concatenate((x1, x2, x3), axis=1) x1 = Tensor(Dtype.FP16x16, x1.shape, to_fp( x1.flatten(), FixedImpl.FP16x16)) x2 = Tensor(Dtype.FP16x16, x2.shape, to_fp( x2.flatten(), FixedImpl.FP16x16)) x3 = Tensor(Dtype.FP16x16, x3.shape, to_fp( x3.flatten(), FixedImpl.FP16x16)) y = Tensor(Dtype.FP16x16, y.shape, to_fp( y.flatten(), FixedImpl.FP16x16)) name = "concat_fp16x16_3d_three_tensors_axis_1" make_test( inputs = [x1, x2, x3], output = y, func_sig = "TensorTrait::concat(array![input_0, input_1, input_2].span(), 1)", name= name, trait= Trait.TENSOR) def three_tensors_axis_2(): x1 = np.arange(0,27).astype(np.int64).reshape(3,3,3) x2 = np.arange(27,54).astype(np.int64).reshape(3,3,3) x3 = np.arange(54,81).astype(np.int64).reshape(3,3,3) y = np.concatenate((x1, x2, x3), axis=2) x1 = Tensor(Dtype.FP16x16, x1.shape, to_fp( x1.flatten(), FixedImpl.FP16x16)) x2 = Tensor(Dtype.FP16x16, x2.shape, to_fp( x2.flatten(), FixedImpl.FP16x16)) x3 = Tensor(Dtype.FP16x16, x3.shape, to_fp( x3.flatten(), FixedImpl.FP16x16)) y = Tensor(Dtype.FP16x16, y.shape,to_fp( y.flatten(), FixedImpl.FP16x16)) name = "concat_fp16x16_3d_three_tensors_axis_2" make_test( inputs = [x1, x2, x3], output = y, func_sig = "TensorTrait::concat(array![input_0, input_1, input_2].span(), 2)", name= name, trait= Trait.TENSOR) default() axis_1() axis_2() three_tensors_axis_1() three_tensors_axis_2() concat_1D() concat_2D() concat_3D()
https://github.com/gizatechxyz/orion
nodegen/node/concat_from_sequence.py
import numpy as np from nodegen.node import RunAll from ..helpers import make_test, to_fp, Tensor, Dtype, FixedImpl, Trait class Concat_from_sequence(RunAll): @staticmethod def concat_from_sequence_u32(): def new_axis_zero(): sequence = [] values_array = [] shape = np.random.randint(1, 4, 2) for _ in range(5): values = np.random.randint(0, 6, shape).astype(np.uint32) tensor = Tensor(Dtype.U32, values.shape, values.flatten()) sequence.append(tensor) values_array.append(values) axis = np.int32(1) new_axis = np.uint32(0) concatenated_tensor = np.concatenate(values_array, axis) concatenated_tensor = Tensor(Dtype.U32, concatenated_tensor.shape, concatenated_tensor.flatten()) name = "concat_from_sequence_u32_new_axis_zero" make_test([sequence], concatenated_tensor, "SequenceTrait::concat_from_sequence(input_0, 1_i32, Option::Some(0))", name, Trait.SEQUENCE) def new_axis_one(): sequence = [] values_array = [] shape = np.random.randint(1, 4, 2) for _ in range(5): values = np.random.randint(0, 6, shape).astype(np.uint32) tensor = Tensor(Dtype.U32, values.shape, values.flatten()) sequence.append(tensor) values_array.append(values) axis = np.int32(1) new_axis = np.uint32(1) concatenated_tensor = np.stack(values_array, axis) concatenated_tensor = Tensor(Dtype.U32, concatenated_tensor.shape, concatenated_tensor.flatten()) name = "concat_from_sequence_u32_new_axis_one" make_test([sequence], concatenated_tensor, "SequenceTrait::concat_from_sequence(input_0, 1_i32, Option::Some(1))", name, Trait.SEQUENCE) def new_axis_default(): sequence = [] values_array = [] shape = np.random.randint(1, 4, 2) for _ in range(5): values = np.random.randint(0, 6, shape).astype(np.uint32) tensor = Tensor(Dtype.U32, values.shape, values.flatten()) sequence.append(tensor) values_array.append(values) axis = np.int32(1) new_axis = np.uint32(0) concatenated_tensor = np.concatenate(values_array, axis) concatenated_tensor = Tensor(Dtype.U32, concatenated_tensor.shape, concatenated_tensor.flatten()) name = "concat_from_sequence_u32_new_axis_default" make_test([sequence], concatenated_tensor, "SequenceTrait::concat_from_sequence(input_0, 1_i32, Option::None(()))", name, Trait.SEQUENCE) new_axis_zero() new_axis_one() new_axis_default() @staticmethod def concat_from_sequence_i32(): def new_axis_zero(): sequence = [] values_array = [] shape = np.random.randint(1, 4, 2) for _ in range(5): values = np.random.randint(-6, 6, shape).astype(np.int32) tensor = Tensor(Dtype.I32, values.shape, values.flatten()) sequence.append(tensor) values_array.append(values) axis = np.int32(1) new_axis = np.uint32(0) concatenated_tensor = np.concatenate(values_array, axis) concatenated_tensor = Tensor(Dtype.I32, concatenated_tensor.shape, concatenated_tensor.flatten()) name = "concat_from_sequence_i32_new_axis_zero" make_test([sequence], concatenated_tensor, "SequenceTrait::concat_from_sequence(input_0, 1_i32, Option::Some(0))", name, Trait.SEQUENCE) def new_axis_one(): sequence = [] values_array = [] shape = np.random.randint(1, 4, 2) for _ in range(5): values = np.random.randint(-6, 6, shape).astype(np.int32) tensor = Tensor(Dtype.I32, values.shape, values.flatten()) sequence.append(tensor) values_array.append(values) axis = np.int32(1) new_axis = np.uint32(1) concatenated_tensor = np.stack(values_array, axis) concatenated_tensor = Tensor(Dtype.I32, concatenated_tensor.shape, concatenated_tensor.flatten()) name = "concat_from_sequence_i32_new_axis_one" make_test([sequence], concatenated_tensor, "SequenceTrait::concat_from_sequence(input_0, 1_i32, Option::Some(1))", name, Trait.SEQUENCE) def new_axis_default(): sequence = [] values_array = [] shape = np.random.randint(1, 4, 2) for _ in range(5): values = np.random.randint(-6, 6, shape).astype(np.int32) tensor = Tensor(Dtype.I32, values.shape, values.flatten()) sequence.append(tensor) values_array.append(values) axis = np.int32(1) new_axis = np.uint32(0) concatenated_tensor = np.concatenate(values_array, axis) concatenated_tensor = Tensor(Dtype.I32, concatenated_tensor.shape, concatenated_tensor.flatten()) name = "concat_from_sequence_i32_new_axis_default" make_test([sequence], concatenated_tensor, "SequenceTrait::concat_from_sequence(input_0, 1_i32, Option::None(()))", name, Trait.SEQUENCE) new_axis_zero() new_axis_one() new_axis_default() @staticmethod def concat_from_sequence_i8(): def new_axis_zero(): sequence = [] values_array = [] shape = np.random.randint(1, 4, 2) for _ in range(5): values = np.random.randint(-6, 6, shape).astype(np.int8) tensor = Tensor(Dtype.I8, values.shape, values.flatten()) sequence.append(tensor) values_array.append(values) axis = np.int32(1) new_axis = np.uint32(0) concatenated_tensor = np.concatenate(values_array, axis) concatenated_tensor = Tensor(Dtype.I8, concatenated_tensor.shape, concatenated_tensor.flatten()) name = "concat_from_sequence_i8_new_axis_zero" make_test([sequence], concatenated_tensor, "SequenceTrait::concat_from_sequence(input_0, 1_i32, Option::Some(0))", name, Trait.SEQUENCE) def new_axis_one(): sequence = [] values_array = [] shape = np.random.randint(1, 4, 2) for _ in range(5): values = np.random.randint(-6, 6, shape).astype(np.int8) tensor = Tensor(Dtype.I8, values.shape, values.flatten()) sequence.append(tensor) values_array.append(values) axis = np.int32(1) new_axis = np.uint32(1) concatenated_tensor = np.stack(values_array, axis) concatenated_tensor = Tensor(Dtype.I8, concatenated_tensor.shape, concatenated_tensor.flatten()) name = "concat_from_sequence_i8_new_axis_one" make_test([sequence], concatenated_tensor, "SequenceTrait::concat_from_sequence(input_0, 1_i32, Option::Some(1))", name, Trait.SEQUENCE) def new_axis_default(): sequence = [] values_array = [] shape = np.random.randint(1, 4, 2) for _ in range(5): values = np.random.randint(-6, 6, shape).astype(np.int8) tensor = Tensor(Dtype.I8, values.shape, values.flatten()) sequence.append(tensor) values_array.append(values) axis = np.int32(1) new_axis = np.uint32(0) concatenated_tensor = np.concatenate(values_array, axis) concatenated_tensor = Tensor(Dtype.I8, concatenated_tensor.shape, concatenated_tensor.flatten()) name = "concat_from_sequence_i8_new_axis_default" make_test([sequence], concatenated_tensor, "SequenceTrait::concat_from_sequence(input_0, 1_i32, Option::None(()))", name, Trait.SEQUENCE) new_axis_zero() new_axis_one() new_axis_default() @staticmethod def concat_from_sequence_fp8x23(): def new_axis_zero(): sequence = [] values_array = [] shape = np.random.randint(1, 4, 2) for _ in range(5): values = np.random.randint(-6, 6, shape).astype(np.float64) tensor = Tensor(Dtype.FP8x23, values.shape, to_fp(values.flatten(), FixedImpl.FP8x23)) sequence.append(tensor) values_array.append(values) axis = np.int32(1) new_axis = np.uint32(0) concatenated_tensor = np.concatenate(values_array, axis) concatenated_tensor = Tensor(Dtype.FP8x23, concatenated_tensor.shape, to_fp(concatenated_tensor.flatten(), FixedImpl.FP8x23)) name = "concat_from_sequence_fp8x23_new_axis_zero" make_test([sequence], concatenated_tensor, "SequenceTrait::concat_from_sequence(input_0, 1_i32, Option::Some(0))", name, Trait.SEQUENCE) def new_axis_one(): sequence = [] values_array = [] shape = np.random.randint(1, 4, 2) for _ in range(5): values = np.random.randint(-6, 6, shape).astype(np.float64) tensor = Tensor(Dtype.FP8x23, values.shape, to_fp(values.flatten(), FixedImpl.FP8x23)) sequence.append(tensor) values_array.append(values) axis = np.int32(1) new_axis = np.uint32(1) concatenated_tensor = np.stack(values_array, axis) concatenated_tensor = Tensor(Dtype.FP8x23, concatenated_tensor.shape, to_fp(concatenated_tensor.flatten(), FixedImpl.FP8x23)) name = "concat_from_sequence_fp8x23_new_axis_one" make_test([sequence], concatenated_tensor, "SequenceTrait::concat_from_sequence(input_0, 1_i32, Option::Some(1))", name, Trait.SEQUENCE) def new_axis_default(): sequence = [] values_array = [] shape = np.random.randint(1, 4, 2) for _ in range(5): values = np.random.randint(-6, 6, shape).astype(np.float64) tensor = Tensor(Dtype.FP8x23, values.shape, to_fp(values.flatten(), FixedImpl.FP8x23)) sequence.append(tensor) values_array.append(values) axis = np.int32(1) new_axis = np.uint32(0) concatenated_tensor = np.concatenate(values_array, axis) concatenated_tensor = Tensor(Dtype.FP8x23, concatenated_tensor.shape, to_fp(concatenated_tensor.flatten(), FixedImpl.FP8x23)) name = "concat_from_sequence_fp8x23_new_axis_default" make_test([sequence], concatenated_tensor, "SequenceTrait::concat_from_sequence(input_0, 1_i32, Option::None(()))", name, Trait.SEQUENCE) new_axis_zero() new_axis_one() new_axis_default() @staticmethod def concat_from_sequence_fp16x16(): def new_axis_zero(): sequence = [] values_array = [] shape = np.random.randint(1, 4, 2) for _ in range(5): values = np.random.randint(-6, 6, shape).astype(np.float64) tensor = Tensor(Dtype.FP16x16, values.shape, to_fp(values.flatten(), FixedImpl.FP16x16)) sequence.append(tensor) values_array.append(values) axis = np.int32(1) new_axis = np.uint32(0) concatenated_tensor = np.concatenate(values_array, axis) concatenated_tensor = Tensor(Dtype.FP16x16, concatenated_tensor.shape, to_fp(concatenated_tensor.flatten(), FixedImpl.FP16x16)) name = "concat_from_sequence_fp16x16_new_axis_zero" make_test([sequence], concatenated_tensor, "SequenceTrait::concat_from_sequence(input_0, 1_i32, Option::Some(0))", name, Trait.SEQUENCE) def new_axis_one(): sequence = [] values_array = [] shape = np.random.randint(1, 4, 2) for _ in range(5): values = np.random.randint(-6, 6, shape).astype(np.float64) tensor = Tensor(Dtype.FP16x16, values.shape, to_fp(values.flatten(), FixedImpl.FP16x16)) sequence.append(tensor) values_array.append(values) axis = np.int32(1) new_axis = np.uint32(1) concatenated_tensor = np.stack(values_array, axis) concatenated_tensor = Tensor(Dtype.FP16x16, concatenated_tensor.shape, to_fp(concatenated_tensor.flatten(), FixedImpl.FP16x16)) name = "concat_from_sequence_fp16x16_new_axis_one" make_test([sequence], concatenated_tensor, "SequenceTrait::concat_from_sequence(input_0, 1_i32, Option::Some(1))", name, Trait.SEQUENCE) def new_axis_default(): sequence = [] values_array = [] shape = np.random.randint(1, 4, 2) for _ in range(5): values = np.random.randint(-6, 6, shape).astype(np.float64) tensor = Tensor(Dtype.FP16x16, values.shape, to_fp(values.flatten(), FixedImpl.FP16x16)) sequence.append(tensor) values_array.append(values) axis = np.int32(1) new_axis = np.uint32(0) concatenated_tensor = np.concatenate(values_array, axis) concatenated_tensor = Tensor(Dtype.FP16x16, concatenated_tensor.shape, to_fp(concatenated_tensor.flatten(), FixedImpl.FP16x16)) name = "concat_from_sequence_fp16x16_new_axis_default" make_test([sequence], concatenated_tensor, "SequenceTrait::concat_from_sequence(input_0, 1_i32, Option::None(()))", name, Trait.SEQUENCE) new_axis_zero() new_axis_one() new_axis_default()
https://github.com/gizatechxyz/orion

This dataset contains the code from all the ZKML repos that I'm aware of that have an MIT, Apache or GPL 3.0 license. It only contains the files with extensions: ".py", ".js", ".java", ".c", ".cpp", ".h", ".hpp", ".rs", "cairo", ".zkey", ".sol", ".circom", ".ejs", ".ipynb" List of repos: "https://github.com/gizatechxyz/orion", "https://github.com/gizatechxyz/Giza-Hub", "https://github.com/zkonduit/ezkl", "https://github.com/socathie/keras2circom", "https://github.com/socathie/circomlib-ml" "https://github.com/worldcoin/proto-neural-zkp", "https://github.com/Modulus-Labs/RockyBot" "https://github.com/ora-io/keras2circom", "https://github.com/zk-ml/tachikoma", "https://github.com/only4sim/ZK-DTP", "https://github.com/ddkang/zkml", "https://github.com/socathie/ZKaggleV2"

Downloads last month
47